Homework 8

due March 14, 2014 in class

1. Prove or disprove: If an ideal I contains a unit, then it is the unit ideal.
2. (Artin 11.2.1) For which integers n does $x^{2}+x+1$ divide $x^{4}+3 x^{3}+x^{2}+$ $6 x+10$ in $(\mathbb{Z} / n \mathbb{Z})[x]$?.
3. Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.
4. Is the set of polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ such that 2^{k+1} divides a_{k} an ideal in $\mathbb{Z}[x]$?
5. (Artin 11.3.2) Prove that a nonzero ideal $I \subseteq \mathbb{Z}[i]$ contains a nonzero integer.
6. (Artin 11.3 .3 b) Find generators for the kernel of the map $\mathbb{R}[x] \rightarrow \mathbb{C}$ defined by $f(x) \mapsto f(2+i)$.
7. (Artin 11.4.3 a and b) Describe each of the following rings:
(a) $\mathbb{Z}[x] /\left(x^{2}-3,2 x+4\right)$.
(b) $\mathbb{Z}[i] /(2+i)$.
