Homework 2

due January 30

Problem 1. Let $f \in \Lambda^{n}$, and for any $g \in \Lambda^{n}$ define $g_{k} \in \Lambda^{n k}$ by

$$
g_{k}\left(x_{1}, x_{2}, \ldots\right)=g\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)
$$

Show that

$$
\omega f_{k}=(-1)^{n(k-1)}(\omega f)_{k}
$$

Problem 2. The symmetric functions $f_{\lambda}=\omega m_{\lambda}$ are sometimes called the "forgotten" symmetric functions. Show that the matrix of coefficients of the forgotten symmetric functions f_{λ} expressed in terms of monomial symmetric functions m_{λ} is the transpose of the matrix of the elementary functions e_{λ} expressed in terms of the complete homogeneous symmetric functions h_{λ}.

Problem 3. Let ∂p_{k} be the operator on symmetric functions given by partial differentiation with respect to p_{k}, under the identification of symmetric functions with polynomials $f \in \mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]$. Show that ∂p_{k} is adjoint with respect to the scalar product to the operator of multiplication by p_{k} / k.

Problem 4. Using the symmetry of the RSK algorithm, show the following:
(1) A permutation π is an involution if and only if $P(\pi)=Q(\pi)$, where $(P(\pi), Q(\pi))$ correspond to π under the RSK algorithm.
(2) The number of involutions of S_{n} is $\sum_{\lambda \vdash n} f^{\lambda}$.
(3) The number of fixed points in an involution π is the number of columns of odd length in $P(\pi)$.
(4) We have

$$
1 \cdot 3 \cdot 5 \cdots(2 n-1)=\sum_{\substack{\lambda-2 n \\ \lambda^{t} \text { even }}} f^{\lambda},
$$

where λ^{t} even means that every part in λ^{t} is even.
(5) There is a bijection $M \longleftrightarrow T$ between symmetric \mathbb{N}-matrices of finite support and semistandard Young tableaux such that the trace of M is the number of columns of odd length of T.
(6) The following equations hold

$$
\begin{aligned}
\sum_{\lambda} s_{\lambda} & =\prod_{i} \frac{1}{1-x_{i}} \prod_{i<j} \frac{1}{1-x_{i} x_{j}} \\
\sum_{\lambda^{t} \text { even }} s_{\lambda} & =\prod_{i<j} \frac{1}{1-x_{i} x_{j}}
\end{aligned}
$$

Problem 5. Suppose $\pi=x_{1} x_{2} \ldots x_{n} \in S_{n}$ is a permutation in one-line notation such that $P=P(\pi)$ has rectangular shape. Let the complement of π be

$$
\pi^{c}=y_{1} y_{2} \ldots y_{n}
$$

where $y_{i}=n+1-x_{i}$ for all i. Also define the complement of a rectangular standard tableau P with n entries to be the array obtained by replacing $P_{i j}$ with $n+1-P_{i j}$ for all (i, j) and then rotating the result by 180°. Show that

$$
P\left(\pi^{c}\right)=\left(P^{c}\right)^{t} .
$$

Problem 6. For any symmetric polynomial f, let f^{\perp} be the operator adjoint to multiplication by f with respect to the Hall inner product, that is, $\left\langle f^{\perp} g, h\right\rangle=\langle g, f h\rangle$ for all $g, h \in \Lambda$.
(1) Find a formula for $h_{k}^{\perp} m_{\lambda}$, expressed again in terms of monomial symmetric functions m_{μ}.
(2) Show that the basis of monomial symmetric functions is uniquely characterized by the formula from the previous part.

Problem 7. A plane partition of n is a sequence of ordinary partitions $\lambda=\left(\lambda^{(1)} \supseteq \cdots \supseteq \lambda^{(k)}\right)$ of total size $\sum_{i}\left|\lambda^{(i)}\right|=n$, weakly decreasing in the sense that the diagram of each $\lambda^{(i)}$ is contained in that of the preceding one. The diagram of a plane partition is the three-dimensional array in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ whose i-th horizontal layer is the diagram of $\lambda^{(i)}$.

Find a bijection between plane partitions whose diagram fits inside a $k \times$ $\ell \times m$ box and semi-standard Young tableaux of shape $\left(k^{\ell}\right)$ with entries in $[\ell+m]$.

