Homework 5

due March 15

Problem 1. Let $|\lambda| = |\mu| = n$. Show that $\langle h_{\lambda}, h_{\mu} \rangle$ is equal to the number of double cosets $S_{\lambda}wS_{\mu}$ in the symmetric group S_n , where $S_{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_{\ell}}$, embedded as a subgroup of S_n , similarly for S_{μ} , and $w \in S_n$.

Problem 2. Define the Kronecker product on symmetric functions in terms of the power-sum basis by

$$p_{\lambda} \star p_{\mu} = \delta_{\lambda\mu} z_{\lambda} p_{\lambda}.$$

Equivalently, the symmetric functions p_{λ}/z_{λ} are orthogonal idempotents with respect to \star .

(1) Prove that the Kronecker coefficients $a_{\lambda\mu\nu}$ defined by

$$s_{\mu} \star s_{\nu} = \sum_{\lambda} a_{\lambda\mu\nu} s_{\lambda}$$

are invariant under permuting the indices λ, μ, ν .

(2) Show that if $f \in \Lambda^n$, then $e_n \star f = wf$.

Remark: In fact $a_{\lambda\mu\nu}$ are non-negative integers. It is an open problem to find a combinatorial rule for the computation of the Kronecker coefficients, except for some special cases.

Problem 3. The principle specialization of a symmetric function in the variables $\{x_1, x_2, \dots, x_m\}$ is obtained by replacing x_i by q^i for all i.

- (a) Show that the Schur function specialization $s_{\lambda}(q, q^2, \dots, q^m)$ is the generating function for semistandard λ -tableaux with all entries of size at most m.
- (b) Define the content of cell (i, j) to be $c_{i,j} = j i$. Prove that

$$s_{\lambda}(q, q^2, \dots, q^m) = q^{m(\lambda)} \prod_{(i,j) \in \lambda} \frac{1 - q^{c_{i,j} + m}}{1 - q^{h_{i,j}}}$$

where $m(\lambda) = \sum_{i \geq 1} i \lambda_i$ and $h_{i,j}$ is the hook length of the cell (i,j) in λ .

Problem 4. Let r be a positive integer. A poset A is r-differential if it satisfies the definition from class with the second condition replaced by

• If $a \in A$ covers k elements for some k, then it is covered by k + r elements.

Prove the following statements about r-differential posets A.

- (a) The rank cardinalities $|A_n|$ are finite for all $n \geq 0$. (This implies that the operations D and U are well-defined).
- (b) Let A be a graded poset with A_n finite for all $n \ge 0$. Then A is r-differential if and only if DU UD = rI.
- (c) In any r-differential poset

$$\sum_{a \in A_n} (f^a)^2 = r^n n!,$$

where f^a is the number of saturated $\emptyset - a$ chains.

(d) If A is r-differential and B is s-differential, then the product $A \times B$ is (r+s)-differential. So if A is 1-differential, then the r-fold product A^r is r-differential.

Problem 5. Show that the crystal operators f_i and e_i respect the Knuth relations, that is, if $w \stackrel{K}{\simeq} v$, then $e_i w \stackrel{K}{\simeq} e_i v$ (resp. $f_i w \stackrel{K}{\simeq} f_i v$) as long as e_i (resp. f_i) does not annihilate w. Furthermore, w and $f_i w$ have the same recording tableau under Schensted insertion. This proves in particular, that the crystal operators can be defined on semistandard tableaux.