Homework 3

due February 15
Problem 1. Let $C(x, y)=\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1}$. Show that then for all $f \in \Lambda$

$$
\langle C(x, y), f(x)\rangle=f(y)
$$

where the scalar product is taken in the x variables. In other words, $C(x, y)$ is a reproducing kernel for the scalar product.

Problem 2. Show that

$$
\prod_{i=1}^{m} \prod_{j=1}^{n}\left(x_{i}+y_{j}\right)=\sum_{\lambda} s_{\lambda}(x) s_{\lambda^{t}}(y)
$$

where the sum is over all partitions λ with $\ell(\lambda) \leq m$ and $\lambda_{1} \leq n$ and $\tilde{\lambda}$ is defined as

$$
\tilde{\lambda}=\left(n-\lambda_{m}, n-\lambda_{m-1}, \ldots, n-\lambda_{1}\right) .
$$

Problem 3. Let $D_{\mu}: \Lambda \rightarrow \Lambda$ be the linear transformation given by

$$
D_{\mu}\left(s_{\lambda}\right)=s_{\lambda / \mu} .
$$

Show that $D_{\mu} D_{\lambda}=D_{\lambda} D_{\mu}$.
Problem 4. If R is a ring, then an additive group homomorphism $D: R \rightarrow$ R is called a derivation if $D(f g)=(D f) g+f(D g)$ for all $f, g \in R$.
(1) Show that the linear transformation $\Lambda \rightarrow \Lambda$ defined by $D\left(s_{\lambda}\right)=$ $s_{\lambda / 1}$ is a derivation.
(2) Show that the bilinear operation $[f, g]$ on Λ given by

$$
\left[s_{\lambda}, s_{\mu}\right]=s_{\lambda / 1} s_{\mu}-s_{\lambda} s_{\mu / 1}
$$

defines a Lie algebra structure on Λ. That is, the Jacobi identity holds

$$
[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0
$$

Problem 5. If A is an algebra over a field k, then $A \otimes_{k} A$ is an algebra with multiplication characterized uniquely by $(a \otimes b)(c \otimes d)=a c \otimes b d$. A coproduct is an algebra homomorphism $\Delta: A \rightarrow A \otimes A$ which is coassociative in the sense that the two maps

$$
(1 \otimes \Delta) \circ \Delta \quad \underset{1}{\text { and }} \quad(\Delta \otimes 1) \circ \Delta
$$

from A to $A \otimes A \otimes A$ are equal. (This axiom is dual to the associative law for multiplication $\mu: A \otimes A \rightarrow A$, which can be formulated as $\mu \circ(1 \otimes \mu)=$ $\mu \circ(\mu \otimes 1)$.) Here 1: $A \rightarrow A$ is the identity map.

Taking Λ to be the algebra of symmetric functions with coefficients in $k=$ \mathbb{Q} and identifying $\Lambda \otimes \Lambda$ with $\Lambda(X) \Lambda(Y)$, show that $\Delta(f)=f(X, Y)$ defines a coproduct on Λ.

Remark: An algebra equipped with a coproduct is called a bialgebra. If we also define the counit $\epsilon: \Lambda \rightarrow \mathbb{Q}$ by $\epsilon(f)=\langle f, 1\rangle=f(0,0, \ldots)$ and the antipode $S: \Lambda \rightarrow \Lambda$ by $S f=f(-X)$, these together with Δ can be shown to satisfy the axioms of a Hopf algebra.

Problem 6. The relevance of this problem will become clear when we talk about differential posets in class.
(1) Let $U: \Lambda \rightarrow \Lambda$ and $D: \Lambda \rightarrow \Lambda$ be linear transformations defined by

$$
\begin{aligned}
& U(f)=p_{1} f \\
& D(f)=\frac{\partial}{\partial p_{1}} f
\end{aligned}
$$

where $\partial / \partial p_{1}$ is applied to f written as a polynomial in the p_{i} 's. Show that

$$
\begin{aligned}
& D U-U D=I \\
& D U^{k}=k U^{k-1}+U^{k} D
\end{aligned}
$$

where I is the identity operator.
(2) Now let us work in Young's lattice Y and define

$$
\begin{aligned}
& D(\lambda)=\sum_{\lambda^{-} \triangleleft \lambda} \lambda^{-} \\
& U(\lambda)=\sum_{\lambda^{+} \triangleright \lambda} \lambda^{+}
\end{aligned}
$$

where the sum over λ^{-}is over all partitions being covered by λ in Y and the sum over λ^{+}is over all partitions covering λ in Y. Show that

$$
\begin{aligned}
& D U-U D=I \\
& D U^{k}=k U^{k-1}+U^{k} D
\end{aligned}
$$

(3) Derive from (2) that

$$
\sum_{\lambda \vdash n}\left(f_{2}^{\lambda}\right)^{2}=n!
$$

