Homework 7
due March 7, 2014 in class

1. Prove the following identities in an arbitrary ring R from the axioms.
(a) $0 a=0$
(b) $-a=(-1) a$
(c) $(-a) b=-(a b)$
2. (Artin 11.1.1) Prove that $7+\sqrt[3]{2}$ and $\sqrt{3}+\sqrt{-5}$ are algebraic numbers.
3. (Artin 11.1.3) Let $\mathbb{Q}[\alpha, \beta]$ denote the smallest subring of \mathbb{C} containing $\mathbb{Q}, \alpha=\sqrt{2}$, and $\beta=\sqrt{3}$, and let $\gamma=\alpha+\beta$. Prove that $\mathbb{Q}[\alpha, \beta]=\mathbb{Q}[\gamma]$. Is $\mathbb{Z}[\alpha, \beta]=\mathbb{Z}[\gamma]$?
4. (similar to Artin 11.1.6) In each case, decide whether or not S is a subring of R.
(a) S is the set of all rational numbers of the form a / b, where b is not divisible by 3 , and $R=\mathbb{Q}$.
(b) S is the set of all real matrices of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, and R is the set of all 2×2 matrices.
5. (similar to Artin 11.1.7) In each case, decide whether the given structure forms a ring. If it is not a ring, determine which of the ring axioms hold and which fail:
(a) U is an arbitrary set, and R is the set of subsets of U. Addition and multiplication of elements of R are defined by the rules $A+B=A \cup B$ and $A \cdot B=A \cap B$ (note that in Artin 11.1.7 there is an additional $-(A \cap B)$ in the sum $)$.
(b) R is the set of continuous functions $\mathbb{R} \rightarrow \mathbb{R}$. Addition and multiplication are defined by the rules $[f+g](x)=f(x)+g(x)$ and $[f \circ g](x)=f(g(x))$.
6. Determine all rings which contain the zero ring as a subring.
7. (Artin 11.1.8) Describe the group of units in each ring. (The operation in the group of units is multiplication from the ring).
(a) $\mathbb{Z} / 12 \mathbb{Z}$.
(b) $\mathbb{Z} / 8 \mathbb{Z}$.
(c) $\mathbb{Z} / n \mathbb{Z}$.
