## Homework 5

due March 15
Problem 1. Let $|\lambda|=|\mu|=n$. Show that $\left\langle h_{\lambda}, h_{\mu}\right\rangle$ is equal to the number of double cosets $S_{\lambda} w S_{\mu}$ in the symmetric group $S_{n}$, where $S_{\lambda}=S_{\lambda_{1}} \times S_{\lambda_{2}} \times$ $\cdots \times S_{\lambda_{\ell}}$, embedded as a subgroup of $S_{n}$, similarly for $S_{\mu}$, and $w \in S_{n}$.

Problem 2. Define the Kronecker product on symmetric functions in terms of the power-sum basis by

$$
p_{\lambda} \star p_{\mu}=\delta_{\lambda \mu} z_{\lambda} p_{\lambda} .
$$

Equivalently, the symmetric functions $p_{\lambda} / z_{\lambda}$ are orthogonal idempotents with respect to $\star$.
(1) Prove that the Kronecker coefficients $a_{\lambda \mu \nu}$ defined by

$$
s_{\mu} \star s_{\nu}=\sum_{\lambda} a_{\lambda \mu \nu} s_{\lambda}
$$

are invariant under permuting the indices $\lambda, \mu, \nu$.
(2) Show that if $f \in \Lambda^{n}$, then $e_{n} \star f=w f$.

Remark: In fact $a_{\lambda \mu \nu}$ are non-negative integers. It is an open problem to find a combinatorial rule for the computation of the Kronecker coefficients, except for some special cases.

Problem 3. The principle specialization of a symmetric function in the variables $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is obtained by replacing $x_{i}$ by $q^{i}$ for all $i$.
(a) Show that the Schur function specialization $s_{\lambda}\left(q, q^{2}, \ldots, q^{m}\right)$ is the generating function for semistandard $\lambda$-tableaux with all entries of size at most $m$.
(b) Define the content of cell $(i, j)$ to be $c_{i, j}=j-i$. Prove that

$$
s_{\lambda}\left(q, q^{2}, \ldots, q^{m}\right)=q^{m(\lambda)} \prod_{(i, j) \in \lambda} \frac{1-q^{c_{i, j}+m}}{1-q^{h_{i, j}}}
$$

where $m(\lambda)=\sum_{i \geq 1} i \lambda_{i}$ and $h_{i, j}$ is the hook length of the cell $(i, j)$ in $\lambda$.

Problem 4. Let $r$ be a positive integer. A poset $A$ is $r$-differential if it satisfies the definition from class with the second condition replaced by

- If $a \in A$ covers $k$ elements for some $k$, then it is covered by $k+r$ elements.

Prove the following statements about $r$-differential posets $A$.
(a) The rank cardinalities $\left|A_{n}\right|$ are finite for all $n \geq 0$. (This implies that the operations $D$ and $U$ are well-defined).
(b) Let $A$ be a graded poset with $A_{n}$ finite for all $n \geq 0$. Then $A$ is $r$-differential if and only if $D U-U D=r I$.
(c) In any $r$-differential poset

$$
\sum_{a \in A_{n}}\left(f^{a}\right)^{2}=r^{n} n!
$$

where $f^{a}$ is the number of saturated $\emptyset-a$ chains.
(d) If $A$ is $r$-differential and $B$ is $s$-differential, then the product $A \times$ $B$ is $(r+s)$-differential. So if $A$ is 1-differential, then the $r$-fold product $A^{r}$ is $r$-differential.

Problem 5. Show that the crystal operators $f_{i}$ and $e_{i}$ respect the Knuth relations, that is, if $w \stackrel{K}{\simeq} v$, then $e_{i} w \stackrel{K}{\simeq} e_{i} v$ (resp. $f_{i} w \stackrel{K}{\simeq} f_{i} v$ ) as long as $e_{i}$ (resp. $f_{i}$ ) does not annihilate $w$. Furthermore, $w$ and $f_{i} w$ have the same recording tableau under Schensted insertion. This proves in particular, that the crystal operators can be defined on semistandard tableaux.

