Homework 3

due February 13

Problem 1. Let $C(x,y)=\prod_{i,j\geq 1}(1-x_iy_j)^{-1}$. Show that then for all $f\in \Lambda$ $\langle C(x,y),f(x)\rangle=f(y)$

where the scalar product is taken in the x variables. In other words, C(x,y) is a *reproducing kernel* for the scalar product.

Problem 2. Show that

$$\prod_{i=1}^{m} \prod_{j=1}^{n} (x_i + y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\tilde{\lambda}^t}(y)$$

where the sum is over all partitions λ with $\ell(\lambda) \leq m$ and $\lambda_1 \leq n$ and $\tilde{\lambda}$ is defined as

$$\tilde{\lambda} = (n - \lambda_m, n - \lambda_{m-1}, \dots, n - \lambda_1).$$

Problem 3. Let $D_{\mu}: \Lambda \to \Lambda$ be the linear transformation given by

$$D_{\mu}(s_{\lambda}) = s_{\lambda/\mu}.$$

Show that $D_{\mu}D_{\lambda}=D_{\lambda}D_{\mu}$.

Problem 4. If R is a ring, then an additive group homomorphism $D: R \to R$ is called a derivation if D(fg) = (Df)g + f(Dg) for all $f, g \in R$.

- (1) Show that the linear transformation $\Lambda \to \Lambda$ defined by $D(s_{\lambda}) = s_{\lambda/1}$ is a derivation.
- (2) Show that the bilinear operation [f,g] on Λ given by

$$[s_{\lambda}, s_{\mu}] = s_{\lambda/1} s_{\mu} - s_{\lambda} s_{\mu/1}$$

defines a Lie algebra structure on Λ . That is, the Jacobi identity holds

$$[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0.$$

Problem 5. If A is an algebra over a field k, then $A \otimes_k A$ is an algebra with multiplication characterized uniquely by $(a \otimes b)(c \otimes d) = ac \otimes bd$. A coproduct is an algebra homomorphism $\Delta : A \to A \otimes A$ which is coassociative in the sense that the two maps

$$(1\otimes\Delta)\circ\Delta\quad\text{and}\quad (\Delta\otimes1)\circ\Delta$$

from A to $A\otimes A\otimes A$ are equal. (This axiom is dual to the associative law for multiplication $\mu:A\otimes A\to A$, which can be formulated as $\mu\circ(1\otimes\mu)=\mu\circ(\mu\otimes 1)$.) Here $1:A\to A$ is the identity map.

Taking Λ to be the algebra of symmetric functions with coefficients in $k=\mathbb{Q}$ and identifying $\Lambda\otimes\Lambda$ with $\Lambda(X)\Lambda(Y)$, show that $\Delta(f)=f(X,Y)$ defines a coproduct on Λ .

Remark: An algebra equipped with a coproduct is called a bialgebra. If we also define the counit $\epsilon: \Lambda \to \mathbb{Q}$ by $\epsilon(f) = \langle f, 1 \rangle = f(0, 0, \ldots)$ and the antipode $S: \Lambda \to \Lambda$ by Sf = f(-X), these together with Δ can be shown to satisfy the axioms of a Hopf algebra.

Problem 6. The relevance of this problem will become clear when we talk about differential posets in class.

(1) Let $U:\Lambda\to\Lambda$ and $D:\Lambda\to\Lambda$ be linear transformations defined by

$$U(f) = p_1 f$$
$$D(f) = \frac{\partial}{\partial p_1} f$$

where $\partial/\partial p_1$ is applied to f written as a polynomial in the p_i 's. Show that

$$DU - UD = I$$
$$DU^{k} = kU^{k-1} + U^{k}D$$

where I is the identity operator.

(2) Now let us work in Young's lattice Y and define

$$D(\lambda) = \sum_{\lambda^- \lhd \lambda} \lambda^-$$
$$U(\lambda) = \sum_{\lambda^+ \rhd \lambda} \lambda^+$$

where the sum over λ^- is over all partitions being covered by λ in Y and the sum over λ^+ is over all partitions covering λ in Y. Show that

$$DU - UD = I$$

$$DU^{k} = kU^{k-1} + U^{k}D.$$

(3) Derive from (2) that

$$\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$$