MAT 150B

Homework 8 due March 14, 2014 in class

1. Prove or disprove: If an ideal *I* contains a unit, then it is the unit ideal.

2. (Artin 11.2.1) For which integers *n* does $x^2 + x + 1$ divide $x^4 + 3x^3 + x^2 + 6x + 10$ in $(\mathbb{Z}/n\mathbb{Z})[x]$?.

3. Prove that in the ring $\mathbb{Z}[x]$, $(2) \cap (x) = (2x)$.

4. Is the set of polynomials $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ such that 2^{k+1} divides a_k an ideal in $\mathbb{Z}[x]$?

5. (Artin 11.3.2) Prove that a nonzero ideal $I \subseteq \mathbb{Z}[i]$ contains a nonzero integer.

6. (Artin 11.3.3 b) Find generators for the kernel of the map $\mathbb{R}[x] \to \mathbb{C}$ defined by $f(x) \mapsto f(2+i)$.

7. (Artin 11.4.3 a and b) Describe each of the following rings:

(a)
$$\mathbb{Z}[x]/(x^2-3, 2x+4).$$

(b) $\mathbb{Z}[i]/(2+i)$.