Homework 8

due March 13, 2015 for presentation in class

1. Fix a partition λ and fix an ordering of standard λ-tableaux t_{1}, t_{2}, \ldots. Define the axial distance from k to $k+1$ in tableau t_{i} to be

$$
\delta_{i}=\delta_{i}(k, k+1)=\left(c^{\prime}-r^{\prime}\right)-(c-r),
$$

where c, c^{\prime} and r, r^{\prime} are the column and row coordinates of k and $k+1$, respectively, in t_{i}. Young's seminormal form assigns to each transposition $s_{k}=(k, k+1)$ the matrix $\rho_{\lambda}\left(s_{k}\right)$ with entries

$$
\rho_{\lambda}\left(s_{k}\right)_{i, j}= \begin{cases}1 / \delta_{i} & \text { if } i=j \\ 1-1 / \delta_{i}^{2} & \text { if } s_{k} t_{i}=t_{j} \text { and } i<j \\ 1 & \text { if } s_{k} t_{i}=t_{j} \text { and } i>j \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that every row and column of $\rho_{\lambda}\left(s_{k}\right)$ has at most two nonzero entries.
(b) Show that ρ_{λ} can be extended to a representation of S_{n}, where λ is a partition of n, by using the relations in Homework $6 \# 2$.
(c) Show that this representation is equivalent to the one afforded by \mathcal{S}^{λ}.
2. Prove the following results in two ways: once using representation theory and once using combinatorics.
(a) If $K_{\lambda \mu} \neq 0$, then $\mu \unlhd \lambda$.
(b) Suppose μ and ν are compositions with the same parts (only rearranged). Then for any $\lambda, K_{\lambda \mu}=K_{\lambda \nu}$.
Hint: For the combinatorial proof, consider the case where μ and ν differ by an adjacent transposition of parts.

