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ABSTRACT

We construct the Schubert basis of the torus-equivariant K-homology of the affine
Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of
Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson
in equivariant homology. For the case where G = SL,,, the K-homology of the affine
Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions.
The Schubert basis is represented by inhomogeneous symmetric functions, called
K-Ek-Schur functions, whose highest-degree term is a k-Schur function. The dual basis
in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a
conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our
constructions have geometric interpretations by means of Kashiwara’s thick affine flag

manifold.
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1. Introduction

Let G be a simple simply connected complex algebraic group and 7°'C G the maximal
torus. Let Grg denote the affine Grassmannian of G. The T-equivariant K-cohomology
KT(Grg) and K-homology K7(Grg) are equipped with distinguished K7 (pt)-bases (denoted
by {[Ox:]} and {&}), called Schubert bases. Our first main result is a description of the
K-homology Kr(Grg) as a subalgebra L of the affine K-NilHecke algebra of Kostant and
Kumar [KK90]. This generalizes work of Peterson [Pet97] in homology. Our second main result
is the identification, in the case where G = SL,,(C), of the Schubert bases of the non-equivariant
K-homology K,(Grg) and K-cohomology K*(Grg) with explicit symmetric functions called
K -k-Schur functions and affine stable Grothendieck polynomials [LamO06]. This generalizes work
of Lam [Lam08] in (co)homology.
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1.1 Kostant and Kumar’s K-NilHecke ring

Let g be a Kac-Moody algebra and let X be the flag variety of g. Kostant and Kumar [KK90]
studied the equivariant K-theory K7 (X) via a dual algebra K called the K-NilHecke ring. The
ring K acts on K7(X) by Demazure divided difference operators and scalar multiplication by
KT (pt). In particular, they used K to define a ‘basis’ {¢% -} of KT (X) (elements of KT (X) are
infinite KT (pt)-linear combinations of the ‘basis’).

Kostant and Kumar use the ind-scheme Xj,q, which is an inductive limit of finite-dimensional
schemes. Because of this, classes in K7 (Xj,q) do not have an immediate geometric interpretation
but, rather, are defined via duality in terms of geometric classes in K7(Xinq). We use instead the
‘thick’ flag variety X of Kashiwara [Kas89], which is an infinite-dimensional scheme. This allows
us to interpret the K-NilHecke ring operations geometrically and to describe (in Theorem 3.2) the
Schubert ‘basis’ of KT(X), representing coherent sheaves Oy, of finite-codimensional Schubert
varieties. Our basis is different from that of Kostant and Kumar. On the other hand, in our
treatment the K-homology K7(X) is now defined via duality.

1.2 The affine Grassmannian and the small-torus GKM condition

Let g be a finite-dimensional simple Lie algebra, and let g,; be the untwisted affine algebra.
Instead of using the affine torus Ty¢, we use the torus 7' C G of the finite-dimensional algebraic
group and study the equivariant K-cohomology K7 (X,¢) and KT (Grg) of the affine flag variety
and affine Grassmannian. We use the affine K-NilHecke ring for g, still denoted by K, rather than
the slightly larger Kostant-Kumar K-NilHecke ring for g,;. The corresponding affine NilHecke
ring in cohomology was considered by Peterson [Pet97].

We describe (in Theorem 4.3) the image of KT (X,¢) and KT (Grg) in [wew, KT (pt) under
localization at the fixed points, where Wy denotes the affine Weyl group. This is the K-theoretic
analogue of a result of Goresky et al. [GKMO04] in homology. We call the corresponding condition
the small-torus GKM condition. It is significantly more complicated than the usual condition for
GKM spaces [GKM98], which would apply if we had used the larger torus T,¢. This description
gives an algebraic proof of the existence of a crucial ‘wrong way’ map K7 (X,¢) — KT (Grg),
which corresponds in the topological category to QK — LK — LK/Tg where K CG is a
maximal compact subgroup, Tg =7 N K, and 2K and LK denote the spaces of based and
unbased loops, respectively. The space of based loops Q2K is a topological model for the affine
Grassmannian [PS86].

Another description of the K-homology of the affine Grassmannian is given by Bezrukavnikov
et al. [BFMO05], although the methods there do not appear to be particularly suited to the study
of Schubert calculus.

1.3 The K-theoretic Peterson subalgebra and affine Fomin—Stanley subalgebra

We let L = Zg (R(T)) denote the centralizer in K of the scalars R(T) = KT (pt) and call it the
K -Peterson subalgebra. (This centralizer would be uninteresting if we had used Ty instead of T.)
We generalize (in Theorem 5.3) the following result of Peterson [Pet97] (see also [LamO08]) in
homology.

THEOREM. There is a Hopf-isomorphism k : K7(Grg) — L.

The Hopf-structure of Kp(Grg) is derived from QK. We also give a description of the images
k(&) of the Schubert bases under this isomorphism (Theorem 5.4).
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Next, we consider a subalgebra Lo C Ky, called the K-affine Fomin—Stanley subalgebra, of
the affine 0-Hecke algebra. We shall show that Ly is the evaluation of L at zero, and that it is a
model for the non-equivariant homology K, (Grg).

1.4 G = SL,, and Grothendieck polynomials for the affine Grassmannian

We now focus on the case where G = SL,,. In [Lam06], the affine stable Grothendieck polynomials
G (x) were introduced, where w € Wy is an affine permutation. The symmetric functions G, ()
lie in a completion A of a quotient of the ring of symmetric functions. A subset of the
{Gw(z)} form a basis of A and the dual basis elements g, (z), called K -theoretic k-Schur
Junctions, form a basis of a subalgebra A, of the ring of symmetric functions.

The symmetric functions Gy, (x) are K-theoretic analogues of the affine Stanley symmetric
functions in [Lam06] and, on the other hand, affine analogues of the stable Grothendieck
polynomials in [Buc02, FK94]. The symmetric functions g, (x) are K-theoretic analogues of
the k-Schur functions s, (z) (see [LLMO03, LMO05, LMO07]) and, on the other hand, affine (or k-)
analogues of the dual stable Grothendieck polynomials [LP07, Len00].

Using the technology of the K-affine Fomin—Stanley subalgebra, we confirm a conjecture of
Lam [Lam06] by proving the following result (see Theorem 7.17).

THEOREM. There are Hopf-isomorphisms K.(Grg) = A(,) and K*(Grg) = A that identify the
homology Schubert basis with the K-k-Schur functions g,,(x) and the cohomology Schubert basis
with the affine stable Grothendieck polynomials G, ().

This generalizes the main result of [Lam08], and the general idea of the proof is the same.

We also obtain a Pieri rule (Corollary 7.6) for K, (Grg). We give in Theorem 7.19 a geometric
interpretation of Gy, (x) for any w € Wy as a pullback of a Schubert class from the affine flag
variety to the affine Grassmannian. We conjecture that the symmetric functions G, (x) and g, ()
satisfy many positivity properties (Conjectures 7.20 and 7.21).

1.5 Related work

Morse [Mor]| gives a combinatorial definition of the affine stable Grothendieck polynomials G, ()
in terms of affine set-valued tableaux and also proves the Pieri rule for G,. The original k-Schur
functions s, (z; t) in [LLMO03, LMO05], which arose in the study of Macdonald polynomials, involve
a parameter t. It appears that a t-analogue g, (z;t) of g, () exists, defined in a similar manner
to [LLMS, Conjecture 9.11]. The connection between g,,(z; t) and Macdonald theory is explored
in [BM].

Kashiwara and Shimozono [KS09] constructed polynomials, called affine Grothendieck
polynomsials, which represent Schubert classes in the K-theory of the affine flag manifold. It
is unclear how affine Grothendieck polynomials compare with our symmetric functions.

1.6 Organization of the paper

In §2 we review the constructions of the K-NilHecke ring K and define our function ‘basis’
{¥"}. In §3 we introduce Kashiwara’s geometry of ‘thick’” Kac-Moody flag varieties X and the
corresponding equivariant K-cohomologies; we show how K corresponds to the geometry of X.
Section 4 is devoted to equivariant K-theory for affine flags and affine Grassmannians with the
small torus T" acting by means of the level-zero action of the affine Weyl group. In § 5 we introduce
the affine K-NilHecke ring and the K-Peterson subalgebra L, and we prove that the latter is
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isomorphic to K7(Grg). In §6 we study the K-affine Fomin—Stanley algebra. In § 7 we restrict to
G = SL,, and describe explicitly the Hopf-algebra isomorphisms between K,(Grg) and K*(Grg)
and symmetric functions.

A review of the cohomological NilHecke ring of Kostant and Kumar and the affine NilHecke
algebra A as well as some tables of the symmetric functions g, and G, are provided in
Appendix A.

2. The Kostant—Kumar K-NilHecke ring

One of the themes of [KK90] is that the Schubert calculus of the torus-equivariant K-theory
KT(X) of a Kac-Moody flag manifold X is encoded by the K-NilHecke ring K, which acts
on KT(X) as Demazure operators. We review the constructions of [KK90] but use a different
‘basis’ for K7(X), namely, the classes of equivariant structure sheaves of finite-codimensional
Schubert varieties in the thick flag manifold of [Kas89].

For a statement S, we write x(S) =1 1if S is true and x(S) =0 if S is false.

2.1 Kac—Moody algebras

Let g be the Kac—Moody algebra over C associated with the following data: a Dynkin node
set I, a symmetrizable generalized Cartan matrix (ai;)ijer, a free Z-module P, linearly
independent simple roots {«; |i € I} C P, and the dual lattice P* = Homgy (P, Z) with simple
coroots {a) |i€ I} C P* such that (a),a;)=a;; where (-,-):P*x P —7Z is the pairing,
with the additional property that there exist fundamental weights {A; |i € I} C P satisfying
(o, Aj) =6;5. Let Q =P, Za; C P be the root lattice and Q¥ =@, Za; C P* the coroot
lattice. Let g=ny @ t@® n_ be the triangular decomposition, with t > P* ®z C. Let ® be the
set of roots and ®* the sets of positive and negative roots, and let g = @D.co 9o be the root
space decomposition. Let W C Aut(t*) be the Weyl group, with involutive generators r; for ¢ € I
defined by r; - A= X — (o), N)a;. For 4, j € I with i # j, let m;; be 2,3,4,6 or co according to
whether a;;5a;; is 0, 1, 2, 3 or at least 4. Then W has involutive generators {r; | i € I'} which satisfy
the braid relations (r;r;)™% =id. Let ®" = {wa; |w € W, i € I} C @Q be the set of real roots, and
for a = way; let ro = wr;w™! be the associated reflection and o = wal\/ the associated coroot.
Let &1 = & N &1 be the set of positive real roots.

2.2 The rational form
Let T be the algebraic torus with character group P. The Weyl group W acts on P and therefore
on R(T) and Q(T) = Frac(R(T")), where

R(T) = Z[P] = P Ze*
AEP

is the Grothendieck group of the category of finite-dimensional T-modules. Here e, for A € P, is
the class of the one-dimensional T-module with character .

Let Kg(r) be the smash product of the group algebra Q[W] and Q(T), defined by Ko =
Q(T) ®g Q[W] with multiplication

(@ w)(p©v)=q(w-p)@wv
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for p,q € Q(T) and v, w € W. We write qw instead of ¢ ® w. For i € I, define the Demazure
operator [Dem74] y; € Koy by
yi=(1— e_o“)_l(l — e Yry).
The y; are idempotent and satisfy the braid relations
yi=y; and =y
—_—— N —
m;; times my; times

Define the elements T; € Ko r) by

Ti=yi—1=(1—e%) " (r; —1). (2.1)
We have
ri=1+(1—e*)T;. (2.2)
The T; satisfy
T?=-T; and T;Tj---=TiT;--. (2.3)
—_——

m;; times m;; times
Let T, =T, T;, - - - Tiy € KQ(T), where w = r;, 14, - - - 13, is a reduced decomposition; it is well-
defined by (2.3). One can easily verify that

T, — Trw ?f riw > w, and T,T; = s %f wr; > w,
Ty if rw <w, —Tw if wr; <w,

where < denotes the Bruhat order on W. For a € ®*, define T, = (1 — e®)"1(r, — 1). Let
w € W and ¢ € I be such that o = wa;. Then

T, = wTw " (2.4)
Note that Kq(7) acts naturally on Q(T'); in particular, one has
T;-(a¢') = (Ti - @) + (ri-q)Ti - ¢ for q,q € Q(T). (2.5)
Therefore, in Kg(1) we have
Tiq=(T;-q) + (ri- @)T; for ¢ € Q(T). (2.6)

2.3 The 0-Hecke ring and integral form

The 0-Hecke ring Kg is the subring of Kqr) generated by the T;. It can also be defined by
generators {1} | i € I} and the relations (2.3). We have Ko = @,y ZTw.

LEMMA 2.1. Ky acts on R(T).

Proof. We have that Ko acts on Q(7T'); also, each T; preserves R(T') by (2.5) and the following
formulae for A € P:
e/\(l + e 4. e(<04ivv)‘>_1)ai) if <Oz;/, A) >0,
T,-e* =40 if (ay,\) =0,
_€A(1 Le® 4.4 e(—<a¢v’)‘>_1)ai) if (oY, \) <0.

The assertion follows. O
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Define the K-NilHecke ring K to be the subring of K7y generated by Ko and R(T'). We
have KQ(T) = Q(T) ®R(T) K. By (26),

K= P R(T)T,. (2.7)

weW

2.4 Duality and function ‘basis’

Let Fun(W, Q(T')) be the right Q(T')-algebra of functions from W to Q(T") under pointwise
multiplication and scalar multiplication (¢ - ¢)(w) = gy (w) for ¢ € Q(T'), ¥ € Fun(W, Q(T)) and
w € W. By linearity, we identify Fun(W, Q(T')) with left Q(T')-linear maps Kg) — Q(T') such

that
w(Z aww) )
weW weWw
Note that Fun(W, Q(T)) is a Kg(7)~Q(T)-bimodule via
(a- - q)(b) =1b(gba) = qi(ba) (2.8)

for ¢ € Fun(W, Q(T)), ¢ € Q(T) and a, b € K (7).
Evaluation gives a perfect pairing (-, -) : Koy x Fun(W, Q(T')) — Q(T') defined by
(a,9) =(a),
which is Q(T)-bilinear in the sense that
(qa, ¥) = q{a, ¥) = (a, ¢ - q).
Define the subring ¥ C Fun(W, Q(T)) by

T

¥ ={¢y € Fun(W, @ (K) € R(T)}
7)) | (T,

)[4
= {¢ e Fun(W, Q(T)) | ¥(T) € R(T) for all w e W}. (2.9)
)

Clearly, ¥ is a K-R(T)-bimodule. By (2.7), for v € W there are unique elements ¢" € ¥ such
that

(T)
(T)

1/]” (Tw) = 5v,w (210)
for all w € W. We have ¥ =[] v R(T)y".

Remark 2.1. In §3 we show that 1" (w) is the restriction of the equivariant structure sheaf [Ox, ]
of the finite-codimensional Schubert variety X,, C X of the thick Kac-Moody flag manifold X to
the T-fixed point w. See Appendix A.2 for the relationship between our functions 1" and those
of [KK90].

Letting w = id, we have
Ovia =" (Tia) = 9" (id). (2.11)

LEMMA 2.2. Forve W and i€ I,

g Y = YU if ory < w,
’ YU ifor; > .
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Proof. For w e W we have Ty,y; = Tw(1 4+ T3) = x(wr; > w)(Tw + Twr;). Therefore, by (2.8),

(Tw, yi - ") = (Twyi, V°)
= X(wm > w)(Ty + Twr,, V°)
X(wry > w) 0y + Op.wr;)
X (013 > 1)y 0 + X (V> 73) Sy w0,

from which the lemma follows. O

Remark 2.2. From (2.11) and Lemma 2.2 we obtain the following ‘right-hand’ recurrence for
Y (w),
(i) If w=1id, then ¥"(id) = &, iq.
(ii) Otherwise, let i € I be such that wr; < w. Then
() = YU (wr;) ?f v < Ty, (2.12)
(1 — e @) )ehvri () + e~ ®(@p? (wry) i vry < v.
This rewrites ¢*(w) in terms of ¥¥ (w’) for (v/, w’) such that either w’ < w or both w' = w

and v/ <.

LEMMA 2.3. We have ¢’(w) =0 unless v < w.

Proof. The statement is true for w =1id by (2.11). Otherwise, let i € I be such that wr; <w
and suppose that v € w. Then v € wr; and vr; € w (see [Hum90]). The assertion is proved by
induction using (2.12). O

The next result follows from the definitions.
PROPOSITION 2.4. For all v,w € W, we have w =)y V" (w)Ts.
Remark 2.3. Proposition 2.4 leads to a ‘left-hand’ recurrence for 1" (w) as follows.

(i) For w =1id we have (2.11).
(ii) Otherwise, let i € I be such that r;w < w. By induction on length, we obtain

w = ri(rw)

=1+ (1—e" (Z@/J“n u)
_Zzp“rz )T, + (1 —e™ ZT(/J“?Q
= Zw (riw) Ty + (1 — ¢%) Z((ﬂ () T+ (ri - (riw) TIT).

u

Taking the coefficient of T}, we see that
P (w) = ¢°(raw) + (1 — ) (T3 - " (riw)) + x(riv <v)ri - ("0 (riw) — 9° (riw))).

Therefore, for r;w < w we have

v T (Tzw) if rjv > v,
P(w)=9 _ . .
e iU (ryw) + (1 — ) ry - "% (ryw)  if rv < w.
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Define the inversion set of v € W by
Inv(v) = {a € ¢ | rqv < v}.
LEMMA 2.5. For all v € W, we have ¥ (v) = [ [ herny(n) (1 — €%).

Proof. This follows directly from Remark 2.3 and Lemma 2.3. O

1

Remark 2.4. We have 9" (w) =n(w - ¥~ (w™1)), where ) : Z[P] — Z[P] is given by n(e*) = ™.

2.5 The GKM condition

We recall the K-theoretic Goresky—Kottwitz—Macpherson (GKM) condition as a criterion for
membership in W. This condition and the associated geometry is discussed in §3.3.

PROPOSITION 2.6. W is the set of ¢ € Fun(W, Q(T)) such that
P(rqw) —(w) € (1 —e*)R(T) for all « € T and w e W. (2.13)
Proof. Let B =w"'a and ¢ € ¥. Then row = wrg and
Praw) — P(w)

IR (1 - ) o — )
= P(wTp),
which is in R(T") since w1 € K, by using (2.4) and (2.2).
For the converse, let ¢ € Fun(W, Q(T)) satisfy (2.13) and suppose that 1) # 0. Let v € Supp(¢))
be a minimal element. For every a € & such that r,v <wv, we have ¥(v) € (1 —e*)R(T)
by (2.13), Lemma 2.3 and the minimality of v. Since the factors (1 —e®) are relatively
prime by [Kac90, Proposition 6.3], ¥ (v) € ¥?(v)R(T) by Lemma 2.5. Then ¢’ € ¥, where

¥ (w) = (w) — ((v)/67 (0 (w) for w e W. Moreover, v & Supp(1/) and Supp(1)\Supp(t5)
consists of elements strictly greater than v. Repeating the argument for ¢/’ and so on, we see

that ¢ is in [,y R(T)9". O

2.6 Structure constants and coproduct

The proof of the following result is straightforward but lengthy.
ProrosiTiON 2.7. Let M and N be left K-modules. Define
M @pry N=(M®z N)/{gm®@n—-m®qn|qe R(T), me M, ne N).
Then K acts on M ®p) N by
q-(m®@n)=gm®en,
Ti-(m@n)=T,- m@n+meT;-n+(1—-e*)T; - meT;-n.
Under this action we have

w- (m®n)=wm® wn. (2.14)

Consider the case where M = N =K. By Proposition 2.7 there is a left R(T)-module
homomorphism A : K — K ®@p(7) K defined by A(a) =a- (1 ®1). It satisfies

Alg)=q®1 for ge R(T), (2.15)
A)=1Ti+Ti®ol+(1—-e")T;1T; foriel. (2.16)
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Let a € K and A(a) = Z%w aywTy ® Ty with ay,, € R(T). It follows from Proposition 2.7 that
the action of a on M ®p(r) N can be computed in the following simple ‘componentwise’ fashion:
a-(m®n)= Zv?w aywTym @ Tyn. In particular, if b € K and A(b) = ZU,@, by w Ty @ Ty, then

Afab) =Aa) - AD) == Y avwby wToTy @ TuTu. (2.17)
Remark 2.5. The naive componentwise product is ill-defined on all of K®pg) K, for if
it were well-defined, then (7; ®1)(¢® 1) =(T; ® 1)(1 ® q) or, equivalently, T;q®1=T; ® ¢ =
q(T; ® 1) = ¢T; ® 1, which is false for ¢ = e
There is a left R(T)-bilinear pairing (-, -) : (K ®@pg) K) x (¥ @) ¥) — R(T) given by

(a®b, ¢ @) = (a, §){b, ).
LEMMA 2.8. For all a € K and ¢, ¢ € U, we have (a, ¢p1p) = (A(a), ¢ ® V).
Proof. First, extend the definitions in the obvious manner to Kg(7y and Fun(W, Q(T))). Using left

Q(T)-linearity, we may then take a =w. Then (A(w), ¢ ®@ ) = (w @ w, ¢ ® ¥) = d(w)(w) =
(w, gb). o

Define the structure ‘constants’ ¢ € R(T') by ¥"y" = iy co¥ ™. The structure constants
of ¥ are recovered by the map A.

PROPOSITION 2.9. We have A(Ty) =), W T, T, for allwe W,

uvw

Proof. This follows from Lemma 2.8 and the fact that ¢"(T}) = Oyy. O

2.7 Explicit localization formulae

For the sake of completeness, we give an explicit formula for the values ¢"(w). It is a variant of
a formula due independently to Graham [Gra02] and Willems [Wil04]. Let € : Koy — Q(T') be
the left Q(T")-module homomorphism defined by e(w) =1 for all w € W.

PRrROPOSITION 2.10. Let v,w € W and let w =r;,7;, - - - 13, be any reduced decomposition of w.
For byby - - - by € {0, 1}V, let [b| = 32N | b;. Then

v w) 1—6% TZ ifbop =1,
beB(z'.m) 0k =5,
where the sum runs over
B(i.,v):{b:(bl,bg,...,bN)E{O,l}N ’ H Tik:j:Tv}. (2.19)
k

by=1

Formula (2.18) is the K-theoretic analogue of the formula [AJS94, Bil99, (1.2)] for the
restriction of a T-equivariant Schubert cohomology class [X,] to a T-fixed point w.
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Ezample 2.6. Let G = SL3, v =11 and w = r1ror;. Then there are three possible binary words b,
namely (1,0, 0), (0,0,1) and (1,0, 1), yielding

P(w) =¢e((1 — eal)rlrgrl +rire(l —e*)r; — (1 — e*)rire (1 — e*t)ry)

=1 —e")+ (1—e"") = (1—e™)(1—e"™M)
=(1—-e")+(1—-e")—(1-e")(1—e")
=1-

Oé1+012

Using the reduced decomposition w = rariry instead, there is only one summand b= (0, 1, 0),
and we obtain

PP (w) =e(ro(1 — e )rirg) =1 — €2 =1 — 112,

Proof of Proposition 2.10. Let the right-hand side of (2.18) be denoted by ¢"(w). We prove
that ¢"(w) = ¢Y(w) by induction on w and then on v. Let i=1iy. If v <wr;, then in any
summand b we have by =0, so that ¢"(w) = ¢"(wr;) =" (wr;) =¢"(w) by induction on the
length ¢(w) of w and (2.12). Otherwise, let v > vr;. The part of ¢¥(w) with by =0 is given by
¢¥(wr;) =¢¥(wr;). The rest of ¢¥(w) consists of summands with by = 1. Consider the left-to-
right product £7;, of T;, for which by =1 except that the term by =1 is omitted. For the b
such that u=v, the last factor T;, =T; produces an additional negative sign, and we obtain
—(1 — ewril@) gV (wr;) = (e~*(®) — 1)9p¥ (wr;) because the product 7y, - - - 14, _, of the reflections
is wr;. For the b with u = vr;, we obtain that (wr; - (1 — e®))¢""i (w) = (1 — e~®(@))h?"i (w).
In total, we obtain the right-hand side of (2.12), which equals " (w). O

3. Equivariant K-cohomology of Kac—Moody flag manifolds

Kostant and Kumar [KK90] use the ‘thin’ Kac-Moody flag manifold Xj,q, which is an ind-
scheme with finite-dimensional Schubert varieties [Kumo02]. In contrast, we employ the larger
‘thick’” Kac-Moody flag manifold X [Kas89], which is a scheme of infinite type with finite-
codimensional Schubert varieties. Using the thick Kac—Moody flag manifold, we give natural
geometric interpretations to the constructions in the K-NilHecke ring.

3.1 Kac—Moody thick flags

For the following discussion see [Kas89]. Let T' be the algebraic torus with character group P,
Uy the group scheme with Lie(Uy) =ng, and By the Borel subgroups with Lie(B1) =t @ ny.
For i € I, let P~ be the parabolic group with Lie(P) = Lie(B) @ 044, These groups are all
contained in an affine scheme G4, of infinite type that contains a canonical ‘identity’ point e.

Let G C G be the open subset defined by G =UP;, - -- P; m€P; P -+ P; It is not a group

but admits a free left action by each P; and a free right action by each P

Given the above, X = G/B_ is then the thick Kac-Moody flag manifold; it is a scheme of
infinite type over C. For each subset J C I, let P; C G be the group generated by B_ and P~
for ¢ e J.

Write X7 = G/Pj . Let W; C W be the subgroup generated by r; for i € J, and let W be the

set of minimal-length coset representatives in W/W;. For w € W7, let X J = = BwP; /P; where
B = B, it is locally closed in X“. We have the B-orbit decomposition

|| XL

weWwJ
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Let X :)0(7;{, be the Schubert variety. It has codimension ¢(w) in X” and coherent structure
sheaf Ox. We have

xi= 1] X (3.1)

vew’
v>w

Let S be a finite Bruhat order ideal of I/}/‘] (a finite subset S C W such that if v € S, u € W/
and u< v, then u€S). Let Qf =|],cq X;) =Uyes wBP; /Py be a B-stable finite union of
translations of the big cell X7 = BP; /P;, which is open in X 7. The big cell is an affine space
of countable dimension (finite if g is finite-dimensional): X7 2 Spec(Clz1, z2, . . . ]).

3.2 Equivariant K-cohomology

Denote by COhT(Qé) the category of coherent T-equivariant Oﬂg—modules, and let KT(QZ) be
the Grothendieck group of Coh” (Q). For each w € S, O x; belongs to Coh”(Q) and therefore
defines a class [OxJ] € KT (Q]). Define

KT(X7) =l K7(2).

S
One may show (as in [KS09] for the case where J = ()) that
KT(x7) = ] KT(pt)[Oxy). (3.2)
weWw

Recall that K”(pt) = R(T) = Z[P] = @, p Ze*. Elements of K7(X”) are possibly infinite
KT (pt)-linear combinations of equivariant Schubert classes [O x7)-

3.3 Restriction to T-fixed points
For we WY, let i) : {pt} - W’/ 2(X7)T c X/ be the inclusion with image {wP; /P;}.
Restriction to the T-fixed points induces an injective R(T)-algebra homomorphism

KT(x7) 20, gT((xT) = KT(WY) = Fan(W/, R(T)), (3.3)

c —  (wr— Z;{)* (c))

(see [HHHO05, KK90]), where Fun(W+7, R(T)) is the R(T)-algebra of functions W+ — R(T) with
pointwise multiplication and R(7T)-action

(q¥)(w) = g (w)

for ¢ € R(T), € Fun(W”, R(T)) and we W’. Let tj: Fun(W’, R(T)) — Fun(W, R(T)) be
defined by extending functions to be constant on cosets in W/W:

Ly () (w) = (w')
for ¢ € Fun(W7, R(T)), where w’ € W is such that w'W,; = wWj.
Define ¥/ C Fun(W, R(T)) by ¢ € ¥’ if and only if ¢ is in the image of +; and

Y(row) —Pp(w) € (1 —e*)R(T) for all w, rqw € W, a € ®*°. (3.4)
We call this the GKM condition! for K7(X7).

! The corresponding criterion was proved in [GKM98] for equivariant cohomology for more general spaces,
commonly called GKM spaces. For Kac-Moody flag ind-schemes the criterion follows directly from results
in [KK90]. See also [HHHO5] for more general cohomology theories and spaces.
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THEOREM 3.1 [HHHO05, KK90].
KT(X7)=w’

For the sake of completeness, we include a proof of Theorem 3.1. For ve WY, define
Yy € Fun(W7, R(T)) to be the image of [Oxy]:

VY (w) = i;ﬁ*([@xbr]) for v, w € W, (3.5)

When J = () we shall write X = X?, U = ¥? and so on, suppressing () in the notation. Observe
that the definition of ¥ = W in this section agrees with the definition (2.9) by Proposition 2.6.
Provisionally, for J = (), we write 1y for the functions defined by (3.5) and show that they agree
with the functions defined by (2.10) using the K-NilHecke ring.

THEOREM 3.2. For all v € W, we have ¢ = .

3.4 Push—pull and y;
Fix ¢ € I. For the singleton J = {i}, let P, =P; and X'= X7, and let p;: X — X' be the
projection, which is a P!-bundle. In [KS09] it is shown that

Ox,,,] ifor; <o,

3.6
[Ox,] if vr;>w. (3.6)

pipi«([Ox,]) = {
PROPOSITION 3.3. The map ¢ +— y; - ¢ is an R(T)-module endomorphism of Fun(W, R(T)) such
that the following diagram commutes.

KT(X) === Fun(W, R(T))

pfpnl lyi-

KT (X) 5> Fun(W, R(T))
Proof. Let x¢ € X; be the point P, /P;. Let G; D G} DT be the subgroups with Lie(G;) =
td g, ®g_ o, and Lie(G) =td g,,.

Now let w € W with wr; <w. Then Ad(w)G; C B, and it stabilizes wa¢ and p; *(wax?).
Let j:p; '(wz?) — X be the inclusion. Then for F € Coh®(X), the first left derived functor
Ly1j*F is Ad(w)G -equivariant. For z € {w, wr;}, let i/, be the inclusion {pt} — zz?¢ C pl-_l(wacf).
Hence we have the commutative diagram

KB(X)

- K™ (pt)
KAWCT (5 (waf))
and the following isomorphisms that forget down to the Levi:
KP(X) = K"(X),
KA (o (waf)) = KT (p; ! (wa?)).

This allows reduction to the case of pi_l(w:vf) =~ P! where the result is standard; see [CG97,
Corollary 6.1.17]. O
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Proof of Theorem 3.2. We show that the functions ¢ satisfy the recurrence in Remark 2.2.
Since Xiq = X, it follows that ij!(id) = 1.
Let v € W. By (3.1), we have w € X, if and only if w > v. Therefore
Yy(w) =0 unless v < w.

In particular, ¢(id) =0 if v#id. Therefore the values vj(w) satisfy the base case of the
recurrence. Proving (2.12) holds for Yy is equivalent to showing that

Yo't if o <w
yi'@bé]:{ 0 fo

Yy ifor >
But this holds by Proposition 3.3 and (3.6). O

Let py: X — X7 be the projection. Then there is the following commutative diagram of
injective R(T)-algebra maps, where the horizontal maps are restriction maps as in (3.3).

res‘]

KT(X7) == Fum(W’, R(T))

P J{LJ

KT(X) —o Fun(W, R(T))
We have p%([Oy,]) = [Ox,] and ¢;(¢5) =4 for v € w7,

Proof of Theorem 3.1. For the J =10 case, the result follows from (3.2), Theorem 3.2 and
Proposition 2.6. For J #0, let ¢ =) a,¥" be in the image of ¢;. It suffices to show that
a, =0 for we¢ WY, Since T; is a Q(T)-multiple of r; — 1, we have T; - ¢ = 0 whenever i € .J.
Suppose that a,, # 0 for some w ¢ W, Pick such a w with minimal length, and let i € J be such
that wr; < w. From Lemma 2.2 and T; = y; — 1, we deduce that the coefficient of ¢*“" in T} - ¢
is non-zero, which is a contradiction. O

4. The affine flag manifold and affine Grassmannian

We now specialize our constructions to the case of an affine root system, and consider the thick
affine flag manifold X,¢ and thick affine Grassmannian Grg and their equivariant K-cohomology.
However, instead of using the full affine torus T, C G.¢, we shall use the torus T' C GG and consider
KT(Grg). We give a small-torus GKM condition, which is the K-theoretic analogue of a result
of Goresky et al. [GKMO04] in cohomology.

4.1 The affine flag manifold
We fix notation specific to affine root systems and their associated finite root systems.

Let g D b D t such that g is a simple Lie algebra over C, b is a Borel subalgebra, and t is a
Cartan subalgebra. Also, take a Dynkin node set I, a finite Weyl group W, simple reflections
{ri|ie I}, a weight lattice P =@, ; Zw; C t* with fundamental weights w;, a root lattice
Q = P,c; Za; C t* with simple roots a;, and a coroot lattice Q¥ = @P,¢; Za C t.

Let G D B DT such that GG is a simple and simply connected algebraic group over C with
Lie(G) =g, B is a Borel subgroup, and T is a maximal algebraic torus.

Let g, = (C[t, t71] ® g) @ Ce @ Cd be the untwisted affine Kac-Moody algebra with canonical
simple subalgebra g, canonical central element c and degree derivation d. Let g,; = n:f D tar Dy
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be the triangular decomposition with affine Cartan subalgebra t,¢. Let I,y = {0} U I be the affine
Dynkin node set. Let {a; € Z~o |i € I,s} be the unique collection of relatively prime positive
integers giving a dependency for the columns of the affine Cartan matrix (a;;); jer,,. Then
0= Zie I it is the null root. The affine weight lattice is given by P, = ZJ & 692'6 Ls ZA; C £
where {A; | i € Is} are the affine fundamental weights. Let Q¢ and Q) be the affine root and
coroot lattices. Let Wyt be the affine Weyl group, with simple reflections r; for ¢ € Is. Considering
the subset I of I,;, W =W; C Wyt and Wa{f is the set of minimal-length coset representatives in
Wat/W. We have W 2 W x QY with A € QY written as t) € W,s. There is a bijection W7, — QV
sending w € W,Cff to A € QV, where ) is defined by wW =t,\W. Let A\~ € W - X be antidominant
and u € W the shortest element such that uA™ = A. Then w = ty\u and {(w) = £(ty) — {(u).

Let @, =7Z6U (Z0 + ®) be the set of affine roots. The affine real roots are given by
Or¢ =70 + ®. Let <I>;Ef be the sets of positive and negative affine roots. The set of positive affine
real roots is defined by @:fre = <I>;rf NP =T U (Zsod + ®). A typical real root o+ méd € @5,
with o € & and m € Z, has associated reflection 741 ms = ratmav € Wat.

Let Gat D P; D B DTy be the schemes of §3.1 associated with g,¢, where P, is the
maximal parabolic group scheme for the subset of Dynkin nodes I C I,y and B_; is the negative
affine Borel group; then X,r = Ga¢/B; is the thick affine flag manifold and Grg = X, a{f = G/ Py
the thick affine Grassmannian.

4.2 Equivariant K-theory for affine flags with small-torus action

Following Peterson [Pet97] and Goresky et al. [GKMO04] in the cohomology case, we consider
the action of the smaller torus T'= T,¢ N G. The goal is to formulate and prove the analogue of
Theorem 3.1 for KT (X,¢) and KT (Grg). We let U/, C Fun(W,e, R(Tar)) denote the ring defined
by (2.9) for the affine Lie algebra gy, so that ¥/, = KTar(X,y).

The natural projection P,y — P of weight lattices is surjective with kernel Zdj ® ZAy. It
induces the projections

Z|Py] —2>Z[P) 2> 7

and a commutative diagram
es’
KT (Xap) —— Wi

Forl lzz)o— (41)
KT(Xap) —= Fun(Was, R(T))

where the horizontal maps are restrictions to Wys = XZ;“ cX ;{; and the vertical map For regards
a Tye-equivariant Oy, .-module as a T-equivariant one. We change notation slightly, writing the
Schubert classes as ¢ € W/, and defining ¢ := ¢ 0 ¢"” € Fun(Wye, R(T)).

The following definition is inspired by the analogous cohomological condition in [GKMO04,
Theorem 9.2]. A function 1) € Fun(Wye, R(T')) can be extended by linearity to give a function
V' € Fun(@,, ey, R(T) - w, R(T')). In the following definition we abuse notation by identifying

¥ with 1.

DEFINITION 4.1. We say that ¢ € Fun(Wy¢, R(T)) satisfies the small-torus Grassmannian GKM
condition if

Y((1 = tov)w) € (1 — e)?R(T) for all d € Zwg, w € Wyp and a € ®. (4.2)
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We say that 1 € Fun(Wye, R(T)) satisfies the small-torus GKM condition if, in addition
to (4.2), we have

V(1 —te)¥ 11 = ro)w) € (1 — e*)IR(T) for all d € Zsg, w € Wy and a € ®. (4.3)

Let U,s be the set of ¢ € Fun(Wye, R(T')) that satisfy the small-torus GKM condition, and
let \Iléf be the set of ¢ € Fun(W,¢, R(T)) that are constant on cosets wW for w € Wyt and satisfy
the small-torus Grassmannian GKM condition.

LEMMA 4.2. Suppose v satisfies (4.2) and let J := (1 — e*)?R(T). Then
Y((1—tov)? M) and (1 — tov) Hpavw)

are congruent modulo the ideal J for all p € Z.

Proof. By (4.2),

J> ¢((1 - tav)dw) = 7/}((1 - toav)d_lw) - d}((l - tav)d_ltavw)

so that the assertion holds for p=1. Repeating the same argument for ¢ ((1 — t,v)* Htovw)
yields the lemma for all p € Z3. Replacing w by t_,,vw gives the statement for all p€ Z. O

dflt

THEOREM 4.3.
(1) KT(Xaf) =Wyt = HveWaf R(T) y".
(i) K7 (Grg) = Ul = [T,ewr R(T) 4"

Proof. Owing to Lemmata 2.3 and 2.5, the set {1V | v € Wy} is independent over R(T'). Arguing
as in [KS09], one can show that K7 (X,¢) consists of possibly infinite R(T)-linear combinations
of the [Ox,]. By the commutativity of the diagram (4.1), we conclude that

K"(X.0) = [] RD)Ox,],
VEW ¢

that the map For is surjective, and that res’ is injective with image [],cy R(T)9". For (i)
it remains to show that War =[[,cpy. R(T)Y". Let v € War. We first show that ¢” € Wug. Let
w € Wy, a € ® and d € Z~g. Let W' C Wyt be the subgroup generated by t,v and 74; it is
isomorphic to the affine Weyl group of SLs. Define the function f: W’ — R(T) by f(z) = ¢’ (zw).
Since 'V satisfies the big-torus GKM condition (3.4) for X,¢, f satisfies (3.4) for a copy of the
SLo affine flag variety X’. Therefore f is a possibly infinite R(7T')-linear combination of Schubert
classes in X’. By Propositions 4.4 and 4.5, proved below, ¢ o f satisfies the small-torus GKM
condition for X’. It follows that )V € W.

Conversely, suppose that ¢ € ¥,¢. We show that v € HveWaf R(T)y". Let x = tyu € Supp(¢))
be of minimal length, with u € W and X € QV. It suffices to show that

P(z) € P (z)R(T)

because, upon defining ¢’ € Wt by o' =1 — (¢(x) /9" (x))1p*, we have Supp(v)') € Supp()), and
by repeating this we may write ¢ as a R(T')-linear combination of the ¥*.

The elements {1 — e® | & € T} are relatively prime in R(T). Letting a € ®*, by Lemma 2.5
it suffices to show that

P(x) € J = (1—e*)'R(T),
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where d = |Inv,(x)| with Inv,(x) being the set of roots in Inv(x) of the form +a + ké for some
k € Z>q. Note that for 5 € @;}re, B €Inv(x) if and only if 271 - B € —(I>;rfre. We have

7l (a4 kO =u "ty (a4 k) = tuta+ (k£ (), @))d.
Hence
v (2) {a,a+46,...,a— (A o)+ x(agInv(u)))d} if (A, a) <0,
nv,(z) =
{—a+d —a+20,...,—a+ (N a) — x(a€Inv(u)))d} if (A, a) >0.
Suppose first that (A, ) > 0. Then d = (A, o) — x(a € Inv(u)). Applying (4.3) to y =t1_g)av,
we get Z7 € J where
Z1 = (1 — tov) 1 —r0)y)
= (=D = o) M) = (1 = tav)T M ray)
= (‘Udil”t/f(@“) - 1/}((1 - tcxv)dilray)'
The last equality holds by the assumption on Supp(#)) and a calculation of Invy (rq44s2), giving
x> Tordst >t v for all k € [1,d — 1]. By Lemma 4.2, we have Z; € J where

Zy = 7/)((1 - tav)d_lray) - 111((1 - tav)d_ltpavray)
for any p € Z. Thus
Zy+ Zo = (—1)"(x) — (1 — tov)  Hpavray) € J.
By the assumption on Supp(z) and the calculation of Inv,(z),
P((1— tav)d_ltpavray) =0
for p=2 — d. It follows that ¢(x) € J.
Now suppose (A, @) < 0. By the previous case, we may assume that tg,vz & Supp(¢’). Thus
b(x) = (1 = tav)'z) € J
by induction on Supp(e)) and (4.2). This proves (i).
For (ii), it suffices to show that ¢ € WL, if and only if ¢ € Hvewjf R(T)y". First, let ¢ € UL

Let w = tyu € Wy with A € Q¥ and u € W, and take o € ®. We shall verify that ¢ satisfies the
small-torus GKM condition. We have

roW = TalaU =t (\)Tal =1_(\ a)aVEirTal.
Since by assumption 1 is constant on cosets W,e/W, we have
P((1— tav)d_l(l —ro)w)=9((1 — tav)d_l(l —t_navav)tr)

But 1 — tg,v is divisible by 1 —t,v for any k € Z. Therefore 1) satisfies the small-torus GKM
condition because it satisfies the Grassmannian one. Part (i) and the fact that ¢ is constant on
cosets Wor/W implies that ¢ € Hvewff R(T)y".

Conversely, it suffices to show that for every v € ng we have ¢V € \Ifif. But this follows from
part (i) and the fact that for such v, ¥ is constant on cosets Wys/W. O

4.3 The small-torus GKM condition for ;[2

In this section we prove that the Schubert classes ¢* for ;[2 satisfy the small-torus GKM condition
of Definition 4.1. To this end, we first derive explicit expressions for the .
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For i € Z>y, let

o9 = (riro)’,  o—2; = (ror1)’,
02i+1 = 7002i,  0—(2i41) = T10-2i-

(4.4)
Then {(o;) = |j| for j € Z, Wk = {0, | j € Z>o}, and
09; =t_;ov forieZ.
Let ¢§ =17 (o) for i,j€Z, where we have set 6 =0. We set z =€ and let S¢, be

the sum hg + hi + - - - + hq of homogeneous symmetric functions. We write S () to mean
S<alz, x, ..., x] where there are i copies of z. For i, a € Z such that a, m > 0, we have

Voitoe = (1 — )" SC(x) =¥Ty; o,y form=2ior2i—1,
PStoarr = (1 =2 )"ST (7)) = ¢y 5,5 for m=2ior 2i+1,
and zero otherwise. Furthermore,
T () = (@),

These relations are easily proved by induction using the left- and right-hand recurrences for the
localization of Schubert classes together with the recurrence

Séa(m) = xSéafl(x) + Sé_al (CC)
We also have the explicit formula
i i1
Sta(x)=> o 1 ) (4.7)
=0

J

PROPOSITION 4.4. For alld>1, m € Z and w € W,s we have

(1~ tov)'w) € (1 — ) "Z[27].

Proof. We prove the claim for m = 27 and for the ranges t(_;_q)qv 10 t(i114p)av for a,b € Zx.
The other cases are similar. Let d = (i +a) + (i + 14+ b) =2i + a + b+ 1. We must show that

d
4 Z(_l)k <Z> 2o bt € (1— ) Z[z™].

k=0

Since 13} = 0 for —2i — 2 < 2p < 2i,

(k;+ > T

k=2i4+1+4+b

b a
d\ . . d .
k 24 k+2i4+-1+b 2
kgo(_l) <k:> Voi—2-op+ok + ];:0(—1) <2i L1t k> Vit2k

- (-1 Ei]—n’f(b B LM CVC) B Cvil (R I 1

k=0 k=0

Z
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Substituting (4.5), (4.6) and (4.7) gives
1)z = zb: < >(1 )2 zk: i (j ;%I 1>
_ io(_l)k (a f k) (1= )2 zk: o (j -QFZZiI 1>.

Therefore we must show that Z’:= (—1)*Z(1 — x)~2 is divisible by (1 — 2)?t**!. Regarding Z’
as a function of x, we need to show that its rth derivative at x =1 vanishes, for 0 <7 <a +b.
This yields the identities

b

d N\~ (G+2itr—1)1 & d \ <~ (j+2i —1)!
(_1)7’ Z(_l)k <b_ k> Z (] + + ) :Z(_l)k<a - k) Z (J(—;_T)')

|
k=0 =0 J k=0 j=r

Upon shifting the sums on the right-hand side using j' = j — r and k' = k — r and dividing both
sides by (—1)"(2i +r — 1)!, the inner sums simplify and we obtain

k;(‘1>k(bilk> (2i+]:+k) :g(‘”k<a_f_k) <2i+]:+k;>_

k=0
Setting a’ = a — r, we claim that this sum is equal to (a/;r b) = (a,a’,Lb), which is symmetric in a’
and b and hence implies equality of the two sides. This can be seen as follows. The coefficient of

2 in (1 +2)% P is (a,;,“b). Alternatively, we can calculate
@)1+ )" (1 +2)"(1+ 2)°(L +2) 7,

where ¢ =2i + 7+ 1 and (14 )¢ is meant to be expanded as a power series in z. Then

b
()1 +2)" (14 2)P (1 + 2)° (L +2) ¢ =D [ 7F](1 + 2)" TPk (1 + )7,
k=0

which is exactly the sum we wanted to evaluate. O

PRrROPOSITION 4.5. Foralld>1, m € Z and w € W,s we have
P ((1 = te) 1 = ro)w) € (1 — 2)"Z[z%).
Proof. Note that
V(1 = to) T = ro)w) = ™ (1 — tov) ¥ w) — ™ (1 — tov ) L rqw). (4.8)

Furthermore, by Proposition 4.4, ™ satisfies the small-torus Grassmannian GKM condition.
Hence, applying Lemma 4.2 to 9™ ((1 — tov)? rqw), we can shift the argument r,w so that
the equalities (4.5) and (4.6) can be used. This implies that (4.8) is zero modulo the ideal
(1 — z)9Z[z*]. O

4.4 The wrong-way map

There is a natural inclusion map ¢; : \If ¢ — War. In the case at hand, there is a map @ : Uy — \Ilaf,
of which ¢ is a section. This map is spec1ﬁc to the case of the affine Grassmannian; it also does
not exist if one uses the larger torus Tys.
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LEMMA 4.6. There is an R(T)-module homomorphism @ : W,¢ — VL. defined by w(v)(w) =
Y (ty) for w € Wy, where A € QV is such that wW = t\W.

Proof. Let ¢ € Wy, w=ty\u € Wy with A€ QV, and u € W, a € ® and d € Z~(. Then we have

@) (1~ tav) w) = @()((1 — tav) tru)
= (1 — tov)?y) € (1 — e*)4R(T). m

5. K-homology of the affine Grassmannian and the K-Peterson subalgebra

Let K’ be the K-NilHecke ring for the affine Lie algebra g,; defined via the general construction
in §2. In this section we use the affine K-NilHecke ring K, which differs from K’ in the use of
R(T) instead of R(T,¢). Our main result, generalizing work of Peterson [Pet97], gives a Hopf-
isomorphism of K7(Grg) with a commutative subalgebra L C K.

5.1 K-homology of the affine Grassmannian

We define the equivariant K-homology K7(Grg) of the affine Grassmannian to be the continuous
dual K7(Grg) = Hompq) (K (Grg), R(T)), so that Kr(Grg) is a free R(T)-module with basis
comprising the Schubert classes &, dual to [Ox;] € K T(Grg).

The K-homology K7 (Grg) and K-cohomology KT (Grg) are equipped with dual Hopf
structures, which we now explain, focusing on K7 (Grg) first. Let K C G be the maximal
compact form, LK the space of continuous loops S'— K, and QK the space of
based loops (S',1) — (K,1). Let Tk =TNK. We denote by K'8(QK) the equivariant
topological K-theory of QK. By an (unpublished) well-known result of Quillen (see [HHHO5,

PS86]), the space QK is (equivariantly) weak-homotopy-equivalent to the ind-scheme affine

Grassmannian G(C((¢)))/G(C[[t]]). Thus we have K'®(QK) = K™&(G(C((t)))/G(C[[t]])), where
K™ (G(C((t)))/G(C][t]])) denotes the topological K-theory of the topological space underlying
the ind-scheme G(C((t)))/G(C[[t]]).

The topological K-theory K'#(QK) = KT#(G(C((t)))/G(C[[t]])) is studied in [KK90], where
it is identified with the ring \Ilif. More precisely, Kostant and Kumar studied the equivariance

with respect to the larger torus T,¢, but the same argument as in our Theorem 4.3 gives
KT (G(C((t)))/G(C][t]])) = ¥,. Thus we obtain the sequence of isomorphisms

KT (Grg) = Wy = KT (G(C((1)))/G(C[[t]) = K™ (QK),
and all the isomorphisms are compatible with restrictions to fixed points.
The composite map r given by
OK — LK — LK/Tr
induces the map
KT (Xo) =2 K™ (LK /Tp) —— K™ (QK) = KT (Grg).

One can check, using a fixed-point calculation, that the map w of Lemma 4.6 is related to r*
via the isomorphisms of Theorem 4.3.

The based loop group 2K has a Tr-equivariant multiplication map QK x QK — QK given
by pointwise multiplication on K, and this induces the structure of a commutative and co-
commutative Hopf algebra on K% (QK) = K7 (Grg). The co-commutativity of K% (QK) follows
from the fact that it is a homotopy double-loop space (K being already a homotopy loop space).
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Via duality, we obtain a dual Hopf-algebra structure on K7(Grg). For the next result, we label
the Tye-fixed points of Grg by translation elements ¢).

LEMMA 5.1. Let A\, € QV, and consider the maps i;,iZ:KT(Grg) — R(T) as elements of
K7 (Grg). Then in K1(Grg) we have

0N Ay = Iy
Proof. It suffices to argue in K7®(QK). The map i} iy, is induced by the map pt — QK x
QK — QK, where the image of the first map is the pair (ty,t,) € QK x QK of fixed points

and the second map is multiplication. Treating ¢y,%,:S ! - K as homomorphisms into K, we

see that pointwise multiplication of ¢y and t,, gives tyy,. Thus i} iy, =3 e O

The antipode of Kr(Grg) is given by S(i}) =1i* ,, since the fixed points satisfy t;l =t_)
in QK.

5.2 The affine K-NilHecke ring and K-Peterson subalgebra
Let Wyt act on the finite-weight lattice P by the (non-faithful) level-zero action (uty - p) =u - p
forue W, e Q" and p € P.

Let K be the smash product of the affine 0-Hecke ring Ko with R(7T) (rather than R(Ty¢))
using the commutation relations (2.6). We call this the affine K -NilHecke ring. The cohomological
analogue of K was studied by Peterson [Pet97]. We have K=, ¢y, R(T) T

We now define the map k: K7(Grg) — K by the formula
(k(£), ¥) = (&, w(¥)), (5.1)

where ¢ € U, and w is the wrong-way map of Lemma 4.6. We have used Theorem 4.3(ii) to
obtain the pairing on the right-hand side. By letting 1) vary over {1V € W,¢}, it is clear that (5.1)
defines k(£) uniquely in K.

We define the K-Peterson subalgebra L := Zg(R(T')) of K to be the centralizer of R(T")
inside K.

LEMMA 5.2. We have Im(k) = P, cov Q(T)tx NK=L.

Proof. For A € QY, we have (i}, w(¢)) = ¥(ty), so k(i5) =ty € K. Since i} spans K7(Grg) (over
Q(T)), we have thus established the first equality. For the second equality, @ ,cov Q(T)tAxNK C
Zk(R(T)) holds because under the level-zero action ¢ acts on P trivially for all A € QV. For the
other direction, let a =3, - aww € Zx(R(T)) for a,, € Q(T). Then for all i € P we have

0=ela—ae! = Z Ay (e? — eFw.
weWy
Therefore, for all w € Wy, either a,, =0 or wu = p for all p € P. Taking u to be W-regular, we
see that the latter holds only for w = t) with some A\ € QV. O

The algebra L inherits a coproduct A : L. — L ® (7 L from the coproduct of K. (In §2.6 the
coproduct of K’ is given, and it specializes easily to a coproduct for K.) That A(L) C L ®pr) L
follows from (2.14) and the equality L = EB/\EQV Q(T)tx NK. We make L a Hopf algebra by
defining S(ty) =t_x.

The following results generalize properties of Peterson’s j-map in the homology case;
see [Lam08, Theorem 4.4].
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THEOREM 5.3. The map k: Kp(Grg) — L is a Hopf-isomorphism.

Proof. To check that a map is a Hopf-morphism, it suffices to check that it is a bialgebra
morphism, since the compatibility with antipodes follows as a consequence.

It is clear from the definition that k is injective. Since k is R(T)-linear, to check that k
is compatible with the Hopf-structure we check the product and coproduct structures on the
basis {5 | A € Q"}. By Lemma 5.1 we have k(43 ,) = k(i} i},) = tx tu = triy, 50 k is an algebra
morphism. That k is a coalgebra morphism follows from an argument similar to that used in
proving Lemma 2.8 and Proposition 2.9. Thus & : K7(Grg) — L is a Hopf-isomorphism. O

THEOREM 5.4. For each w € Wa{f, there is a unique element k,, € . of the form

ko=Tw+ > kT, (5.2)
VEWa\W]

for k¥ € R(T). Furthermore, k,, = k(&,,) and L = Gawewff R(T) ky.

Proof. Since the Schubert basis {&, |w € WL} is a R(T)-basis of Kp(Grg), upon setting
kw = k(&) we obtain, by Theorem 5.3, a R(T)-basis of L. By (5.1) and the fact that w(¢?) ="
for v € WL, we obtain (5.2). Finally, the element k,, € L is unique because the set {7, | w € Wk}
is linearly independent. O

Define the T-equivariant K-homological Schubert structure constants d, € R(T) for
Kr(Grg) by

kuko =Y di,ku (5.3)
wEWaIf
where u, v € Wk. Since k, € Zg(R(T)), we have

yEWaf yEWaf x’yGWaf

Applying ¢ with w € W and using (5.2) gives

Ay, = Y kU kLU (TLT).
z,yEWoar

Since w € Wk, ¢*(T,T,) =0 unless y € Wk. But, for y € Wk, we have k¥ =6,, by (5.2).
Therefore

dh= 3 (C)f g (5.4)

€Wy
Tx Tv = iTw

6. The K-affine Fomin—Stanley algebra and K-homology of the
affine Grassmannian

In this section we reduce to the non-equivariant setting. Our main result (Theorem 6.4) describes
the specialization at zero of .. We will rely on the corresponding known statements from the
cohomological setting, in particular [Lam08, Proposition 5.3].
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6.1 K-affine Fomin—Stanley algebra
Define ¢g: R(T) — Z by setting ¢o(e*) =1 and extending by linearity. Define ¢g: K — Kq by
do(a) = ew ¢o(aw)Ty, where a =3y awTy with a,, € R(T).

The K-affine Fomin—Stanley algebra is defined as

Lo = {b € Ko | ¢o(bg) = do(q)b for all g € R(T")} C Ko.
The cohomological analogue of Ly was defined in [LamO08].

LEMMA 6.1. Suppose that a € L. Then ¢o(a) € Lo.
Proof. ¢o(ae*) = ¢o(e*a) = go(a). =

In what follows, we shall use the notation (such as A,,) for the cohomological nilHecke ring.
We refer the reader to Appendix A for a review of this notation. Let < denote the covering
relation in Bruhat order.

LEMMA 6.2. Let v <w in Wy. Then for each A € P we have
¢o(Tw €, 9°) = do(AwA, £) = (AuA, £").

Proof. Write v=wr,. By [Hum90] there exists a length-additive factorization of the form
w = uyr;ug for some i € Iy such that v = ujug and a = ug_lozi. We have

1— e

N N N eTiUQ)\ _ eug)\
Go(Tw €™, V") = pop" (Twe™) = go(ur - T; - €"*7) = o <>,
since ¢o(wq) = ¢o(q) for all w € Wyt and g € R(T). Therefore

¢ov" (Twe*) = (), uzd) = (@, ) = €' (Aw ),

where we have used (2.1) acting on an exponential for the first equality, Wye-equivariance of (-, -)
for the second equality, and Lemma A.1 for the third. O

LEMMA 6.3. Suppose that a = ZweWaf awTy € Lo where a,, € Z. Let £ be maximal so that
ay # 0 for some w with ¢(w) ={. Then o' = > t(w)=¢ GwAw € Bo.

Proof. We note that for v € Wy with ¢(v) =¢ — 1, we have for each A € P that

00 (ol = 1) =000 auTulet = 1)) = n ),

L(w)=(

using Lemma 6.2. Since a € Ly, we have ¢g(a(e* — 1)) =0 for all X\. Thus o’ € By, as claimed. O

THEOREM 6.4. We have Lo = ¢o(L). Furthermore, Lo = @wewff Z ¢o(kw) and ¢o(ky) is the
unique element in L. N (T, + ®veW\WIf ZTy).

Proof. For a € IL, we have ¢g(ae?) = ¢o(e*a) = ¢o(a). Thus ¢o(L) C Lo. Now suppose that a =
Zwewaf aw Ty € ILg. Define the support of a to be the w € Wyt such that a,, # 0. If the support
of a contains a Grassmannian element w € Wal , then a — ay¢o(ky) € Lo, but by Theorem 5.4
its support has fewer Grassmannian elements than does a. So we may suppose that a has no
Grassmannian element in its support. By Lemma 6.3, the element a’ (as defined in the lemma)

lies in By and has no Grassmannian support. By [Lam08, Proposition 5.3], we must have a’ = 0.
Thus a = 0. We conclude that Lo = ¢o(L).
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Since the ¢o(ky), w € Wa{f, are clearly linearly independent, it follows that they form a basis.
The last statement follows from Theorem 5.4. a

Some examples of the elements ¢g(ky), illustrating Theorem 6.4, are presented in
Appendix A.3.3.

COROLLARY 6.5. The ring Ly is commutative.

Proof. Let a, b € Lg. By Theorem 6.4, we have a + o’ € L and b + b’ € L for some elements a’ and
b satisfying ¢g(a’) =0 = ¢g(V'). Since L is commutative, we have

ab=¢o((a+a)b+b))=go((b+b)(a+d))=ba. O

6.2 Structure constants

We now consider the structure constants in Lj. The next lemma follows from either a direct
calculation or Theorem 6.8 below.

LEMMA 6.6. For a,b € L, we have ¢y(ab) = ¢o(a)do(b).

Using Lemma 6.6, apply ¢o to (5.3) to get that for u, v € W1,
dolku)o(k) = D do(dy,)bo(kw)- (6.1)
wGWz{f
In other words, ¢o(d¥,) € Z are the structure constants for the basis {¢g(ky) | v € Wk} of L.
CONJECTURE 6.7. For u, v, w € Walf and x € Wy,
(~1)f = =gy (dy,) > 0,
(=)= o (k7) > 0.

By (5.4), the second statement implies the first.

The tables of ¢g(ky) in Appendix A.3.3 support Conjecture 6.7.

6.3 Non-equivariant K-homology

One defines the non-equivariant K-cohomology K*(Grg) by considering non-equivariant
coherent sheaves in the natural way. We have K*(Grg) :@weW’f Z [Ox1lo, where [Ox1]o

denotes a non-equivariant class. The non-equivariant K-homology K.(Grg), defined as the
continuous Z-dual to K*(Grg), has Schubert basis {¢), | w e WL}. We have the following
commutative diagram.

Kr(Grg) 2~ K. (Gre)

| |

L— =L

o)

The subalgebra Ly is a Hopf algebra, with coproduct ¢go A. The following result
generalizes [Lam08, Theorem 5.5] to K-homology.

THEOREM 6.8. There is a Hopf-isomorphism ko : K.(Grg) — Lg such that ko(£2) = ¢o(kuw).
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7. Grothendieck polynomials for the affine Grassmannian

In this section we specialize to affine type Afll_)l and G = SL,,(C). We first introduce elements
k; € Ly which, under a Hopf-algebra isomorphism Lo = A,y :=Z[h1, ..., hy—1] between the
K-affine Fomin—Stanley algebra and a subspace of symmetric functions, correspond to
the homogeneous symmetric functions h;. For w € W, the image g, of ¢o(ky,) in Ay is the
K-theoretic k-Schur function g,, which contains the k-Schur function (see [LLMO03, LMO07]) as
the highest-degree term. The symmetric functions g,, are related to the affine stable Grothendieck

polynomials {Gy, | w € WL} of [Lam06] by duality.

7.1 Cyclically decreasing permutations and the elements k;
For G =SL,, we have I ={1,2,...,n— 1} and I, = {0} U I. For i € I we wish to compute the
elements ¢g(ko,) € Lo where o; = ri_17i—2 - - - 1119 € Was.

A cyclically decreasing element w € Wye is one that has a reduced decomposition w =
Ti,Tiy =+ - Tin such that the indices iy, ..., ix € I are all distinct and a reflection r; never occurs
somewhere to the left of a reflection r;y1; here I is identified with Z/nZ, so that indices are
computed mod n). One can show that w is cyclically decreasing if and only if all of its reduced
decompositions have the above property. Since no non-commuting braid relations can occur, all
the reduced words of w also have the same indices iy, ..., iy.

For ¢ € I, let k; € Ky be defined by
ki=Y T, (7.1)

where w runs over the cyclically decreasing elements of Wy of length 7. We set kg = 1. These
elements were considered in [Lam06].

We define coordinates for the weight lattice P of sl,. Let P CZ"=@; | Ze;, with
fundamental weights w; =e;+e2+---+¢; and o;=e¢; —e;jy1 for i€l. For a subset
JCA{L,...,n}, let us write e;j=>,.;e; € P for the Ol-vector with 1s in the positions
corresponding to elements of J. The e; with |J| =k form the set of weights for the kth
fundamental representation of SL,(C) with highest weight wy, which is multiplicity-free. We
have r; - ej = e,,.7, where indices are taken mod n.

LEMMA 7.1. We have
0 if bothi,i+1€.J or bothi,i+1¢.J,
T;-e“ =< e’ ifieJandi+1¢J,
—e® ifi¢Jandi+1eJ.
Let J and K be disjoint subsets of Z/nZ such that J U K # Z/nZ. We write Sj - e* for

the action of {r; | j € J} and {T}, | k € K} on e*, where the operators act in cyclically decreasing
order (for example, r; would act before T).

LEMMA 7.2. Let J and K be as above.

(i) If|[0,k —1]N K| >2, then Sy - ek =0.
(ii) Supposel|[0,k —1]NK|=1.Leta€ [0,k —1]NK. ThenS; - e“* =0 unless [0,a — 1] C J.
(iii) Suppose |[0,k —1]NK|=1. Then S;k - e“* =0 if [k, —1] C (JUK).
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(iv) Suppose that Sj - e“* #0 and [k, —1] N K # (). For each a € ([k, —1] N K), we have [k, a] C
(JUK).
(v) Suppose that Sy -e“* #0 and [k, —1] C (JUK). Then [0,k — 1] N K = 0.

The following lemma is general (not just for affine type Anlfl).

LEMMA 7.3. Suppose a € Kg. If A\, € P are such that ¢g(ae*) =a and ¢o(ae’)=a, then
$o(aer M) =a.

Proof. Write a(e* —1)=>" a,Tw and Tyet =3 byl'T, for a,,by" € R(T). We have
¢0(ay) =0 for all w and ¢gp(a(e” — 1)) =0. Then

do(a(eM — 1)) = go(a(e* = 1)et) + po(ale” — 1))

= ¢ <Z awTw€M>
=" g (Z awbz;“> T,=0

since ¢ : R(T") — Z is a ring homomorphism. O
PROPOSITION 7.4. We have k; € L.

Proof. By Lemma 7.3, it is enough to prove that ¢g(k;e*) = k; for A being either a fundamental
weight or the negative of a fundamental weight. We deal with the case where A = wy; negative
fundamental weights are treated similarly.

When ¢g(k;(e“s — 1)) is expanded in the T, basis, only a term that involves cyclically
decreasing w would occur with non-zero coefficient. Fix J. Let us show that [Tj]¢o
(ki(e¥* —1)) =0, where T is the product of T; with j € J in cyclically decreasing order and
[T'7]a denotes the coefficient of Ty in a € Ky. This is clear if |J| =4, by (2.6) and Lemma 7.1.
So suppose that |J| < i. Then

(T)o(ki(e* — 1)) = > d0(S1re™). (7.2)
K : |K|=i—|J| and KNJ=0
We will say that a subset K in the above sum is good if Sj ge“* # 0. Let us define an involution
¢ on good subsets such that ¢o(Sjxe*) = —¢o(Ss,(k)e“*). By Lemma 7.2(i), we may write the
set, of good subsets as the disjoint union Sy Ll .S; where
So={K:|[KN[0,k—1]|=0} and S;={K:|KN[0,k—1]|=1}.
The involution satisfies ¢(Sq) = S1—q.

Suppose that K € Sy. Then K N[k, —1] # 0 and we may set a to be the maximal element
of KNk,—1]. Let «(K)=K\{a}U{b} where b€ [0,k — 1] is minimal so that j ¢ J and
[0,7 — 1] C J. One can check directly that ¢«(K) is also good. Using Lemma 7.1, one sees that
((K) and K contribute different signs in (7.2).

Suppose that K € S;. Let a be the unique element in K N[0, k — 1]. Using Lemma 7.2(iii),
we pick b € [k, —1]\(J U K) minimal in [k, —1]. Set «(K)= K\{a} U {b}. Again, one can check
that +(K) is good and that K and «(K) contribute different signs.

Finally, it follows from Lemma 7.2(ii) and (iv) that ¢ is an involution. O

COROLLARY 7.5. For1<i<n—1, k;=¢o(ks,)-
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Proof. By Proposition 7.4, k; € Ly, and by definition it has unique Grassmannian term 7. The
result follows from Theorem 6.4. O

By forgetting equivariance, we obtain a K-homology Pieri rule for K,(Grgy,,); see [LLMS,
LMO5] for the homological version.

COROLLARY 7.6. For 1<i<n—1, ¢o(dy,,) equals (—1){@)=tw)= times the number of
cyclically decreasing elements x € Wy with {(x) =i and T, T, = £T,,.

Proof. This follows from (5.4), (7.1) and Corollary 7.5. O

The K-cohomology Pieri rule is likely to be much more complicated; see [LLMS]| for the
cohomological version.

7.2 Coproduct of the k;
In this section we determine the coproduct ¢o(A(k;)) explicitly.

Let J and K be two subsets of Z/nZ with total size less than n — 1. We define a sequence of
non-negative integers cd; g = (cd(j) : j € Z/nZ) by

cd(y) = amax {|JN[j—t ) +IKN[—t)| -t}

(The intervals [j — t, j) are to be considered as cyclic intervals.) It is then clear that ed(j + 1) —
cd(j) € {~1,0, 1}.
We note that cd(j) =0 for all j € Z/nZ.

LEMMA 7.7. Let J and K be two subsets of Z/nZ with total size less than n — 1.

(i) There exists j such that cd(j) =0 and j ¢ J UK.
(ii) cd is the unique sequence such that cd(j + 1) —cd(j)=1|jNJ| + |j N K| — 1, except when
cd(j)=0and j ¢ (JUK).
Proof. To prove (i), suppose that no such j exists. Then cd(j +1) —cd(j)=[jNJ|+|jNK| -1
for each j. But 0= (cd(j) —cd(j — 1)) +-- -+ (cd(j + 1) — cd(j)), so this is impossible because
|J] + |K| <n—1. Now we prove (ii). Everything except uniqueness is clear. Let cd’ be any
sequence with the asserted properties. The same calculation as in (i) shows that there is j’
such that c¢d'(j/) =0=cd' (5 +1) and j' ¢ (J U K). By recursively calculating cd(j’ + 1) and
cd'(j' + 1), then cd(j’ + 2) and cd’(j' + 2), and so on, we find that c¢d(j) > cd’(j) for all j. But
a symmetric argument shows that cd(j) < cd’(j) for all j. O

Define t(J, K) = (t;: i € Z/nZ) € {L, R, B, E}" as follows (here E stands for ‘empty’, L for
‘left’, R for ‘right’, and B for ‘both’):
E ifcd(j)=0and j¢ JUK,
L ifcd(j)=0and je J\K,
R if j¢ J and (cd(j) >0 or j € K),

B otherwise.

~
<.
I

We say that two sequences cd and ¢ are compatible if:
(a) tj € {E, L} implies cd(j) = 0;

(b) cd(j +1) — cd(j) =0 if t; = L;

(c) cd(j+1) —cd(j) € {~1,0} if t; = R;

837



T. LAM, A. SCHILLING AND M. SHIMOZONO

(d) cd(j + 1) — cd(j) € {0, 1} if t; = B;
(e) t; = E for some j € [0,n — 1].
Define the support of (cd, t) to be {j|t; # E}.

LEMMA 7.8. The map (J, K) — (cdj i, t(J, K)) is a bijection between pairs of subsets of Z/nZ
with total size k < n and pairs of compatible sequences with support of size k.

Proof. It is easy to see that (cdjk,t(J, K)) is compatible with support of the correct size.
We first check that the pair of sequences determines J and K. By itself, ¢(J, K) completely
determines J: we have j € J if and only if t; € {L, B}. Also, j € K if and only if either t; = R and
cd(j+1)=cd(j) or t; =B and cd(j + 1) = cd(j) + 1. Thus (cdjx, t(J, K)) determines (J, K).

Conversely, given compatible (cd,t), we recursively construct J and K by starting at
some value j such that t; = E. For such a value we have j ¢ JU K. We then decide whether
j+1e€J and/or j+ 1€ K, and so on. By construction, we obtain two subsets J and K such
that ¢cd(j+1) —cd(j)=|iNJ|+]jNK|—1, unless cd(j)=0=cd(j +1) and j¢ JUK. By
Lemma 7.7, we have cdj x = cd. Using compatibility, one can check that the size of the support
of (cd, t) is equal to |J| + |K|. But then it follows that ¢(.J, K) =t. O

PROPOSITION 7.9. We have ¢o(A(k;)) = o< <, kKj @ kpj.

Proof. Our proof follows the strategy in [LamO08, §7.2]. Let J={i,..., i} CZ/nZ.
Using (2.16), we calculate ¢o(A(T)) by expanding

D = ¢o(A(T,) - A(Th,) - - - A(T5,)),

where r;, ---r;, is a cyclically decreasing reduced expression and - means the ‘componentwise’
product on A(K) of (2.17).

Let us expand this product by picking, for each component, one of the three terms of (2.16).
As usual, we write a;j = oy + - - - + aj—1 for any cyclic interval [i, j]. We first note that
1 — e+t — (1 — e%id)

1—e%

Tj(1 — ) = (1= e"ot)T; +
— (1 _ eai,j-',-l)j"j + eai,j_

Because of the cyclically decreasing condition, whenever the above calculation is encountered,
the coefficient e®i will always commute with any 7; which occurs to the left.

We shall now show by induction that the only terms in the expansion of A(T;,) - - - A(T3,)
that contribute to D look like

T, [[(1 — e*i+1)qT,, (7.3)
€S
where:
(i) either S is empty and [[;cg(1 —e*is*1) =1, or S C {ik, ip41,- - -, 00}

(ii) g € R(T) commutes with r;,, ..., 7, _, and satisfies ¢o(q) = 1.
Such a term contributes nothing to D if |[S| >0 and i ¢ {i1,...,ik_1}. To prove the inductive
step, we assume that i,_; = i; + 1 and calculate (using (2.5))

Ty TL1 ey = [[(1 = et)qTy i + [[1 = e%t) 44 (1)

€S 1€S €S’
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where S’ C S and ¢’ € R(T) commutes with r;,,...,r;, , and satisfies ¢o(q’) = 0. Clearly, the
term involving ¢ contributes nothing to D, and the first two terms lead to expressions of
the form (7.3).

Given a choice of one of the three terms in (2.16), we define a sequence t; by:
a) tyj=FEif j¢J;
b) t; =L if we pick T; ® 1;
(c) t; = R if we pick 1 ® Tj;
(d) t; = B if we pick T; @ (1 — €% )Tj.

(
(

Furthermore, let us make a choice of one of the two terms in (7.4), whenever we have such a
choice. At each step of our calculation we are looking at a term of the form (7.3). We set cd(j)
to be the size of S in the term just before A(Tj) is applied. If j ¢ J, then cd(j) =0. If this
entire process produces a non-zero term of D, then (cd, ) is a compatible sequence: the sequence
cd ‘wraps around’ properly because eventually the coefficient [[,c¢(1 — e**#*1) has to equal 1,
otherwise it will vanish when ¢q is applied. Conversely, a compatible pair (cd, t) with support
equal to J always arises in this fashion.

By Lemma 7.8, there is a bijection between compatible pairs (cd, t) with support of size r
and pairs of subsets (J, K') with total size equal to r. It is easy to check that the term in D
corresponding to (cd, t) is exactly T; ® Tk. O

7.3 Symmetric function realizations

Let A = @, Zm, be the ring of symmetric functions over Z, where m is the monomial symmetric
function [Mac95] and A= (A; = Ag > --- > A\ > 0) runs over all partitions. Let A = [I\ Zmy be
the graded completion of A. Let |A\| = A1 + - - - + Ay denote the size of a partition.

Let AW =A/(my |\ >n) denote the quotient by the ideal generated by monomial
symmetric functions labeled by partitions with first part greater than n. We write A for
the graded completion of A™. Now let Ay =Z[h1, b2, ..., hy—1] C A denote the subalgebra
generated by the first n — 1 homogeneous symmetric functions. Both A(,) and A™ are Hopf
algebras.

The Hall inner product (-,-): A xz A —7Z extends by linearity with respect to infinite
graded linear combinations to a pairing (-, -) : A Xz A — Z, which in turn descends to a pairing
Ay Xz A" — 7Z. This pairing expresses A as the continuous (Hopf-)dual of A and A as
the graded completion of the graded (Hopf-)dual of A,. For short, we will just say that A,
and A are dual. The basis {hy | \y <n} C Ay and ‘basis’ {my | A1 <n} C A are dual under
the Hall inner product.

7.4 Affine stable Grothendieck polynomials

The affine stable Grothendieck polynomials Gy (x1, z2, . . .) for v € Wyt are the formal power series
defined by the identity [LamO06]

n—1
1D @)=Y Guar, 2, .. )T, (7.5)

i>1 j=0 VEWag
where the z; are indeterminates that commute with the elements of Ky and k; € Ko are the
elements defined in (7.1). Alternatively, for a composition oo = (a1, g, . . . , o), the coefficient of
= x{tay? -2yt in Gy(x) is equal to the coefficient of T, in kq,Ka, - - - Ka,. It is clear that
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Gy(z) is a sum of monomials such that no variable occurs with degree more than n — 1 in any
monomial. Examples of the G,(z) are given in Appendix A.3.6.

The following result was proved directly in [Lam06, Theorem 44].

PROPOSITION 7.10. For each v € Wy, we have Gy (z) € A,

Proof. By Proposition 7.4 and Corollary 6.5, the k; commute. This implies that G,(z) is a
symmetric function. In addition, all monomial symmetric functions my which occur with non-
zero coefficient in Gy (x) satisfy A1 <n, so G,(x) can be naturally identified with its image
in A, O

The next result follows from (2.3).

LEMMA 7.11. The graded components of G,(z) are alternating; that is, the coefficient of my in
G, (z) has sign equal to that of (—1)M—=4),

In [LamO06], for each v € Wy, a homogeneous symmetric function F,(x), the affine Stanley
symmetric function, is defined. The next result follows by inspection.

LEMMA 7.12. Let v € WZ. The lowest-degree component (of degree {(v)) of G,(z) is equal to
F,(x).

(Readers not familiar with affine Stanley symmetric functions may take this as the definition
of F,(x).) The F,(z), v € WL, were called affine Schur functions in [Lam06] and are equivalent

af»

to the dual k-Schur functions of [LMOT].

PROPOSITION 7.13. The set {G,(x)|ve WL} is a ‘basis’ of AM™_ In other words, A" =
HUEWaIf Z GU(QI).

Proof. This follows from the fact that {F,(z) | v € W} is a basis of A™); see [Lam06, LM07]. O

Remark 7.1. Suppose w € Wyt is such that some (or, equivalently, every) reduced expression for
w does not involve all of the simple generators rg, 71, ..., Tn—1. It then follows from comparing
the definitions that the stable affine Grothendieck polynomial G, (z) is equal to the usual stable
Grothendieck polynomial [FK94] labeled by u € W = S,,, where u is obtained from w by cyclically
rotating the indices until rg is not present.

Remark 7.2. There is a bijection between v € W and (n — 1)-bounded partitions {A | A1 < n};
see [LMO5, Lam06]. The partition A associated to v can be obtained from the exponents of the
dominant monomial term 23152 - - - in F,(xy, Zo, . ..). We may thus relabel {G,(z) | v € Wil
as {Gg\k) () | \1 <n}, where k=n —1 (owing to historical reasons). A table showing this
correspondence is given in Appendix A.3.1. Remark 7.1 implies that G(Ak) () = GA(x) whenever
the largest hook length of A is less than or equal to k, where G, (z) is the stable Grothendieck
polynomial labeled by partitions and studied by Buch in [Buc02].

7.5 K-theoretic k-Schur functions

Since {Gy(z) |v € WL} is a ‘basis’ of A("), there is a dual basis {g,(z) | v € WL} of A(yy- This
definition of g,(z) has been stated previously by Lam. We call the symmetric functions g,(z)
affine dual stable Grothendieck polynomials or K-theoretic k-Schur functions. Examples of the
gv(x) are given in Appendix A.3.4.

The proof of the following result is standard (see, for example, [Sta0l, Lemma 7.9.2]).
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LEMMA 7.14. We have
Z h)\(ib) m)\(y) = Z gv(l‘) Gv(y)

A1<n vGWaIf

Let k=n—1. The k-Schur functions {sg,k)(m) |ve WL} (see [LLMO03, LMO7]) form the
basis of A, dual to {F,(z)|ve WZL}, and are usually labeled by the k-bounded partitions
{A| A1 <n}. (The k-Schur functions originally defined in [LLMO03] depend on an additional
parameter ¢, and setting t = 1 conjecturally gives the k-Schur functions of [LMO07], which are the
ones used here.)

LEMMA 7.15. Let v € Wéff. Then the highest-degree homogeneous component of g,(x) is equal
to the k-Schur function s\ ().

Proof. We prove this by induction on ¢(v). The base case is clear: Giq(z) = Fiq(z) = 1 = giq(z) =

si((]f) (x). Suppose the claim has been proven for all w satisfying ¢(w) < ¢, and let ¢(v) = ¢. One

then checks that the symmetric function
go(x) = s (x) = Y (s (@), Gu(2))gu(x)
w: L(w)<l
is a solution to the system of equations

(go(x), Gu(T)) =0y for all u € Wi O

Remark 7.3. Relabel {g,(z)|ve WL} as {gg\k)(x) | A1 <k}, as in Remark 7.2. Since

limg 00 G(Ak) (x) = Gr(x), it follows that limg_, gf\k) (x) = ga(x), where the g)(x) are the dual

affine stable Grothendieck polynomials studied in [LP07, Len00].

7.6 Non-commutative K-theoretic k-Schur functions

Define ¢: Ay — Lo by hi—k;. This map is well-defined since the h; are algebraically
independent and Lg is commutative. The non-commutative K -theoretic k-Schur functions are
the elements {¢(g,) | v € WL} C L.

PROPOSITION 7.16. Let we Wy and v € Walf. The coefficient of T,, in ¢(gy) Is equal to the
coefficient of Gy () in Gy (x) when the latter is expanded in terms of {Gy(z) |u € Wi}

Proof. Applying ¢ to Lemma 7.14 and comparing with (7.5), we have
Z Gv(?/)@(Qv) = Z Gw(y) Tw-
’UGWaIf U]EWaf

Now take the coefficient of T;, on both sides. O

7.7 Grothendieck polynomials for the affine Grassmannian
The following is our main theorem.

THEOREM 7.17.
(i) The map ¢ : Ag,y — Lo is a Hopf-isomorphism, sending g, to ¢o(ky) for v € W(,ff.

(ii) We have a Hopf-algebra isomorphism k; Loyp: Ay — K«(Grs, ), sending g, to €0 for
(S Wa{f.
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(iii) There is a dual Hopf-algebra isomorphism K*(Grsy, ) = A, sending [Ox1lo to Gy(z) for
ve Wk

(iv) The following diagram commutes.

K*(GTSLn) X K*(GTSLn) —7

L

A(n) X A(n) Z

Proof. Given the definitions and Theorem 6.8, all the statements follow from the first one. By
Theorem 6.4 and Propositions 7.13 and 7.16, we deduce that ¢(g,) = ¢o(ky). It follows that ¢ is
an isomorphism. Since A(h;) =3 o< c; hj ® hi—j in Ay, it follows from Proposition 7.9 that ¢
is a Hopf-morphism. O

COROLLARY 7.18. For 1 <r <n —1, we have g5, (z) = h,(z).

Recall the map r* : KT(X,¢) — KT (Grg) defined in §5.1. We use 7§ : K*(Xu) — K*(Grsr,,)
to denote the evaluation of r* at zero.

THEOREM 7.19. The image of G\, (z) under the isomorphism A" = K*(Grgy,) is equal to
TS([OXW]O)

Proof. As observed previously, the map w of Lemma 4.6 is related to r* via the isomorphisms
of Theorem 4.3. By (5.1), (k(&), ¥") = (&, w(y™)). It follows that the coefficient of T, in k, is
equal to the coefficient of [Ox;] in 7*([Ox,]). Applying ¢g to these coefficients and comparing
with Proposition 7.16 gives the result. O

7.8 Conjectural properties

In this section we list conjectural properties of the symmetric functions g, (x) and Gy, (x). When
w e Wa{f, we will use partitions to label these symmetric functions; see Remark 7.2. Recall also

that k=n — 1.

CONJECTURE 7.20. The basis {g/(\k)} of A(y) has the following properties.

(i) Each gf\k) is a positive integer (necessarily finite) sum of k-Schur functions. (By Lemma 7.15,

the top homogeneous component of gg\k) is the k-Schur function sg\k).)

ii) The coproduct structure constants ¢}’ in A g(k) = ck ”g(k) ®gl(,k) are alternating
A A wy SN JH
integers, that is, (—1)|)“*|V|*‘”‘c’;” € Z>o. Furthermore, ¢” = 0 unless |u| + [v] <|A|.

(iii) The coefficients in the expansion gg\k) :Zu af\‘ gfjﬂ“) are alternating integers, that is,
(_1)M|—|ﬂla//< € Z.

Conjecture 7.20(1) has been checked for n = 2, 3, 4 and 5 for |\| < 8 using the software package
Sage [Sag]; see also the tables in Appendix A.3.4. Data confirming Conjecture 7.20(ii) can be
found in Appendix A.3.5. Conjecture 7.20(iii) has been checked for n=2,3 and 4 for |A| <8
using Sage. According to Conjecture 6.7, the product structure constants for {gf\k)} should be

alternating.
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CONJECTURE 7.21.

(i) Every affine stable Grothendieck polynomial G,, for w € Wy is a finite alternating linear
combination of {G’g\k)}.

(ii) Every Gg\k) is an alternating integer linear combination of the affine Schur functions {F,Ek)}.

iii) The structure constants in the product el G(Vk) = & %) are alternating integers,
© A A A

that is, (—1)"\‘_‘“'_'”'0’;” € Zo. Furthermore, ¢}” = 0 unless |u| + |v| < |A.
(iv) The coefficients in the expansion G,Skﬂ) =3, a\ Gg\k) are alternating integers, that is,
(C)Allat € 7.

By Proposition 7.16, the ‘alternating’ part of Conjecture 7.21(i) is implied by Conjecture 6.7.
Evidence for Conjecture 7.21(ii) is provided in the table of Appendix A.3.6. Conjecture 7.21(ii)
is related to Conjecture 7.20(i) via a matrix inverse. Conjecture 7.21(iii) is equivalent to
Conjecture 7.20(ii); indeed, the two sets of structure constants are identical. Conjecture 7.21(iv)
is equivalent to Conjecture 7.20(iii).

Remark 7.4. The factorization of affine Grassmannian homology Schubert classes as described
in [Mag] (see also [Lam08, LMO07]) appears also to hold in some form in K-homology. Suppose
that w € VVaIf has a length-additive factorization w = vu where u € Wa{f is equal, modulo length-
zero elements, to the translation ¢__v by a negative fundamental coweight in the extended affine
Weyl group [Mag]| or, equivalently, that the partition A corresponding to u is a rectangle of the
form ¢ x (k — £). Then it appears that g,, is a multiple of g, in A,).
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Appendix A. The affine NilHecke ring and tables

A.1 The (cohomological) affine NilHecke ring

A summary of the (notational) correspondence between (co)homology and K-(co)homology is
given in Table Al.

Some of our notation differs from that in [Lam08].

We now recall the affine NilHecke ring A. Let S = Sym(P) where P is the weight lattice of the
finite-dimensional group G. Then Wy acts on P (and therefore on S = H” (pt)) by the level-zero
action. The affine NilCoxeter algebra A is the ring with generators {A; | i € I¢} and relations

A?ZO and A,A]:A]AZ
—— N——
m;; times m;; times

Define A,, in the obvious way and define the NilCoxeter algebra by Ay = @weWaf ZA,. Then
Ag acts on S by

Az)\:<0é;/,)\>,
Ai-(s8')=(ri-8)A;- 8"+ (A; - 5)s
fori € Iy, \€ P and s,s' € S.
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TABLE A1l. Terminology.

Co)homology K-(co)homology  Terminology

A T; (K-)NilHecke generators
A=, 54, K=&,R(T)T, (K-)NilHecke ring
B= L

)

Za(S) =Zk(R(T)) Peterson’s subalgebra
By = ¢o(B) Lo = ¢o(L) Affine Fomin—Stanley subalgebra
{jw} CB {ky} CL Schubert basis
81(5 ) (z) Guw () (K-theoretic) k-Schur functions
Fy(zx) Gu(x) Affine Stanley symmetric functions/stable affine

Grothendieck polynomials

The affine Kostant-Kumar NilHecke ring A (see [Pet97]) is the smash product of Ay and S.
It has relations

Ais=(r;-s)A; + (4; - s)
for i € I,y and s € S. Then

A= @ SA,.

wWEW s
In A we have r; =1 — a;4;, and A acts on Fun(W, S) by

(a-&)(w) =¢(wa),

viewing ¢ € Fun(W, S) as an element of Homg(Ag, @) (the left -module homomorphisms)
where @ = Frac(5).

LEMMA A.1 [KKS86]. In A, we have

Aph=(w-NAu+ Y (a¥ M)A,

V=WT o<W

Let ¢9:S —7Z be defined by evaluation at zero. Let ¢g:A — Ay be the map defined by
0> awAw) =D, ¢o(aw)Ay for a, € S. Let B = Z4(S5) be the Peterson subalgebra [Pet97],
the centralizer subalgebra of S in A, and let

Bo={beB| po(bs) = po(s)b for all s€ S}
be the Fomin-Stanley subalgebra [Lam08].
THEOREM A.2.

(i) [Pet97] For each w € WL, there is a unique element j,, € B such that

ju€du+ P SA,
veEW\WL

B= P Sju.

weWJf
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(ii) [LamO§]
By = ¢o(B).
(iii) For each w € Wk, ¢o(jw) is the unique element of By such that

¢0(jw) € Aw + @ ZAUa
vEW\WL

Bo= P Z¢o(ju).
wEWa{f

Compare these results with the K-theoretic analogues of Theorems 5.4 and 6.4.
For G = SLj41, the element ¢q(j,) is called a non-commutative k-Schur function [LamO08].

A.2 Comparison with the fixed-point functions of [KK90]
A.2.1 Mébius inversion for Bruhat order. The Mobius function for the Bruhat order on W
is
(0, w) = (=1) Oy (v < w)
where x(P) =1 if P is true and x(P) =0 if P is false; see [Deo77]. In other words, let M be the

W x W incidence matrix My, = x(v < w) of the Bruhat order, and let N be the Mobius matrix
Nyw = x(v < w)(=1)!@ =) Then M and N are inverse to each other:

Z (_1)Z(w)—£(v) = Oyw = Z <_1)£(U)_£(U)' (Al)

v v
ULVLW uLv<w

A.2.2 Kostant and Kumar functions. We now return to the (K-theoretic) notation of §2.
The following lemma is standard.

LEMMA A.3.

Yw = Z TU' (Az)

v<w
For v € W define 4%, € Fun(W, Q(T)) by*
Vi g (Yw) = Svw-

This is equivalent to
w=> P (W)Y, (A3)
By (A3) and (A2) we have

w=Y Phpw) > Tu=> Ty Phpl(w).

uv u v=>u

By Proposition 2.4, (2.7) and (A1) we have
P =D Vs

v>u

U =D (1) Wy,

v=>Uu

2 The functions denoted by " (w) in [KK90] are the same as the functions that we denote by w}’(};(w_l).
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Recall the definition of n from Remark 2.4. One can show the following. Let p be the sum of
fundamental weights.

LEMMA A.4. For allv,we W,

Vi (w) = (1) Wer =Py (w)).

Remark A.1. Let 0X, = X,\ XY be the boundary of the Schubert cell X7 in the Schubert variety
X,. Then there is an exact sequence

0— Iopx,cx, — Ox, — Osx, — 0.
Since [Ox,] — ¥* under the isomorphism K7 (X) — U, [Iox,cx,] — V%

A.3 Tables

A.3.1 Table on Grassmannians versus k-bounded partitions. We list the correspondence
between reduced words for Grassmannian elements and k-bounded partitions, where k=n — 1.

n  k-bounded partition w € Wa{f n  k-bounded partition w € W,Cff

2 1 0 4 1 0
11 10 2 10
111 010 11 30
1111 1010 3 210
11111 01010 21 130

3 1 0 111 230
5 10 31 3210
11 20 22 0130
91 910 211 2130
111 120 1111 1230
29 0210 32 03210
1111 0120 221 20130
291 10210 2111 21230
11111 20120

A.3.2 SLy. Set a=a; = —ag. We have t, =ror; and t_o = r17o. Indexing Ty, and k,, by
reduced words, we have

ta=(1—e")Toy + (1 — e ) (To + T1) + 1,
too=(1—e*)?Tyo+ (1 —e)(Tp+T1) + 1,
kg =1,
ko=To+ T+ (1 —e *)Tpy,
k1o =Tio + e *Tp1.
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So

In general,

¢0(k@) = 17
¢o(ko) =To + 11,
¢o(k10) = T1o + To1-

qb(](kow) = Tor + Tcr_w

where o, are the elements in (4.4).

A.3.3 Table of ¢o(ky). We index Ty, by reduced words.

n w b0 (kw)
3 0 1
0 To + T + T3
10 Tio +To2 + T
20 Too + To1 + T2
210 T510 + To20 + To21 + Tho1 + Tho2 + 1212
120 Ti20 + T201 + T202 + To10 + To12 + 1121
0210 To210 + Tho21 + To102
1210 Th210 + To201 + To212 + Tr020 + T1012 + T2101 — To20 — T101 — T212
0120 To120 + T2012 + T1201
4 0 1
0 To+Ti+To+Ty
10 Tio+ 151 + T2 + Tos + To2 + 113
30 T30 + Tor + Thz + Toz + Toz + T3
210 To10 + Thos + Tos2 + Ta21
310 Tizo + Taz2 + To21 + To23 + Toso + Tos1 + T320 + T23 + T213 + To12
+ Tho1 + Tro2 — To2 — 113
230 T230 + T301 + To12 + Ti23
3210 T3210 + T3212 + T3213 + L2101 + 12102 + 12103 + T1030 + L1031 + L1032
+ Tos20 + To321 + To323
0310 To310 + o213 + T1302 + L1021 + 12132 + T3203
2310 Ta310 + T201 + T3230 + T231 + L0301 + Tos02 + o312 + To210 + To212
+ To230 + To231 + To232 + T1301 + T1303 + L1320 + L1321 + L1323
+T1012 + Tho13 + Tho23 + 12120 + o123
1230 Ti230 + 11232 + T1231 + 12303 + T2302 + T2301 + 13010 + 13013

+ 13012 + To120 + To123 + To121
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A.3.4 Table of gg\k) We index gg\k) by k-bounded partitions.
n oA gf\n Y in terms of S g in terms of sf\n_l)
2 1 s1 s
11 81+ S11 + S2 (1) +8§11)
111 $1 4 2811 + S111 + 252 + S3 + 2591 (1) + 2551) + Sgll)l
1111 51+ 3s11 + 35111 + S1111 + 352 + 353 (1) + 3551) + 33%11)1 511)11
+ 6521 + 3531 + 2522 + 35211 + 54
11111 4 6 4 s 4458 + 65 445+ s
51+ 4811 + 65111 + 451111 + S11111 + 481y + 68117 481171 T S11111
+ 459 + 653 + 12591 + 12531 + 8522
+ 128911 + 484 + 85 + 4541 + 65311
+ B5S991 + 452111 + HS32
301 s1 s
2 S séQ)
].]. S1 -|— S11 (2) + 8521)
21 S92 —+ S921 —+ S3 (2) —+ 8&21)
111 51+ 82+ 2511 + s21 + S111 (2) + 2551) + 5?1)1 + 3(2)
22 S9 4 S91 + S22 + 53 + 54 + S31 (2) ()+S()
211 821 + S211 + 83 + 831 3521) + 5521)1
1111 sy + 259 + 3511 + 3821 + 35111 (2) + 3551) + 33&21)1 + sﬁ)ll + 23(2)
+ S22 + S211 + S1111
221 So + 2891 + 2899 + So11 + S991 + 283 (2) + 2851) + Sg21)1 + 28(2) é22)1
+ 254 + 3531 + 8311 + 2832 + S5 + 2541
2111 2 3 2557 + 355, + souy + sy
821 + S22 + 38211 + S221 + S2111 831 1+ 98917 + 83171 T Sag
+ 253 + 54 + 4531 + 25311 + S32 + 541
11111 s1 + 355 + 411 + 8591 + 65111 + 4520 82 + 4512 + 612, + 4512
+ 7s211 + 451111 + 28201 + 252111 + 8521)111 + 339) + 25(2) + 33521)1
+ S11111 + 283 + 3531 + 5311 + 832
4 1 s1 s
2 ED sgg)
11 S1 —|— S11 (3) + 55 )
3 s3 (3)
2]. S92 -|— S921 (3) + Sé?i)
111 Ss1+ 2811 + S111 (3) + 28531) + Sﬁ)l
31 S3 —+ S31 + S4 81(33) (3)
22 So + S91 + S22 (3) ( ) + 522)
211 S92 + 2821 + S211 + 83 + 831 (3) + 2551) + sg‘?l + 5(3)
1111 sy + 3811 + 35111 + S1111 + 82 (3) + 3551) + 35&?1 + Sﬁ)u

+ 25921 + s211

b+ 20
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A.3.5 Table for the coproduct of g/(\k). The following table gives A(gg\k)) =2y czugﬁk) ®

(k)

gy, where we suppress the superscript ‘(k)’ and write simply g, ® g, for g

() @ glk)

® gy, with v and

p being k-bounded partitions.

noA NG
2 1 g1 ® gp + 9o @ g1
11 g1 @ gp + 291 ® g1+ gp ® g1
111 g1 ®gp+3911®o +391 ® g1+ 9p @911 — 201 @1
1111 g1111 ® gp + 49111 @ g1 + 6911 ® g11 + 491 ® g111 + gp ® g1111 — 5911 @ 1
- 591 ®g11 +291 @ ¢
11111 g11111 ® gp + 591111 ® 91 + 109111 ® 911 + 10911 ® g111 + 591 @ g1111
+ 99 ® g11111 — 99111 ® g1 — 16911 ® 911 — 991 ®@ 9111 + 7911 ® 91
+ 791 ® g11 — 291 ® g1
3 1 g1 gy + 99 @ 91
22 G2 gp+ 9191+ 99 Qg2
11 911 ® gp + 91 ® g1+ gp ® g11
21 92109+ 911 ® 91 +292091 +91 @ g1 +291 @ g2+ gp @ g21 — 91 R g1
111 g1m®gy+211Q@n+92091+201Q@011+9g @111 +91¥0392 — 0 @n
22 922 ® gp + 2921 ® g1 + 911 @ g11 + g2 ® g11 + 911 ® g2 + 392 @ g2
+ 291 ®921 + 99 ® 922 —92® 91 — 91 @ g2
211 9211 ® gp + 9111 ® g1 + g21 ® g1 + 911 ® 911 + 292 ® 911 + 91 @ G111
+ 2911 ®g2+92® g2+ 91 ®g21 + gp @ g211 — 2911 ® g1 — 292 @ g1
—2010011 —201® 92 +91 Q0
1111 g1 ® gp + 29111 ® g1 + 3911 ® g11 + 92 ® g11 + 291 ® g111 + gp @ g1111
+ 911 ®3g2+392® g2 — 911 ®g1 — g1 g
4 1 91 ® gp + gp @ g1
2 92 gp+ 91 ¥ g1+ gp ® go
11 911 ® gp+ 91 ® g1+ gp ® g11
3 g3@3gp+92®91+92®@ 91+ gp ® g3
21 9219 9p + 911091 +92® g1 +91® 911 +91® G2+ gp ® g21 — 1 ® g1
111 9111 @ gp + 911 ® g1 + 91 @ 911 + gp ® g111
31 931 ®gp+ 921 ® g1 +293R 91+ 92 ® g1+ 911 ® g2 + 292 ® g2
+ 91 ®921+201 093+ 99 D931 — 92091 — 91 @ g2
22 922 ®gp+ 921 ® g1+ 911 @ g11 + g2 ® g2 + g1 @ g21 + gy @ g22
211 9211 @ gp + 9111 @ g1 + 2921 @ g1 + 93 ® g1 + 911 ® g11 + 292 ® g1
+ 91 ®g111 + 2911 ® g2 + g2 ® g2 + 291 ® g21 + gy @ g211 + 91 @ g3
— 9119 — 9291 —91¥92— g1 ®gn
1111 g1 ® gp + 29111 ® g1 + 921 ® g1 + 2911 ® g11 + g2 @ g11 + 291 @ g111

+ 99 ® 91111 + 911 ® g2+ 91 ® g21 — 911 ® g1 — 91 ® 911
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We have suppressed the superscript ‘(k)’ on F ,Sk) in the following table.

n A Gg\nil) in terms of sy Gg\nfl) in terms of F;nil)
81— S12 + 813 — S14 + S15 — S16 £ - - - Fy — Fi2+ Fis — Fla
L Fps— Flo+- -
11 §12 — 2813 + 3514 — 4815 + 5Sye Fi2 — 2Fy3 + 3Fy« — 4Fs
*68174’1"' +5F16*6F17:|:"'
111 S13 — 3814 + 6515 — 10816 + 15317 F13 - 3F14 + 6F15 — 10F16
— lsys £ - + 15Fy — 21Fys + - - -
1111 S14 — 4815 + 10816 — 20817 + 35818 F14 — 4F15 + ].OF16 — 20F17
—56819:|Z"' +35F18—56F19:|:"'
11111 sy5 — 5816 + 15577 — 35518 + 70579 Fis — b5Fj6 + 15F;7 — 35F]s
— 1265710 £ - - - + 70F1s — 126 Fy10 £ - - -
3 1 S§1 — 812 + 813 — S14 + 815 — S16 £ - - - Fy — Fi2 + Fis — Fla
L Fps—Flo+---
2 S2 — S21 + S211 — S2111 + S21111 Fy — Fo1 — Finn + Foin + Fha
— 8211111:|:"' —F213—2F15 +F214+2F16:l:"'
11 S12 — 2513 + 3514 - 4815 + 5516 — 6517 +- - F12 - 2F13 + 3F14 - 4F15
+ 5Fie —6Fy7 - --
21 —S13 + 2814 — 3815 + 821 — S92 — S912 + S9271 F21 — F22 — F211 + F221
+ S913 + 4816 — 89212 — S914 — 5817 + S915 + 2F213 + F15 — F2211 — 2F214
—+ $9213 — S§916 + 6818 — S§9214 :l: e — F16 + F2213 + 3F215 + 3F17 :l: e
111 §13 — 3814 + 6815 — 10816 + 15817 F13 — 3F14 + 6F15 — 10F16
— sys £ - 1+ 15F) 7 — 21Fys + - - -
22 —814 + 2815 + S92 — 28921 + S913 — 3816 Foo — 2F591 — Fo13 + Fos
=+ 8232822+12 — 28214 —+ 4817 + 35215 =+ 2F2211 —+ F214 — F231
— S931 — 282213 — 48216 — 5518 + 282214 — 3F2213 — 3F215 — F17 +---.
=+ §9312 — 282215 + 55217 =+ 6819 — §9313 +--.
211 —814 + 3515 + §912 — S921 — 28213 F211 — Fggl - 3F213 — 3F15 + F23
- 6516 + S93 + 282212 + 35214 + 10517 + 2F2211 + 6F214 + 7F16 — 2F231
— 48215 - 25231 - 352213 + 55216 - 15818 - 5F2213 - 14F215 - 25F17 +- .-
+ 459214 + S94 + 359312 — DS9215
- 65217 + 21519 — 452313 — 25241 +---
1111 S14 — 4815 + 10816 — 20817 + 35818 F14 — 4F15 + 10F16 — 20F17
—56819:|Z"' +35F18—56F19:|:"'
221 §921 — S913 — S16 — 2823 — S9212 + 38214 FQQ] — F23 — F2211 + 3F231

+ 3817 — DSg15 + 38931 + TSa16 — 6578

+ S9214 — Sg94 — 389312 — 289215 — 98977
+ 10819 + 359313 + S041 — 158110 — S9412
— 389314 + 359216 + 115918 &= - - -
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2111 —2815 + 8918 + 7816 —89212—2891a— 16817 Fhys — Fooq; — 3Fh1a + Fisyg
+ 38915 + So31 + 289213 — 48916 + 30578 + 3F913 + 9F5 s + TFy7n - - -
— 389214 — Sg1 — 289312 + 489215 + DSo17
— 50819 + 389313 + 28947 + 778110 — Sos
— 382412 — 432314 — 582216 — 68218 +..-

11111 S15 — 5315 + 15817 — 35818 =+ 70819 F15 - 5F16 + 15F17 — 35F18 + -
— 1268110 +.---
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