Final Exam: Math 17B, CRN 53761, Monday, Dec 5 Fall 2022

You may use one page of notes.
You may not use a calculator.
You may not use the textbook.
Please do not simplify answers.

1. (25 points) Evaluate the following integrals:
(a) $\int x e^{x^{2}-1} d x$
(b) $\int_{0}^{1} x e^{x-1} d x$
(c) $\int_{0}^{\infty} e^{1-x} d x$
2. (50 points) The concentration of sulfuric acid in a lake T weeks after monitoring begins is $C(T) \mathrm{ppm}$ with $C_{0}=100 \mathrm{ppm}$. It follows a survival renewal equation: $C(T)=S(T) C_{0}+\int_{t=0}^{T} S(T-t) R(t) d t$. The sulfuric acid has a survival rate of $S(\tau)=\frac{1}{(\mathbf{a}+\tau)^{2}}$ after τ weeks which depends on a parameter a. A chemical plant is now raining sulfuric acid at a constant rate $R(t)=10 \mathrm{ppm}$ per week.
(a) Find $C(9)$ if $\mathbf{a}=1$.
(b) Find

$$
\lim _{T \rightarrow \infty} C(T)
$$

Your answer should depend on the parameter a.
3. (25 points) Consider the differential equation

$$
\frac{d y}{d x}=\left(x y^{2}\right)^{\frac{1}{3}}
$$

(a) Separate the differential equation to get an integral involving only y equal to one involving only x.
(b) Assume that $y=0$ when $x=0$ and find y when $x=4$.
4. (50 points) Consider the Lotka-Volterra type system of differential equations with $F(t)$ the population of F as a function of time and $G(t)$ the population of G as a function of time. [This system might arise if the two compete for some resource but once the G population is high enough they are able to kill and eat $F]$:

$$
\begin{gathered}
\frac{d F}{d t}=F(3000-G) \\
\frac{d G}{d t}=(F-2000)(G-1000)
\end{gathered}
$$

(a) If $F=0$ find the equilibrium value for G and determine whether it is stable under small changes to G.
(b) Sketch and label the lines in the G-F plane along which the direction field for the associated nonautonomous differential equation

$$
\frac{d F}{d G}=\frac{F(3000-G)}{(G-1000)(F-2000)}
$$

is vertical and the lines along which it is horizontal (the nullclines).
(c) Using your graph from the previous part indicate with arrows whether F and G are increasing, decreasing or constant in each of the regions in the positive quadrant your lines created.
(d) Determine whether the equilibrium with $F=0$ that you found in the first part is stable under small changess to both F and G (e.g. occasionally a few F appear from a distant population).
(e) If both the populations start at 2000 the system is periodic. For which value of the population of G will the population of F reach its lowest value?
5. (25 points) A group of 1000 students is tested for COVID every week and each is identified as Susceptible, Infected or Resistant. Write S_{t}, I_{t} and R_{t} for the numbers of each after t weeks and assume that initially all 1000 were Susceptible.
Each week $\frac{2}{100}$ of those who are Susceptible become Infected and the rest remain Susceptible. Each week $\frac{8}{10}$ of those who are Infected become Resistant and the rest remain Infected. Each week $\frac{1}{100}$ of those who are Resistant become Susceptible and the rest remain Resistant.
(a) Draw a state diagram describing this system.
(b) Write a matrix equation for S_{t}, I_{t} and R_{t}.
(c) Find the number of resistant students after two weeks.
6. (25 points) Consider the matrix $A=\left[\begin{array}{ll}3 & -1 \\ 5 & -3\end{array}\right]$.
(a) Find the square A^{2}.
(b) Find the two eigenvalues for A.

The columns of the matrix $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right]$ are eigenvectors of A.
(c) Find the inverse P^{-1}.
(d) Assume that the matrix equation $\left[\begin{array}{c}X_{t+1} \\ Y_{t+1}\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}X_{t} \\ Y_{t}\end{array}\right]$ holds and $\left[\begin{array}{c}X_{0} \\ Y_{0}\end{array}\right]=\left[\begin{array}{c}1000 \\ 0\end{array}\right]$.
Find the general solutions for X_{t} and Y_{t}.
7. (Extra Credit: You do not need to do this problem.)(25 points) The linearization of problem 4 about its fixed point yields powers of the matrix

$$
M=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] .
$$

Find the complex eigenvalues and eigenvectors of M.

