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Abstract

A polytope is integral if all of its vertices are lattice points. The constant term of the Ehrhart polynomial
of an integral polytope is known to be 1. In previous work, we showed that the coefficients of the Ehrhart
polynomial of a lattice-face polytope are volumes of projections of the polytope. We generalize both results
by introducing a notion of k-integral polytopes, where 0-integral is equivalent to integral. We show that
the Ehrhart polynomial of a k-integral polytope P has the properties that the coefficients in degrees less
than or equal to k are determined by a projection of P , and the coefficients in higher degrees are determined
by slices of P . A key step of the proof is that under certain generality conditions, the volume of a polytope
is equal to the sum of volumes of slices of the polytope.
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1. Introduction

Let V be a finite-dimensional real vector space. A subset Λ ⊂ V is called a lattice of V if Λ

is a discrete additive subgroup of V and spans V . Let Λ̄ be the rational vector space generated
by Λ. Any point in Λ is called a lattice point, and any point in Λ̄ is called a rational point.
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A subset Γ ⊂ Λ is a sublattice of Λ if Γ is a subgroup of Λ. We say a sublattice Γ is of rank
r if aff(Γ ) has dimension r .

We assume familiarity with basic definitions of polytopes as presented in [14]. An integral
polytope is a convex polytope whose vertices are all lattice points. A rational polytope is a
convex polytope whose vertices are all rational points.

For any sublattice Γ ⊂ Λ, let U be the subspace of V spanned by Γ . For any polytope P

lying in an affine space that is a translation of U , we define the volume of P normalized to the
lattice Γ to be the integral

VolΓ (P ) :=
∫
P

1dΓ, (1.1)

where dΓ is the canonical Lebesgue measure defined by the lattice Γ .
For any point y ∈ V and any set S ⊂ V , we denote by S + y the set {s + y | s ∈ S} obtained

from translating S by y. For any affine space W ⊂ V , we denote by lin(W) the translation of W

to the origin. It is easy to see that W = lin(W) + y, for some (equivalently all) y in W .
If P is a rational polytope in V , we denote by lin(P ) the translation of aff(P ) to the origin and

denote by Λlin(P ) the lattice lin(P ) ∩ Λ. One checks Λlin(P ) spans lin(P ). Thus, we can define
VolΛlin(P )

(P ), which we often refer as the normalized volume of P .
Throughout the paper, we will assume V has dimension D (so Λ is of rank D) and fix a basis

e = (e1, e2, . . . , eD) of the lattice Λ. Then we can represent each point in V by its coordinates
with respect to e, namely, for any point

∑D
i=1 ciei ∈ V , we say its coordinates (with respect to e)

are (c1, . . . , cD). This gives us an isomorphism between V and RD , and Λ and ZD . For conve-
nience, we denote by Λk := 〈e1, . . . , ek〉 the lattice generated by e1, . . . , ek , Λk := 〈ek+1, . . . , eD〉
the lattice generated by ek+1, . . . , eD , Vk the k-dimensional subspace of V spanned by e1, . . . , ek ,
and V k the (d − k)-dimensional subspace of V spanned by ek+1, . . . , eD . Let π(k) : V → VD−k

be the projection that maps
∑D

i=1 ciei to
∑D−k

i=1 ciei , or equivalently the map that forgets the last
k coordinates.

For any polytope P in V , we denote by

i(P ) := #(P ∩ Λ)

the number of lattice points inside P . Furthermore, for positive integer m ∈ N, we denote by
i(P,m) the number of lattice points in mP , where mP = {mx | x ∈ P } is the mth dilation
of P . Eugène Ehrhart [7] discovered that for any d-dimensional integral polytope, i(P,m) is
a polynomial of degree d in m. Thus, we call i(P,m) the Ehrhart polynomial of P . Ehrhart’s
theory was developed in the 1960s, and there has been much work on the coefficients of Ehrhart
polynomials since then. It is well known that for any integral polytope P , the leading, second
and last coefficients of i(P,m) are the normalized volume of P , one half of the normalized
volume of the boundary of P and 1, respectively. Despite the work in [12,13,5] (which will be
discussed in Section 9), we still do not have a very good understanding of when the coefficients
of Ehrhart polynomials have simple geometric descriptions. In [8], the author showed that for
any d-dimensional integral cyclic polytope P , we have that

i(P,m) = VolΛ(mP) + i
(
π(P ),m

) =
D∑

VolΛj

(
π(D−j)(P )

)
mj , (1.2)
j=0
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where D = d . In [9,10], the author generalized the family of integral cyclic polytope to a bigger
family of integral polytopes, lattice-face polytopes, and showed that their Ehrhart polynomials
also satisfy (1.2).

The motivation of this paper is to prove a conjecture given in [9, Conjecture 8.5], which can
be viewed as generalizations of both the theorem for lattice-face polytopes shown in [9,10] and
the fact that the constant term of the Ehrhart polynomial of an integral polytope is 1. In fact, we
will prove a stronger version of this conjecture. We need the following definitions before we can
state the result.

Definition 1.1. Any affine space U in V is integral with respect to e if

π(D−dim(U))(U ∩ Λ) = Λdim(U).

A polytope is affinely integral with respect to e if its affine hull is integral with respect
to e.

Suppose 0 � k � d � D. A d-dimensional polytope in V is k-integral with respect to
e if any face of P of dimension less than or equal to k is affinely integral with respect
to e.

In particular, when k = d , we call P a fully integral polytope with respect to e.

Note that the definition of 0-integral polytopes is the same as that of integral polytopes. Thus,
any k-integral polytope is an integral polytope. Since we fix the lattice basis e in the paper, we
often omit “with respect to e” unless it is not clear from the context.

Definition 1.2. Let S be a set in V and 0 � k � d . For any y ∈ π(D−k)(V ), we define πD−k(y, S)

to be the intersection of S with the inverse image of y under π(D−k), and we call it the slice of S

over y.

Our first main theorem is the following.

Theorem 1.3. Suppose 0 � k � d � D and P ⊂ V is a k-integral d-dimensional polytope. Then
the Ehrhart polynomial of P is given by

i(P,m) = mk

( ∑
y∈π(D−k)(P )∩Λ

i
(
πD−k(y,P ),m

) − 1

)
+ i

(
π(D−k)(P ),m

)

= mk

( ∑
y∈π(D−k)(P )∩Λ

i
(
πD−k(y,P ),m

) − 1

)
+

k∑
j=0

VolΛj

(
π(D−j)(P )

)
mj .

We will see in Corollary 7.10 that each πD−k(y,P ) appearing in the above formula is an
integral polytope, so the constant term of i(πD−k(y,P ),m) is 1. Therefore, Theorem 1.3 says
that the coefficient of mj in the Ehrhart polynomial of a k-integral d-dimensional polytope P

is VolΛj
(π(D−j)(P )) for 0 � j � k, and is the coefficient of mj−k in the sum of the Ehrhart

polynomials of the slices of P over lattice points in π(D−k)(P ) for k + 1 � j � d .
One consequence of Theorem 1.3 is that the coefficients of i(P,m) are all positive for any

d-dimensional polytope that is (d −2)-integral (with respect to some lattice basis). This provides
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one possible way to prove positivity conjectures on coefficients of Ehrhart polynomials of special
families of polytopes. It was recently conjectured that the coefficients of the Ehrhart polynomials
of both Birkhoff polytopes and matroid polytopes are positive. One could approach these con-
jectures by proving these polytopes are (d − 2)-integral, or by showing there exist subdivisions
of these polytopes into (d − 2)-integral polytopes (not necessarily with respect to a fixed lattice
basis) satisfying certain conditions.

Another possible application of Theorem 1.3 is that it provides a different approach to calcu-
lating coefficients of Ehrhart polynomials. Most known algorithms for calculating the coefficients
of Ehrhart polynomials are more efficient for obtaining the higher degree coefficients. Since we
know that the constant term is always 1, it is the slowest to get the linear term coefficient. How-
ever, if a polytope is 1-integral, the coefficient of the linear term in its Ehrhart polynomial is just
the volume of an interval, which is very easy to calculate. Although not all integral polytopes are
1-integral, we might be able to find an algorithm based on Theorem 1.3 or the idea of its proof
that can obtain lower degree coefficients efficiently.

Recall that the leading coefficient of the Ehrhart polynomial of a polytope is the normalized
volume of the polytope. If we only look at the leading coefficients in Theorem 1.3, we get that
the normalized volume of P is equal to the sum of the normalized volume of slices of P over
lattice points in π(D−k)(P ), provided that P is k-integral. In fact, we can relax the condition of
k-integral by introducing the following definition.

Definition 1.4. Any affine space U in V is in general position with respect to e if

π(D−dim(U))(U) = Vdim(U).

A polytope is in affinely general position with respect to e if its affine hull is in general position
with respect to e.

Suppose 0 � k � d � D. A d-dimensional polytope in V is in k-general position with respect
to e if any face of P of dimension less than or equal to k is in affinely general position with
respect to e.

In particular, when k = d , we say P is in fully general position with respect to e.

Again, we often omit “with respect to e” if there is no possibility of confusion.
Our result on volumes and slices is the following.

Theorem 1.5. Suppose 0 < k < d � D and P ⊂ V is a d-dimensional (k − 1)-integral polytope
in k-general position. Let ΛP := aff(P ) ∩ Λ. Then the normalized volume of P is given by

VolΛlin(P )
(P ) =

∑
y∈π(D−k)(ΛP )

VolΛk∩Λlin(P )

(
πD−k(y,P )

)
. (1.3)

We remark that Theorem 1.5 is trivially true when k = 0 because the right-hand side of (1.3)
becomes Vollin(P )(P ). However, the theorem does not hold for k = d . The most interesting case
of Theorem 1.5 is when k = 1. If k = 1, the condition becomes that P is an integral polytope
and is in 1-general position. However, for any integral polytope, it is always in 1-general position
with respect to some basis. Hence, formula (1.3) with k = 1 can be applied to any integral poly-
tope. Moreover, any rational polytope can be dilated to an integral polytope, so one can obtain a
formula modified from (1.3) with k = 1 to calculate volumes of rational polytopes.
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Fig. 1. Slices of a polytope.

Although Theorem 1.5 can be viewed as a corollary to Theorem 1.3, it actually serves as a
key step in proving Theorem 1.3. In fact, most of the paper will be dedicated to the proof of
Theorem 1.5.

The plan of this paper is as follows: In Section 2, we show examples of our main theorems.
In Section 3, we introduce basic definitions and lemmas and reduce Theorem 1.5 to Proposi-
tion 3.16.

In Sections 4, 5 and 6, we prove a special case of Proposition 3.16 when k = 1. We first
reduce the problem to the full-dimensional case, and then give two proofs: one uses a result
of Barvinok [2] suggested by the referee, and the other (which we only sketch) carries out the
calculation directly using techniques developed in [9]. In Section 7, we discuss the properties of
slices and projections of a polytope. Using these, we complete the proof of Proposition 3.16 and
thus the proof of Theorem 1.5 in Section 8. Finally, in Section 9, we prove Theorem 1.3 by using
Theorem 1.5 and a local formula relating the number of lattice points to volumes of faces for
integral polytopes [11–13,5].

2. Examples of the theorems

In this section, we give examples of the main theorems and also show that the conditions in
Theorem 1.5 are in fact necessary. Throughout the section, we assume that D = d , Λ = Zd with
the standard basis, and V = Rd .

Example 2.1 (Example of Theorem 1.3). Consider the 3-dimensional polytope

P = conv
{
(0,0,0), (4,0,0), (3,6,0), (2,2,2)

} ⊂ R3.

One checks that P is 1-integral.
Clearly π(2)(P ) = [0,4], so the lattice points in π(2)(P ) are 0,1,2,3 and 4. In the pic-

ture on the left side of Fig. 1, the three shaded triangles are the slices of P over the lattice
points 1,2 and 3. The other two slices of P over lattice points are the single points π2(0,P ) =
(0,0,0) and π2(4,P ) = (4,0,0). We calculate the Ehrhart polynomial of each slice and get
i(π2(0,P ),m) = 1, i(π2(1,P ),m) = m2 + 2m + 1, i(π2(2,P ),m) = 4m2 + 4m + 1,
i(π2(3,P ),m) = 3m2 + 4m + 1 and i(π2(4,P ),m) = 1. Their sum is

8m2 + 10m + 5.

We also have that

VolΛ
(
π(2)(P )

) = 4, and VolΛ
(
π(3)(P )

) = 1.
1 0
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Therefore, applying Theorem 1.3 with k = 1, we conclude that 8,10,4 and 1 are the coeffi-
cients for m3,m2,m1 and m0 in i(P,m). Hence, the Ehrhart polynomial of P is given by

i(P,m) = 8m3 + 10m2 + 4m + 1.

The rest of the examples in this section will be related to Theorem 1.5. Since all the polytopes
we will consider are full-dimensional, we have that Λlin(P ) = ΛP = Λ, π(D−k)(ΛP ) = Λk and
Λk ∩ Λlin(P ) = Λk . Hence, (1.3) can be simplified to

VolΛ(P ) =
∑

y∈Λd−k

VolΛk

(
πd−k(y,P )

)
. (2.1)

Example 2.2 (Example of Theorem 1.5). Let P be the same polytope as in Example 2.1. Although
P is not 2-integral, it is 1-integral and in 2-general position. We will apply Theorem 1.5 on P

for k = 2. The volume of P (normalized to Λ) is 8. We will show the right-hand side of (1.3), or
equivalently the right-hand side of (2.1), gives 8 as well.

We have that π(1)(P ) = conv{(0,0), (4,0), (3,6)}. There are 9 lattice points in the interior of
π(1)(P ) and 8 lattice points on the boundary. In the picture on the right side of Fig. 1, the 9 line
segments are the slices of P over the lattice points in the interior of π(1)(P ). For example, the
left-most line segment is the slice of P over (1,1):

π1
(
(1,1),P

) = conv
{
(1,1,0), (1,1,1)

}
.

The slices over the boundary lattice points are all single points, thus have 0 Λ2-volume.
Hence, we only calculate the Λ2-volume of the slices over interior lattice points:

VolΛ2

(
π1

(
(1,1),P

)) = 1, VolΛ2

(
π1

(
(2,1),P

)) = 1, VolΛ2

(
π1

(
(2,2),P

)) = 2,

VolΛ2

(
π1

(
(2,3),P

)) = 1, VolΛ2

(
π1

(
(3,1),P

)) = 1, VolΛ2

(
π1

(
(3,2),P

)) = 4

5
,

VolΛ2

(
π1

(
(3,3),P

)) = 3

5
, VolΛ2

(
π1

(
(3,4),P

)) = 2

5
, VolΛ2

(
π1

(
(3,5),P

)) = 1

5
.

The sum is 8, as desired.

The hypothesis in Theorem 1.5 is that P is (k − 1)-integral and in k-general position. One
might wonder whether it is possible to relax the condition and still get the same result (1.3). There
are two natural ways to relax the condition: (1) only requiring P to be (k − 1)-integral; (2) for
k � 2, requiring P to be (k − 2)-integral and in k-general position. In the next two examples, we
show that (1.3) or equivalently (2.1) does not hold if we relax the hypothesis in Theorem 1.5 to
either (1) or (2).

Example 2.3. Consider P to be the unit square in R2. Then P is integral, but not in 1-general
position, because it has edges e1 = conv{(0,0), (0,1)} and e2 = conv{(1,0), (1,1)} that are not
in affinely general position.

We have that VolΛ(P ) = 1 but
∑

y∈Λ1
VolΛ1(π1(y,P )) = VolΛ1(e1) + VolΛ1(e2) = 2.

Therefore, Theorem 1.5 does not hold for (k − 1)-integral polytopes that are not in k-general
position.
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Example 2.4. Consider the polytope

P = conv
{
(0,0,0), (4,0,0), (3,3,0), (2,1,5)

}
.

We check that P is an integral polytope that is in 2-general position. Since the edges
conv{(0,0,0), (2,1,5)} and conv{(4,0,0), (2,15)} are not affinely integral, P is not 1-
integral.

We calculate VolΛ(P ) = 10, but
∑

y∈Λ2
VolΛ2(π1(y,P )) = 8.

We thus conclude that Theorem 1.5 does not hold for (k − 2)-integral polytopes that are in
k-general position.

3. Preliminaries

In this section, we investigate the basic properties of the conditions and formulas involved in
our main theorems. The lemmas and definitions introduced here will be used as the foundation
of this paper.

First, we see that any k-integral polytope P is integral. Hence, aff(P ) contains a lattice point,
say β . If we let Q := P − β , it is easy to check that to prove Theorem 1.3 and Theorem 1.5 for
P is equivalent to proving them for the polytope Q. Note that Q has the property that aff(Q)

contains the origin, thus is a subspace of V . Therefore, we give the following definition:

Definition 3.1. For any polytope P ⊂ V , we say P is central if aff(P ) contains the origin, or
equivalently, aff(P ) = lin(P ) is a subspace of V .

Based on above discussion, we conclude:

Lemma 3.2. It is sufficient to prove Theorem 1.3 and Theorem 1.5 with the assumption that P is
central.

Lemma 3.2 is helpful for proving Theorem 1.5 in particular. If P is central, then ΛP = Λlin(P ).
So formula (1.3) can be simplified to

VolΛP
(P ) =

∑
y∈π(D−k)(ΛP )

VolΛk∩ΛP

(
πD−k(y,P )

)
. (3.1)

3.1. On lattices

We know that Λk is a lattice of Vk and Λk is a lattice of V k . In this subsection, we develop a
better understanding of ΛP and Λk ∩ ΛP .

We say a subspace U ⊂ V is rational if it is spanned by a set of vectors with rational coordi-
nates. It is easy to check that a subspace is rational if and only if it is defined by a set of linear
equations with rational coefficients.

We state the following three fundamental lemmas about rational subspaces and lattices with-
out proofs.

Lemma 3.3. A subspace U of V is rational if and only if there exists a sublattice Γ of Λ such
that Γ is a lattice of U , or equivalently ΛU := U ∩ Λ is a lattice of U .
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Lemma 3.4. Suppose Γi is a sublattice of Λ, and Ui is the subspace of V spanned by Γi , for
i = 1,2. Then Γ1 ∩ Γ2 is a lattice of U1 ∩ U2.

Lemma 3.5. Suppose U is a rational subspace of V and ΛU = U ∩Λ. (Note that ΛU is a lattice
of U .) Then any basis of ΛU can be extended to a basis of Λ.

The next lemma discusses the lattice of the projection of a subspace and the lattice of the
kernel of the projection.

Lemma 3.6. Suppose Γ is a sublattice of Λ and U is the subspace of V spanned by Γ . Then
π(D−k)(Γ ) is a lattice of π(D−k)(U) and Λk ∩ Γ is a lattice of V k ∩ U .

Let r = dim(π(D−k)(U)) and t = dim(V k ∩ U). Then r + t = dim(U).
Furthermore, suppose (f1, . . . , ft ) is a basis of the lattice Λk ∩ Γ and (g1, . . . ,gr ) is a set of

points in Γ . Then (g1, . . . ,gr , f1, . . . , ft ) is a basis of Γ if and only if (π(D−k)(g1),π(D−k)(g2),

. . . , π(D−k)(gr )) is a basis of the lattice π(D−k)(Γ ).

Proof. Space V k ∩ U is the kernel of the projection π(D−k) : U → π(D−k)(U). Thus, we can
decompose the lattice Γ as π(D−k)(Γ ) ⊕ (Λk ∩ Γ ). �
Lemma 3.7. Suppose P is a d-dimensional central rational polytope in V . Then

(i) ΛP = aff(P ) ∩ Λ is a lattice of aff(P ) = lin(P ).
(ii) π(D−k)(ΛP ) is a lattice of π(D−k)(aff(P )).

(iii) Λk ∩ ΛP is a lattice of V k ∩ aff(P ).
(iv) dim(π(D−k)(aff(P ))) + dim(V k ∩ aff(P )) = d .

Proof. Since P is central and rational, we have that aff(P ) = lin(P ) is rational. Thus, (i) follows
from Lemma 3.3, and (ii), (iii) and (iv) follow from Lemma 3.6. �
3.2. On integrality and general position

We say an �-dimensional subspace U of V is the row space of an � × D matrix if the rows of
the matrix are the coordinates of a basis of U with respect to e.

Recall a unimodular matrix is a square integer matrix with determinant +1 or −1.
The following two lemmas can be checked directly from the definition.

Lemma 3.8. Let U be an �-dimensional subspace of V . Then the following are equivalent:

(i) U is integral.
(ii) U is the row space of a matrix of the form (I J ), where I is the � × � identity matrix and J

is an � × (D − �) integer matrix.
(iii) U is the row space of a matrix of the form (K J ), where K is an � × � unimodular matrix

and J is an � × (D − �) matrix of integer entries.

An affine space W is integral if and only if W contains a lattice point and lin(W) is integral
if and only if lin(W) is integral and W = lin(W) + z for some (equivalently all) z ∈ W ∩ Λ.
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Lemma 3.9. Let U be an �-dimensional subspace of V . Then the following are equivalent:

(i) U is in general position.
(ii) U is the row space of a matrix of the form (I J ), where I is the � × � identity matrix and J

is an arbitrary � × (D − �) matrix.
(iii) U is the row space of a matrix of the form (K J ), where K is an invertible matrix and J is

an arbitrary � × (D − �) matrix.
(iv) If U is the row space of a matrix of the form (K J ), where J is any arbitrary � × (D − �)

matrix, then K is an invertible matrix.

An affine space W is in general position if and only if lin(W) is in general position.

Corollary 3.10. Suppose 0 � � � m � D and W is an �-dimensional affine space of V .

(i) If W is integral, then lin(W) is rational and W is in general position.
(ii) If W is integral, then the projection π(D−m)(W) is �-dimensional and integral. In particular,

π(D−�) induces a bijection between W ∩ Λ and Λ�.
(iii) If W is in general position, then the projection π(D−m)(W) is �-dimensional and in general

position. In particular, π(D−�) induces a bijection between W and V�.
(iv) If W is in general position, for any � + 1 affinely independent points x1, . . . ,x�+1 ∈ W , we

have that the matrix

⎛
⎜⎜⎝

1 π(D−�)(x1)

1 π(D−�)(x2)
...

...

1 π(D−�)(x�+1)

⎞
⎟⎟⎠

is invertible.

Proof. (i), (ii) and (iii) directly follow from Lemma 3.8 and Lemma 3.9. One checks that

det

⎛
⎜⎜⎝

1 π(D−�)(x1)

1 π(D−�)(x2)
...

...

1 π(D−�)(x�+1)

⎞
⎟⎟⎠ = (−1)� det

⎛
⎜⎜⎝

π(D−�)(x1) − π(D−�)(x�+1)

π(D−�)(x2) − π(D−�)(x�+1)
...

π(D−�)(x�) − π(D−�)(x�+1)

⎞
⎟⎟⎠ ,

and lin(W) is the row space of the matrix (xi − x�+1)1�i��, whose first � columns are exactly
the latter matrix in the above formula. Then (iv) follows from Lemma 3.9(iv). �

Given (i) of Corollary 3.10, we can apply all the results we obtain for affine spaces (or poly-
topes) in general position to affine spaces (or polytopes) that are integral. This is an important
fact which we use implicitly throughout the paper.

Lemma 3.11. Suppose P ⊂ V is a d-dimensional rational polytope.

(i) If one of the k-faces of P is affinely integral, then π(D−k)(ΛP ) = Λk .
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(ii) If P is central and one of the k-faces of P is in affinely general position, then π(D−k)(ΛP )

is of rank k and Λk ∩ ΛP is of rank d − k.

Proof. (i) follows immediately from Corollary 3.10(ii).
(ii) follows from Corollary 3.10(iii) and Lemma 3.7. �

Lemma 3.12. Suppose P is a k-integral polytope. Then mP is a k-integral polytope, for any
positive integer m.

Proof. This can be checked using Lemma 3.8. �
3.3. Algebra of polyhedra

Both the number of lattice points and the volume of a polytope are valuations; that is, they
satisfy the inclusion–exclusion property. Since the theory of valuations is based on the theory of
the algebra of polyhedra, we will recall the basic definitions in the area. Please refer to [4] for
details.

Definition 3.13. Let A ⊂ V be a set. The indicator function, or just indicator, of A is the function
[A] : V → R defined by

[A](x) =
{

1 if x ∈ A,

0 if x /∈ A.

The algebra of polyhedra P (V ) is the vector space over Q spanned by the indicator functions
[P ] of all polyhedra P ⊂ V . The algebra of polytopes Pb(V ) is the vector space over Q spanned
by the indicator functions [P ] of all polytopes P ⊂ V .

Definition 3.14. A linear transformation Φ : P (V ) → V ′, or Φ : Pb(V ) → V ′, where V ′ is a
vector space, is called a valuation.

It is clear that one can extend the number of lattice points of a polytope to a valuation
of Pb(V ). However, we have to be more careful when we extend the volume function to a valu-
ation, because if we use different measures for different polytopes, the linearity will fail. Thus,
we fix a lattice in the following definition. For convenience, we also fix a notation related to the
right side of (3.1).

Definition 3.15. Let Γ be a sublattice of Λ and U the subspace of V spanned by Γ . For any
polytope P ⊂ U , we define the kth S-volume of P (with respect to Γ ) to be

SVolkΓ (P ) =
∑

y∈π(D−k)(Γ )

VolΛk∩Γ

(
πD−k(y,P )

)
.

Recall VolΓ (P ) is defined by (1.1). One can extend both VolΓ and SVolkΓ to valuations of Pb(U).
For convenience, for any [S] ∈ Pb(U), we omit the bracket and write VolΓ (S) and SVolkΓ (S)

instead of VolΓ ([S]) and SVolk ([S]).
Γ
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Using the definition of SVolkΓ and Lemma 3.2, we can rephrase Theorem 1.5 as the following
proposition.

Proposition 3.16. Suppose 0 < k < d � D and P ⊂ V is a d-dimensional central (k − 1)-
integral polytope in k-general position. Let ΛP := aff(P ) ∩ Λ. Then the volume of P is given
by

VolΛP
(P ) = SVolkΛP

(P ). (3.2)

In the next three sections, we will prove a special case of Proposition 3.16: when k = 1.
The material in these sections is not used in the subsequent sections, so the reader who is willing
to take this case of Proposition 3.16 on faith may skip to Section 7.

All of the results in Sections 4 and 5 and some of the results in Section 6 are stated for
general k, since the statements and proofs are no harder than the k = 1 case.

4. Affine transformations that preserve certain properties

In this section, we will discuss conditions for affine transformations that preserve certain
properties of polytopes: integrality, general position, volumes and S-volumes. This serves as a
preparation for the reduction we will discuss in the next section.

Suppose Γi is a sublattice of Λ which has a basis ei = (e1
i , . . . , eDi

i ), and Ui the subspace of V

spanned by Γi , for i = 1,2. For any affine transformation φ : U1 → U2, we can associate a vector
α

φ
e1,e2 ∈ RD2 and a D1 × D2 matrix M

φ
e1,e2 to φ such that φ sends a point in U1 with coordinates

x with respect to the basis e1 to the point in U2 with coordinates α
φ
e1,e2 + xM

φ
e1,e2 with respect to

the basis e2. One verifies that

M
φ
e1,e2 = (mi,j ), if φ

(
ei

1

) − φ(0) =
D2∑
j=1

mi,j ej

2,

and α
φ
e1,e2 are the coordinates of φ(0) with respect to e2.

If the map is from V to V , unless otherwise noted we will assume that the lattice is Λ with the
fixed basis e = (e1, . . . , eD) and omit the subscript “e1, e2”. Similarly, we can associate a matrix
to any linear transformation.

4.1. Conditions for preserving integrality and general position

We say an affine map φ preserves integrality of an integral affine space W if φ(W) is integral.
Similarly, we say an affine map φ preserves generality of an affine space W in general position,
if φ(W) is in general position.

Lemma 4.1. Suppose φ : V → V is an affine map with associated matrix

M =
(

A�×� C�×(D−�)

O(D−�)×� B(D−�)×(D−�)

)

and vector α, where O is the zero matrix and B is invertible.
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(i) Let W be an �-dimensional integral affine space. If A is unimodular and φ sends any lattice
point in W to a lattice point, then φ preserves integrality of W .

(ii) φ preserves integrality of any �-dimensional integral affine spaces of V if A is unimodular,
and both B and C are integer matrices, and α is an integer vector.

(iii) φ preserves generality of any �-dimensional affine spaces of V in general position if A is
invertible.

Proof. (ii) follows from (i), and (iii) can be check directly using Lemma 3.9(iii). Now we
prove (i). Let U = lin(W), then by Lemma 3.8, U is integral and W = U +z, for some z ∈ W ∩Λ.
By Lemma 3.8(ii), U is the row space of an integer matrix of the form (I J ), where I is
the � × � identity matrix. One checks that φ(W) = U ′ + φ(z), where U ′ is the row space of
(I J )M = (A C + JB) and φ(z) ∈ φ(W) ∩ Λ. Thus, it is enough to show that U ′ is integral.
Since A is unimodular, by Lemma 3.8(iii), we only need to verify that C + JB is an integer
matrix, or equivalently each row in (I J )M is an integer vector. Thus, we need to show that
for any row vector v in (I J ), vM is an integer vector. However, v is an integer vector and W

contains lattice points, so v can be written as the difference of two integer vectors u1 and u2,
each of which is the coordinates of a lattice point in W . Because φ sends lattice points in W to
lattice points, we have that α + uiM is an integer vector, for each i. Therefore, vM is an integer
vector as well. �

The following corollary follows immediately.

Corollary 4.2. Suppose φ : V → V is an invertible affine map with an associated matrix

M =
(

Ak×k Ck×(D−k)

O(D−k)×k B(D−k)×(D−k)

)

and vector α, where O is the zero matrix. (We must have that A and B are invertible.)

(i) Suppose W is an affine space of V satisfying that φ sends any lattice point in W to a lattice
point. If A is an upper triangular and unimodular matrix, then φ preserves integrality of
any integral affine space of W of dimension no more than k.

(ii) If A is an upper triangular and unimodular matrix, both B and C are integer matrices,
and α is an integer vector, then φ preserves integrality of any integral affine space of V of
dimension no more than k.

(iii) If A is upper triangular, then φ preserves generality of any affine space of V of dimension
no more than k that is in general position.

4.2. Conditions for preserving volumes and S-volumes

We will discuss situations when VolΓ (P ) and SVolkΓ (P ) are invariant under affine transfor-
mation.

Lemma 4.3. Let s be a positive integer. For i = 1,2, let Γi be a sublattice of Λ of rank s and
Ui the subspace of V spanned by Γi . Suppose ei = (e1

i , . . . , es
i ) is a basis of Γi , for i = 1,2. Let

φ : U1 → U2 be an invertible affine map with the associated matrix Me ,e .
1 2



F. Liu / Advances in Mathematics 226 (2011) 3467–3494 3479
(i) If det(Me1,e2) = 1, then VolΓ1 = VolΓ2 ◦φ.
(ii) Suppose the following four conditions are satisfied:

(1) π(D−k)(x1) = π(D−k)(x2) if and only if π(D−k)(φ(x1)) = π(D−k)(φ(x2)).
(2) π(D−k)(x) ∈ π(D−k)(Γ1) if and only if π(D−k)(φ(x)) ∈ π(D−k)(Γ2).
(3) For some number r and for i = 1,2, we have that (er+1

i , er+2
i , . . . , es

i ) is a basis of the
lattice Λk ∩ Γi . (Thus, it spans V k ∩ Ui by Lemma 3.4.)

(4) The determinant of the lower right (s − r) × (s − r) submatrix of Me1,e2 is equal to 1.
Then SVolkΓ1

= SVolkΓ2
◦φ.

Proof. (i) follows directly from the definition of volume and linear algebra.
By (1), one sees that φ induces a bijection between π(D−k)(U1) and π(D−k)(U2). We denote

this map by φ′. We then have that for any set S ∈ U1 and y ∈ π(D−k)(U1),

πD−k

(
φ′(y),φ(S)

) = φ
(
πD−k(y, S)

)
.

Note that shifting a set of points by a constant vector does not change its volume. Thus,

VolΛk∩Γ2

(
φ
(
πD−k(y, S)

)) = VolΛk∩Γ2

({
x − φ′(y)

∣∣ x ∈ φ
(
πD−k(y, S)

)})
, (4.1)

and

VolΛk∩Γ1

(
πD−k(y, S)

) = VolΛk∩Γ1

({
x − y

∣∣ x ∈ πD−k(y, S)
})

. (4.2)

We will show the right sides of the above two equations are equal. We define an affine map
φy : V k ∩U1 → V k ∩U2 by mapping z to φ(y + z)−φ′(y). Using the bases (er+1

1 , er+2
1 , . . . , es

1)

and (er+1
2 , er+2

2 , . . . , es
2), one can check the matrix associated to φy is exactly the lower right

(s − r) × (s − r) submatrix of Me1,e2 . Hence, by (4), we have that

VolΛk∩Γ1
= VolΛk∩Γ2

◦φy.

We verify that

φy
({

x − y
∣∣ x ∈ πD−k(y, S)

}) = {
x − φ′(y)

∣∣ x ∈ φ
(
πD−k(y, S)

)}
.

Therefore, the right sides of Eqs. (4.1) and (4.2) are equal. So the left sides are equal, and we
conclude that for any set S ∈ U1 and y ∈ π(D−k)(U1),

VolΛk∩Γ2

(
πD−k

(
φ′(y),φ(S)

)) = VolΛk∩Γ2

(
φ
(
πD−k(y, S)

))
= VolΛk∩Γ1

(
πD−k(y, S)

)
.

Furthermore, by (2), φ′ also gives a bijection between π(D−k)(Γ1) and π(D−k)(Γ2).
Thus, we have SVolkΓ1

= SVolkΓ2
◦φ. �
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Corollary 4.4. Let s be a positive integer. For i = 1,2, let Γi be a sublattice of Λ of rank s and
Ui the subspace of V spanned by Γi . Suppose ei = (e1

i , . . . , es
i ) is a basis of Γi , and for some

number r we have that (er+1
i , er+2

i , . . . , es
i ) is a basis of the lattice Λk ∩Γi . Suppose φ : U1 → U2

is an affine map with an associated matrix

M
φ
e1,e2 =

(
A C

O B

)

and vector αe1,e2 = (α1, α2) satisfying

(i) A is an r × r unimodular matrix.
(ii) α1 is an r-dimensional vector of integer entries.

(iii) B is an (s − r) × (s − r) matrix with det(B) = 1.
(iv) O is the zero matrix.

Then VolΓ1 = VolΓ2 ◦φ and SVolkΓ1
= SVolkΓ2

◦φ.

Proof. It is clear that det(Me1,e2) = 1. Thus, VolΓ1 = VolΓ2 ◦φ. To show that SVolkΓ1
=

SVolkΓ2
◦φ, we need to verify (1)–(4) under (ii) of Lemma 4.3 holds. (3) and (4) are given in

the conditions.
By Lemma 3.6, fi = (π(D−k)(e1

i ), . . . , π
(D−k)(er

i )) is a basis of π(D−k)(Γi), for i = 1,2. One
checks that φ deduces an affine map from π(D−k)(U1) to π(D−k)(U2) by mapping π(D − k)(x)

to π(D − k)(φ(x)). The matrix and vector associated to this map with respect to the bases f1 and
f2 are A and α1, respectively. Therefore, (1) and (2) of Lemma 4.3 are satisfied. �
5. Reduction to the full-dimensional case

In this section, we will prove the following proposition which reduces Proposition 3.16 to the
case of full-dimensional polytopes.

Proposition 5.1. Suppose 0 < k < d � D and P ⊂ V is a d-dimensional central (k − 1)-integral
polytope in k-general position. There exists an invertible affine map φ : V → V such that Q :=
φ(P ) is a full-dimensional polytope in Vd that is still (k − 1)-integral and in k-general position.
Also, proving Proposition 3.16 for P is equivalent to proving it for Q.

Throughout this section, we will assume that 0 < k < d � D and P ⊂ V is a d-dimensional
central (k − 1)-integral polytope in k-general position. We also fix

UP := aff(P ),

which is a subspace of V because P is central.
We first prove two preliminary lemmas.

Lemma 5.2. There exist integers h1, . . . , hk such that

(
e1 + h1ek, . . . , ek−1 + hk−1ek, hkek

)
is a basis of π(D−k)(ΛP ).
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Proof. By Lemma 3.11, we have that π(D−(k−1))(ΛP ) = Λk−1, and π(D−k)(ΛP ) is of rank k.
An obvious basis for π(D−(k−1))(ΛP ) is (e1, e2, . . . , ek−1). Note that π(D−(k−1))(ΛP ) can be
obtained by dropping the last coordinate, i.e., the coordinate corresponding to ek , of the lattice
π(D−k)(ΛP ). Hence, our lemma follows from Lemma 3.6. �
Lemma 5.3. There exists a basis f = (f1, f2, . . . , fD) of V satisfying

(i) π(D−k)(fi ) = ei + hiek , for i = 1, . . . , k − 1, and π(D−k)(fk) = hkek , for some integers
h1, . . . , hk .

(ii) (fk+1, . . . , fd) is a basis of the lattice Λk ∩ ΛP .
(iii) (f1, . . . , fk, fk+1, . . . , fd) is a basis of the lattice ΛP .
(iv) (fk+1, . . . , fd , fd+1, . . . , fD) is a basis of the lattice Λk .

Proof. By Lemma 5.2, π(D−k)(ΛP ) has a basis

(
e1 + h1ek, . . . , ek−1 + hk−1ek−1, hkek

)
,

for some integers h1, . . . , hk . Thus, using Lemma 3.6 again, we can choose f1, . . . , fk ,
fk+1, . . . , fd satisfying (i), (ii) and (iii).

Furthermore, by Lemma 3.5, (fk+1, . . . , fd) can be extended to a basis, say (fk+1, . . . , fd , fd+1,

. . . , fD) of Λk . �
Proof of Proposition 5.1. Let f = (f1, . . . , fD) be a basis as described in Lemma 5.3, and define
φ : V → V to be the linear transformation that maps fi to ei for each i. Both f and e are bases
of V . Thus, φ is invertible. Let Q = φ(P ). Clearly, Q is a d-dimensional polytope in Vd .

One checks that the associated matrix to φ is Mφ = M
φ
e,e = F−1, where F is the D × D

matrix whose ith row is the coordinates of fi with respect to e. By Lemma 5.3, we know that F

is a matrix satisfying the following three properties:

(i) The lower left (D − k) × k submatrix of F is a zero matrix.
(ii) The upper left k × k submatrix of F is an upper triangular matrix.

(iii) The upper left (k − 1) × (k − 1) submatrix of F is an upper triangular unimodular matrix.

It is easy to verify that Mφ = F−1 also has these three properties. Recall that UP = aff(P ) is a
subspace of V , and ΛP = aff(P ) ∩ Λ. Hence, by the construction of φ, any lattice point in UP

is mapped to a lattice point by φ. Therefore, by using (i) and (iii) of Corollary 4.2, we conclude
that Q is a (k − 1)-integral polytope in k-general position.

The map φ induces a linear map φ̃ : UP → Vd . It is clear that the associated matrix

M
φ̃

f̃,ẽ
to φ̃ with respect to the bases f̃ = (f1, . . . , fd) and ẽ = (e1, . . . , ed) is the identity

matrix. Note that by (ii) of Lemma 5.3, (fk+1, . . . , fd) is a basis of Λk ∩ ΛP , and it is
obvious that (ek+1, . . . , ed) is a basis of Λk ∩ Λd . Thus, by Corollary 4.4, VolΛP

(P ) =
VolΛd

(Q) and SVolkΛP
(P ) = SVolkΛd

(Q). However, Q is full-dimensional in Vd . Thus, ΛQ =
Vd ∩ Λ = Λd .

Thus, we conclude that proving Proposition 3.16 for P is reduced to proving it for Q = φ(P ).
Therefore, Proposition 5.1 follows the fact that Q is full-dimensional in Vd . �
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6. A special case of Proposition 3.16

In this section, we prove the following proposition as a special case of Proposition 3.16.

Proposition 6.1. Proposition 3.16 is true when k = 1.

We will give two proofs of Proposition 6.1 in two subsections: the first one was suggested by
the referee, and the second one is our original proof which we will only present the idea.

6.1. First proof

We use Lemma 2.3 of [2] by Barvinok. Since the notation in [2] is different from ours and we
only need a special case of the lemma, we present a special case of the lemma in our notation:

Lemma 6.2. (See Lemma 2.3 of [2].) Let P ⊂ V be a full-dimensional rational polytope and let
Q = π(d−k)(P ). Suppose ∂Q ∩ Λk = ∅. Then

SVolkΛ(P ) = lim
τ→+∞

∑
l∈Λk

exp
{−π‖l‖2/τ

}∫
P

exp
{
2πi〈l, x〉}dΛ, (6.1)

where 〈l, x〉 is the dot product of the coordinates of l and x.

Remark 6.3. After the proof of Lemma 2.3 in [2], Barvinok also remarked that if ∂Q ∩ Λk �= ∅,
the right-hand side of Eq. (6.1) still converges and the limit is equal to a modified version of
SVolkΛ, with appropriate weights on the volumes of slices of P over points in ∂Q∩Λk . Therefore,
we conclude that if the polytope P satisfies the condition that the dimension of πd−k(y,P )

is less than d − k for any lattice point y in the boundary of Q = π(d−k)(P ), then (6.1) still
holds.

We also need the following lemma in order to prove Proposition 6.1.

Lemma 6.4. Let P ⊂ V be an integral d-dimensional polytope and l ∈ V . Suppose 〈l, x〉 is not
constant on any edge of P , and 〈l, x〉 is an integer for any x ∈ ΛP . Then

∫
P

exp
{
2πi〈l, x〉}dΛlin(P ) = δ0,d . (6.2)

Proof. It is clear that if P is 0-dimensional, then (6.2) holds. For d � 1, one sees that it is enough
to prove the case when P is central because shifting P by a lattice point won’t change the value
of

∫
P

exp{2πi〈l, x〉}dΛlin(P ). We will prove (6.2) by induction on d using another result by
Barvinok obtained from Stokes formula [1, Lemma 2.5]:

∫
P

exp
{
2πi〈l, x〉}dΛlin(P ) = 1

2πi〈l, λ〉
∑

F : facet of P

〈λ,nF 〉
∫
F

exp
{
2πi〈l, x〉}dΛlin(F ),

(6.3)
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where l, λ ∈ lin(P ) are any vectors satisfying 〈l, λ〉 �= 0, and nF is the outer unit normal
to F .

Note that we can always assume l ∈ lin(P ): For any l ∈ V , one can let l′ be the orthogonal
projection of l onto lin(P ). Then 〈l, x〉 = 〈l′, x〉 for any x ∈ lin(P ) = aff(P ).

Suppose d = 1. Then P is an interval with two vertices v1 and v2, for some v1, v2 ∈ Λ. Clearly
nv1 = −nv2 . Since 〈l, x〉 is not constant on P = conv(v1, v2), we have that 〈l, nv1〉 �= 0. Hence,
we can choose λ = nv1 . Thus,

∫
P

exp
{
2πi〈l, x〉}dΛlin(P ) = 1

2πi〈l, λ〉
(〈λ,nv1〉 + 〈λ,nv2〉

) = 0.

Now we assume (6.2) holds for P of dimension less than d . We can choose λ to be the
direction of an edge of P . Then (6.2) follows immediately from the induction hypothesis
and (6.3). �
Proof of Proposition 6.1. By Proposition 5.1, we can assume that d = D, i.e., P is a full-
dimensional polytope. Hence, ΛP = Λ.

Let Q = π(d−1)(P ). Because π(d−1) is an open map, for any y ∈ ∂Q, the slice πd−1(y,P )

only consists of boundary points of P . Because P is in 1-general position, πd−1(y,P ) cannot
contain more than one point. Hence, the dimension of πd−1(y,P ) is 0, which is less than d − 1
since 1 < d . Therefore, by Lemma 6.2 and Remark 6.3, we have

SVol1Λ(P ) = lim
τ→+∞

∑
l∈Λ1

exp
{−π‖l‖2/τ

}∫
P

exp
{
2πi〈l, x〉}dΛ. (6.4)

Let l ∈ Λ1. If l = 0, then
∫
P

exp{2πi〈l, x〉}dΛ = VolΛ(P ). If l �= 0, then because P is in
1-general position, l satisfies the hypothesis in Lemma 6.4. Therefore,

∫
P

exp{2πi〈l, x〉}dΛ = 0
for l �= 0. Hence,

SVol1Λ(P ) = lim
τ→+∞ exp

{−π‖0‖2/τ
}

VolΛ(P ) = VolΛ(P ). �
6.2. Second proof

In this subsection, we present the idea of our original proof of Proposition 6.1. Since we
have already given a complete proof in the last subsection, we omit the details. We want to
present this proof because the proof uses very different techniques from the one in last subsection
and although the full proof is somewhat longer, the idea is completely elementary and does not
require knowledge of the theory of valuations.

First, by discussing properties of being in k-general position, one can easily prove the follow-
ing two lemmas.

Lemma 6.5. Suppose 0 < k < d . Let P be a d-dimensional central rational polytope in V .
Suppose P has a triangulation

⊔
Qi consisting of simplices in k-general position. Let Γ = ΛP .

It is clear that aff(P ) = aff(Qi). So Qi is central and Γ = ΛQi
. Then

SVolk (P ) =
∑

SVolk (Qi).
Γ Γ
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Lemma 6.6. Let P be a d-dimensional polytope in 1-general position. Then there exists a trian-
gulation

⊔
Qi of P without introducing new vertices such that each Qi is a simplex in 1-general

position.

Given Lemma 6.6 and Lemma 6.5 with k = 1, we can reduce Proposition 6.1 to the following
proposition:

Proposition 6.7. Proposition 3.16 is true when k = 1, and P is a simplex.

Recall that Proposition 5.1 enables us to reduce the problem to full-dimensional polytopes. We
can also show that the problem can be reduced further to polytopes in fully general position by
using the corollaries in Section 4. Hence, we conclude that it is enough to prove Proposition 6.7
with the assumption that P is a full-dimensional simplex in fully general position.

Note that since ΛP = Λ, what we need to show is that

VolΛ(P ) = SVol1Λ(P ). (6.5)

However, since P is a full-dimensional simplex, the left-hand side of (6.5) is simply a determi-
nant of a matrix whose entries are coordinates of the vertices of P .

The bulk of our proof consists of showing the right-hand side of (6.5) is given by the same
determinant. First, by Theorem 4.6 in [9], we decompose P , a d-dimensional simplex in fully
general position, into d! signed sets, each of which corresponds to a permutation in the symmetric
group Sd . Then we are able to write the right-hand side of (6.5) in terms of a summation involving
signs of permutations, determinants and power sums. By analyzing this formula further and using
Lemma 7.3 in [9], we are able to derive the desired result.

We conclude by remarking that with the above decomposition idea, one can prove that Propo-
sition 3.16 is true for a simplex P without restricting to k = 1. However, unlike the case when
k = 1, we do not see any obvious way to prove a k-version of Lemma 6.6 which will reduce the
general case to the simplex case.

7. Properties of slices and projections

Before we move on to finishing the proof of Proposition 3.16 and thus Theorem 1.5, we
will discuss properties of slices and projections of certain polytopes. The results presented in
this section will be used both in the proof of Proposition 3.16 in Section 8 and in the proof of
Theorem 1.3 in Section 9.

Let P be a polytope in V . One sees that the projection π(D−m)(P ) is a polytope in Vm, and the
slice πD−m(y,P ) is a polytope in πD−m(y,V ) ∼= V m, for any 0 � m � D and y ∈ π(D−m)(P ).
We will discuss properties of projections and slices of P under various conditions.

We denote by ∂P and Int(P ) the relative boundary and the relative interior of P . Since in this
paper we only discuss the relative boundary and the relative interior of polytopes, we will omit
“relative” and just say “boundary” and “interior”. We denote by F (P ) and F��(P ) the set of
faces and the set of faces of dimension at least �, respectively, of P .

Let Y ⊂ Vm, and S ⊂ V . We define

πD−m(Y,S) =
⋃
y∈Y

πD−m(y, S).



F. Liu / Advances in Mathematics 226 (2011) 3467–3494 3485
Lemma 7.1. Suppose 0 < � � m � D and P ⊂ V is a polytope whose �-faces are all in affinely
general position. For any (� − 1)-face F0 of π(D−m)(P ), we have that F := πD−m(F0,P ) is an
(� − 1)-face of P .

Therefore, πD−m(y,P ) is one point on the boundary of P , for any point y of an (� − 1)-face
of π(D−m)(P ).

Proof. Since F0 is a face of π(D−m)(P ), there exists an (m − 1)-dimensional affine space H0
in Vm such that π(D−m)(P ) is on one side of H0 and F0 = H0 ∩ π(D−m)(P ). Let H be the
inverse image of H0 under π(D−m). One sees that H is a (D − 1)-dimensional affine space in
V , of which P is on one side. It is clear that F = πD−m(F0,P ) = H ∩ P , thus is a face of P .
Because π(D−m)(F ) = F0, we must have that dim(F ) � dim(F0) = �− 1. Suppose dim(F ) � �.
Let F ′ be an �-face of F . Then F ′ is a face of P , thus is in affinely general position. Therefore,
by Corollary 3.10(iii), dim(π(D−m)(F ′)) = �. However, π(D−m)(F ′) ⊂ π(D−m)(F ) = F0, which
contradicts the hypothesis that F0 has dimension � − 1. �
Corollary 7.2. Suppose 0 � k � d � D and P ⊂ V is a k-integral polytope. Then π(D−k)(P ) is
a k-dimensional fully integral polytope.

Proof. By Lemma 3.11(i), the projection π(D−k)(P ) is k-dimensional. The only k-face of
π(D−k)(P ) is itself. Since aff(π(D−k)(P )) = Vk , it is automatically integral. For any � < k,
and any �-face F0 of π(D−k)(P ), by Lemma 7.1, there exists an �-face F of P , such that
F = πD−k(F0,P ). Thus, π(D−k)(F ) = F0. However, F is affinely integral, which means
aff(F ) is integral. By Corollary 3.10(ii), π(D−k)(aff(F )) is integral. One checks that aff(F0) =
π(D−k)(aff(F )). Hence, F0 is affinely integral. Therefore, π(D−k)(P ) is fully integral. �
Lemma 7.3. Suppose 0 � k � d � D and P ⊂ V is a d-dimensional polytope whose k-faces are
all in affinely general position. Let y ∈ π(D−k)(P ).

(i) If y is an interior point of π(D−k)(P ), then the slice πD−k(y,P ) is a (d − k)-dimensional
polytope containing an interior point of P .

(ii) If y is on the boundary of π(D−k)(P ), then the slice πD−k(y,P ) is one point on the boundary
of P . (Note that this case would not happen if k = 0 because π(D−k)(P ) = V0 does not have
boundary points.)

Proof. Let U = aff(P ). Because k-faces of P are in affinely general position, one checks that
π(D−k)(U) = Vk . Therefore, πD−k(y,U) is (d − k)-dimensional, for any y ∈ Vk .

Since π(D−k) is a continuous open map and P is convex, we have that

π(D−k)
(
Int(P )

) = Int
(
π(D−k)(P )

)
.

Thus, if y is an interior point of π(D−k)(P ), then πD−k(y,P ) contains an interior point of
P and dim(πD−k(y,P )) = dim(πD−k(y,U)) = d − k. Now suppose y is a boundary point of
π(D−k)(P ). Then y is on a facet, which is a (k − 1)-face, of π(D−k)(P ). Hence, (ii) follows
immediately from Lemma 7.1 with � = m = k. �
Corollary 7.4. Suppose k < d and P ⊂ V is a d-dimensional rational polytope.
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(i) If all of the k-faces of P are affinely integral, then

∑
y∈π(D−k)(ΛP )

VolΛk∩Λlin(P )

(
πD−k(y,P )

) =
∑

y∈Λ∩Int(π(D−k)(P ))

VolΛk∩Λlin(P )

(
πD−k(y,P )

)
.

(ii) If P is central and all of the k-faces of P are in affinely general position, then

SVolkΛP
(P ) =

∑
y∈π(D−k)(ΛP )∩Int(π(D−k)(P ))

VolΛk∩ΛP

(
πD−k(y,P )

)
.

Proof. We prove (ii) first. Since d − k > 0, by Lemma 3.11(ii) and Lemma 7.3, for any y on the
boundary of π(D−k)(P ), we have that VolΛk∩ΛP

(πD−k(y,P )) = 0. Thus, (ii) follows.
Now we prove (i). One checks that it is enough to prove (i) under the assumption that P is

central. Then (i) follows from (ii), Corollary 3.10(i) and Lemma 3.11(i). �
The polytope πD−k(y,P ) is the intersection of the polytope P with the affine space

πD−k(y,V ). Hence, faces of πD−k(y,P ) are exactly the intersections of faces of P with
πD−k(y,V ). In other words,

F
(
πD−k(y,P )

) = {
πD−k(y,F )

∣∣ F ∈ F (P )
}
. (7.1)

The following lemma discuss details of the relation between F (πD−k(y,P )) and F (P ).

Lemma 7.5. Suppose P ⊂ V is a d-dimensional polytope whose k-faces are all in affinely gen-
eral position. Let y ∈ π(D−k)(P ). For any nonempty face F0 of πD−k(y,P ), there exists a face
F of P such that

(i) dim(F ) = dim(F0) + k,
(ii) F0 = πD−k(y,F ).

Furthermore, if dim(F0) > 0, then such an F is unique and we also have that y ∈
Int(π(D−k)(F )).

Proof. Suppose dim(F0) = r . Because of (7.1), there exists a face F of P such that F0 =
πD−k(y,F ). We consider

{
F ∈ F (P )

∣∣ F0 = πD−k(y,F )
}
. (7.2)

We claim that if (7.2) contains one face of dimension less than or equal to k, then dim(F0) = 0
and (7.2) contains one face of dimension k. Suppose F is a face in (7.2) of dimension less
than or equal to k, then F is contained in a k-face F ′ of P . Because F ′ is in affinely general
position, it follows from Corollary 3.10(iii) that πD−k(y,F ′) contains at most one point. How-
ever, F0 = πD−k(y,F ) ⊂ πD−k(y,F ′) and F0 contains at least one point. We must have that
F0 = πD−k(y,F ′) is one point and F ′ is in (7.2).

Suppose dim(F0) = 0, i.e., F0 is a point. We want to show that the set (7.2) contains one face
of dimension k. We have already seen that this is true if (7.2) contains one face F of dimension
less than or equal to k. Suppose all the faces in (7.2) have dimension greater than k, and let
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F be one that has the smallest dimension. All the k-faces of F are k-faces of P , thus are in
affinely general position. Hence, by Lemma 7.3, we must have that F0 = πD−k(y,F ) is on the
boundary of F . Therefore, there exists a proper face F ′ of F such that F0 ∈ F ′. It is clear that
F0 = πD−k(y,F ′). However, dim(F ′) < dim(F ), which contradicts the choice of F .

Suppose dim(F0) > 0. We want to show that the set (7.2) contains exactly one face, which has
dimension dim(F0)+k. Let F be a face in (7.2). By our claim, dim(F ) > k. Again, all the k-faces
of F are in affinely general position. Thus, by Lemma 7.3, we have that y ∈ Int(π(D−k)(F )) and
F0 = πD−k(y,F ) has dimension dim(F ) − k. Hence, dim(F ) = dim(F0) + k. The uniqueness
follows from the observation that if F1,F2 ∈ (7.2), then so is F1 ∩ F2. �
Corollary 7.6. Suppose P ⊂ V is a d-dimensional polytope whose k-faces are all in affinely
general position. Let y ∈ Int(π(D−k)(P )).

(i) Suppose 1 � r � d − k. The map πD−k(y, ·) gives a bijection between the set of (r + k)

faces of P satisfying y ∈ Int(π(D−k)(F )) and the set of r-faces of πD−k(y,P ).
(ii) The map πD−k(y, ·) gives a bijection between the set {F ∈ F�k+1(P ) | y ∈ Int(π(D−k)(F ))}

and the set F�1(πD−k(y,P )).
(iii) Suppose P is a rational polytope. If F is a face of P that corresponds under πD−k(y, ·) to

a face F0 of πD−k(y,P ), then Λlin(F0) = Λk ∩ Λlin(F ).

Proof. (i) follows from Lemma 7.5 and Lemma 7.3(i). (ii) follows from (i) and the fact that P is
d-dimensional.

If F is in bijection with F0 under πD−k(y, ·), then F0 = πD−k(y,F ). One checks that
lin(F0) = V k ∩ lin(F ). Then (iii) follows. �

The original definitions of general position and integrality of an affine space require the space
to sit inside the space spanned by the given lattice. It cannot be applied to slices of a polytope P

since they are in the affine spaces πD−k(y,V ). Hence, we extend these definitions.

Definition 7.7. Let U be an �-dimensional rational subspace of V . Suppose f = (f1, . . . , f�) is a
basis of the lattice U ∩ Λ. Let W be an affine space of V such that lin(W) is a subspace of U .

(a) We say W is integral with respect to f if W contains a lattice point and lin(W) is integral
with respect to f.

(b) We say W is in general position with respect to f if lin(W) is in general position with respect
to f.

Similarly, we extend the definitions of affinely integral, k-integral, affinely general position,
and k-general position with respect to f for polytopes.

Lemma 7.8. Let W be an �-dimensional affine space of V . Suppose m: 0 � m � �.

(i) If W is integral, then πD−m(y,W) is integral with respect to (em+1, . . . , eD) for any y ∈ Λm.
(ii) If W is in general position, then πD−m(y,W) is in general position with respect to

(em+1, . . . , eD) for any y ∈ Vm.
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Proof. We will only prove (i), as (ii) can be proved similarly. By Lemma 3.8, lin(W) is integral
and W = lin(W) + z for some z ∈ Λ ∩ W . Then lin(W) is the row space of a matrix of the form
(I, J ) where I is the � × � identity matrix and J is an � × (D − �) integer matrix. Let A be the
top m × D submatrix of (I, J ) and B be the bottom (� − m) × D submatrix of (I, J ). It is easy
to verify that

πD−m(y,W) = the row space of B + ((
y − π(D−m)(z)

)
A + z

)
.

One sees that

lin
(
πD−m(y,W)

) = the row space of B ⊂ V m.

Note that the first m columns of B are zeros, which is followed by the (� − m) × (� − m)

identity matrix and an (�− m)× (D − �) integer matrix. Thus, lin(πD−m(y,W)) is integral with
respect to (em+1, . . . , eD). Since (y − π(D−m)(z))A + z is a lattice point in W , we conclude that
πD−m(y,W) is integral with respect to (em+1, . . . , eD). �
Lemma 7.9. Suppose 0 � m � � � d and P ⊂ V is a d-dimensional polytope.

(i) Suppose all the �-faces of P are affinely integral. Then for each y in π(D−m)(P )∩Λ, we have
that every (� − m)-face of πD−m(y,P ) is affinely integral with respect to (em+1, . . . , eD).

(ii) Suppose all the �-faces of P are in affinely general position. Then for each y in π(D−m)(P )

we have that every (� − m)-face of πD−m(y,P ) is in affinely general position with respect
to (em+1, . . . , eD).

Proof. We only prove (i), and (ii) can be proved similarly. Let F0 be a face of πD−m(P ) of
dimension �−m. By Lemma 7.5, there exists a face F of P such that dim(F ) = dim(F0)+m = �

and F0 = πD−m(y,F ). We have that F is affinely integral, i.e., aff(F ) is integral. One checks that
aff(F0) = aff(πD−m(y,F )) = πD−m(y, aff(F )), which by Lemma 7.8(i) is integral with respect
to (em+1, . . . , eD). Therefore, F0 is affinely integral with respect to (em+1, . . . , eD). �
Corollary 7.10. Suppose all the k-faces of P are affinely integral. Then for each y ∈
π(D−k)(P ) ∩ Λ, we have that πD−k(y,P ) is an integral polytope.

Proof. This follows from Lemma 7.9(i) with m = � = k. �
8. Proof of Proposition 3.16 and Theorem 1.5

Proof of Proposition 3.16 (and Theorem 1.5). We will prove the proposition by induction on k.
The base case k = 1 follows from Proposition 6.1. Let k0: 2 � k0 < d . Now we assume that the
theorem holds for any k � k0, and we will prove the theorem for k = k0. By Corollary 7.4(ii), it
is sufficient to show that

VolΛP
(P ) =

∑
(D−k) (D−k0)

VolΛk0∩ΛP

(
πD−k0(z,P )

)
. (8.1)
z∈π (ΛP )∩Int(π (P ))
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Since k0 � 2, we have that P is an (0-)integral polytope in 1-general position. Hence, by
Proposition 6.1 and Corollary 7.4(ii), we have that

VolΛP
(P ) =

∑
y∈π(D−1)(ΛP )∩Int(π(D−1)(P ))

VolΛ1∩ΛP

(
πD−1(y,P )

)
.

It follows from Lemma 7.9 that the slice πD−1(y,P ) is (k0 − 2)-integral and in (k0 − 1)-
general position with respect to (e2, . . . , eD), for any y ∈ π(D−k)(ΛP ) ∩ Int(π(D−1)(P )). Thus,
πD−1(y,P ) − y is a central polytope in V 1 that is (k0 − 2)-integral and in (k0 − 1)-general
position with respect to (e2, . . . , eD). Moreover, the lattice in V 1 is Λ1, and the lattice we use to
calculate the normalized volume of πD−1(y,P ) − y is

Λ1 ∩ lin
(
πD−1(y,P ) − y

) = Λ1 ∩ πD−1
(
0, lin(P )

) = Λ1 ∩ (
V 1 ∩ lin(P )

) = Λ1 ∩ ΛP .

Hence, we can apply the induction hypothesis to πD−1(y,P ) − y and translate the result to
πD−1(y,P ). We then get

VolΛ1∩ΛP

(
πD−1(y,P )

) =
∑

z∈π(D−k0)(Λ1∩ΛP )+y

z∈Int(π(D−k0)(πD−1(y,P )))

VolΛk0∩ΛP

(
πD−k0

(
z,πD−1(y,P )

))
.

One checks that for any z ∈ Vk0 , we have that z ∈ π(D−k0)(Λ1 ∩ ΛP ) + y if and only if z ∈
π(D−k0)(ΛP ) and the first coordinate of z is y. Furthermore, z ∈ Int(π(D−k0)(πD−1(y,P ))) =
Int(πD−1(y,π(D−k0)(P ))) if and only if the first coordinate of z is y, and z ∈ Int(π(D−k0)(P )).
Also, if z ∈ π(D−k0)(πD−1(y,P )), then πD−k0(z,πD−1(y,P )) = πD−k0(z,P ). Therefore, we
have

VolΛP
(P ) =

∑
y∈π(D−1)(ΛP )∩Int(π(D−1)(P ))

∑
z∈π(D−k0)(Λ1∩ΛP )+y

z∈Int(π(D−k0)(πD−1(y,P )))

VolΛk0 ∩ΛP

(
πD−k0

(
z,πD−1(y,P )

))

=
∑

y∈π(D−1)(ΛP )∩Int(π(D−1)(P ))

∑
z∈π(D−k0)(ΛP )∩Int(π(D−k0)(P ))

π(D−1)(z)=y

VolΛk0 ∩ΛP

(
πD−k0(z,P )

)
.

Furthermore,

π(k0−1)
(
Int

(
π(D−k0)(P )

)) = π(k0−1)
(
π(D−k0)

(
Int(P )

)) = π(D−1)
(
Int(P )

)
= Int

(
π(D−1)(P )

)
,

which means that Int(π(D−1)(P )) contains all possible first coordinates of points in
Int(π(D−k0)(P )).

Therefore, (8.1) follows. �
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9. Proof of Theorem 1.3

We first recall a result which we will use to prove Theorem 1.3.
Let P ⊂ V be a nonempty polyhedron and let v ∈ P be a point. We define the feasible cone

of P at v by

fcone(P,v) = {y | v + εy ∈ P for some ε > 0}.

For any face F of P and any two interior points v,w of F , one checks that fcone(P,v) =
fcone(P,w). Therefore, we can define the feasible cone of P along F by

fcone(P,F ) := fcone(P,v), for some (equivalently all) v ∈ Int(F ).

In the context of toric varieties, Danilov asked in [6] whether there exist numbers α(P,F )

depending only on fcone(P,F ) such that for an integral polytope P ,

i(P ) =
∑

F∈F�0(P )

α(P,F )VolΛlin(F )
(F ). (9.1)

This was first proved to be true by McMullen [11]. Morelli [12] was the first to supply an explicit
and computationally efficient way to choose α(P,F ). In [13], Pommersheim and Thomas gave
a canonical construction of α(P,F ) from the Todd class of a toric variety. In 2005, Berline and
Vergne [5] gave the first algorithmic construction of α(P,F ) in the primary space. We follow
the notation of [3].

For any integral polytope P , since α(P,F ) depends only on fcone(P,F ) and fcone(P,F ) =
fcone(mP,mF), we immediately have that

i(P,m) =
∑

F∈F�0(P )

α(P,F )VolΛlin(F )
(F )mdim(F ). (9.2)

Therefore, the coefficient of m� in the Ehrhart polynomial of P is given by the sum of
α(P,F )VolΛlin(F )

(F ) over all faces of dimension �. In particular, because the constant term of
i(P,m) is 1, and the normalized volume of a point is 1, we have that

∑
v∈vert(P )

α(P,v) = 1.

Applying the above identity to (9.1) and (9.2), we get the following corollary.

Corollary 9.1. If P is an integral polytope, then

i(P ) − 1 =
∑

F∈F�1(P )

α(P,F )VolΛlin(F )
(F ),
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and

i(P,m) − 1 =
∑

F∈F�1(P )

α(P,F )VolΛlin(F )
(F )mdim(F ).

Lemma 9.2. Suppose P ⊂ V is a d-dimensional polytope whose k-faces are all affinely integral.
Let F be a face of P of dimension greater than k. Then

(i) πD−k(y,F ) is a (dim(F )−k)-face of πD−k(y,P ), for any lattice point y in Int(π(D−k)(F )).
(ii) α(πD−k(y,P ),πD−k(y,F )) is invariant under different choices of lattice points y in

Int(π(D−k)(P )).

Proof. (i) follows from Corollary 7.6.
By Corollary 7.10, πD−k(y,P ) is integral. One checks that fcone(πD−k(y,P ),πD−k(y,F ))

is exactly fcone(P,F ) ∩ V k , which is independent of the choice of y. Then (ii) follows. �
Given this lemma, we are able to give the following definition.

Definition 9.3. Suppose P ⊂ V is a d-dimensional polytope whose k-faces are all affinely inte-
gral. Let F be a face of P of dimension greater than k. We define

βk(P,F ) := α
(
πD−k(y,P ),πD−k(y,F )

)
,

for some (equivalently all) y ∈ Λ ∩ Int(π(D−k)(F )).

In the following lemma, we give formulas connecting numbers of lattice points of slices to
βk(P,F )’s and normalized volumes of faces F of dimension at least k + 1.

Lemma 9.4. Suppose 0 � k < d � D and P ⊂ V is a k-integral d-dimensional polytope. For
any positive integer m, we have that

∑
y∈Λ∩π(D−k)(P )

(
i
(
πD−k(y,P ),m

) − 1
) = m−k

∑
F∈F�k+1(P )

βk(P,F )VolΛlin(F )
(F )mdim(F ).

(9.3)

Hence,

∑
y∈Λ∩π(D−k)(P )

(
i
(
πD−k(y,P )

) − 1
) =

∑
F∈F�k+1(P )

βk(P,F )VolΛlin(F )
(F ). (9.4)

In particular, if k = d − 1, then

∑
y∈Λ∩π(D−(d−1))(P )

(
i
(
πD−(d−1)(y,P )

) − 1
) = VolΛlin(P )

(P ). (9.5)
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Proof. If k = 0, then (9.3) follows from Corollary 9.1 and the observation that the left-hand
side of (9.3) is i(P,m) − 1, and β0(P,F ) = α(P,F ). Hence, we can assume k � 1. By Corol-
lary 7.10, πD−k(y,P ) is integral, for any y ∈ Λ ∩ π(D−k)(P ). If y is on the boundary of
π(D−k)(P ), by Lemma 7.3(ii), πD−k(y,P ) is just one point. Therefore, i(πD−k(y,P ),m)− 1 =
0. Using this and Corollary 9.1, we have that the left-hand side of (9.3) is equal to

∑
y∈Λ∩Int(π(D−k)(P ))

∑
F0∈F�1(πD−k(y,P ))

α
(
πD−k(y,P ),F0

)
VolΛlin(F0)

(F0)m
dim(F0).

(9.6)

However, by Corollary 7.6, we can rewrite (9.6) as

∑
y∈Λ∩Int(π(D−k)(P ))

∑
F∈F�k+1(P )

y∈Int(π(D−k)(F ))

[
α
(
πD−k(y,P ),πD−k(y,F )

)

× VolΛk∩Λlin(F )

(
πD−k(y,F )

)
mdim(F )−k

]
=

∑
y∈Λ∩Int(π(D−k)(P ))

∑
F∈F�k+1(P )

y∈Int(π(D−k)(F ))

βk(P,F )VolΛk∩Λlin(F )

(
πD−k(y,F )

)
mdim(F )−k.

However, for any face F ∈ F�k+1(P ), it follows from the hypothesis that P is k-integral that
F is k-integral as well. By Corollary 7.2, we have that dim(π(D−k)(F )) = k = dim(π(D−k)(P )).
Hence, Int(π(D−k)(F )) ⊂ Int(π(D−k)(P )). Therefore, we can simplify the above formula further
and conclude that

∑
y∈Λ∩π(D−k)(P )

(
i
(
πD−k(y,P ),m

) − 1
)

=
∑

F∈F�k+1(P )

y∈Λ∩Int(π(D−k)(F ))

βk(P,F )VolΛk∩Λlin(F )

(
πD−k(y,F )

)
mdim(F )−k

= m−k
∑

F∈F�k+1(P )

βk(P,F )mdim(F )
∑

y∈Λ∩Int(π(D−k)(F ))

VolΛk∩Λlin(F )

(
πD−k(y,F )

)
.

Since any face F ∈ F�k+1(P ) is k-integral, and any k-integral polytope is (k − 1)-integral
and in k-general position. Therefore, by Theorem 1.5 and Corollary 7.4(i), the identity (9.3)
holds. (9.4) is obtained from (9.3) by plugging in m = 1.

Finally, in the case of k = d − 1, note that the only face F in F�d(P ) is P , so (9.5) would
follow from (9.4) given the identity

βd−1(P,P ) = α
(
πD−(d−1)(y,P ),πD−(d−1)(y,P )

) = 1.

However, in the construction of α(P,F ) in [5], α(Q,Q) is always 1 for any rational polytope.
So we have the above identity. �
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Remark 9.5. It is possible to give a proof of (9.5) that makes no use of the results of [5]. In fact,
we only need the simple fact that the normalized volume of any 1-dimensional integral polytope
is equal to the number of lattice points minus 1, and then we can prove (9.5) with arguments
similar to those we used in proving (9.3) (but without involving βk(P,F )).

Proposition 9.6. Suppose 0 � k < d � D and P ⊂ V is a k-integral d-dimensional polytope.
Then

i(P ) = i
(
π(D−k)(P )

) +
∑

F∈F�k+1(P )

βk(P,F )VolΛlin(F )
(F ). (9.7)

In particular, if k = d − 1, then

i(P ) = i
(
π(D−(d−1))(P )

) + VolΛlin(P )
(P ). (9.8)

Proof. It is clear that

i(P ) =
∑

y∈Λ∩π(D−k)(P )

i
(
πD−k(y,P )

)

= i
(
π(D−k)(P )

) +
∑

y∈Λ∩π(D−k)(P )

(
i
(
πD−k(y,P )

) − 1
)
.

Then the proposition follows from Lemma 9.4. �
Using (9.8), we are able to generalize the results in [8–10] to fully integral polytopes:

Corollary 9.7. Suppose 0 � d � D and P ⊂ V is a d-dimensional fully integral polytope. Then

i(P ) =
d∑

j=0

VolΛj

(
π(D−j)(P )

)
. (9.9)

Hence, the Ehrhart polynomial of P is given by

i(P,m) =
d∑

j=0

VolΛj

(
π(D−j)(P )

)
mj . (9.10)

Proof. It is clear that the corollary holds for d = 0. Now we assume d � 1.
P is fully integral, so P is (d −1)-integral and aff(P ) is integral. Therefore, by Proposition 9.6

and Corollary 3.10(ii), we have that i(P ) = i(π(D−(d−1))(P )) + VolΛlin(P )
(P ), and π(D−d) in-

duces a bijection between aff(P )∩Λ and Λd . Because aff(P ) contains a lattice point, aff(P )∩Λ

and Λlin(P ) only differ by a lattice point. Hence, π(D−d) induces a bijection between Λlin(P )

and Λd . Therefore, we conclude that

i(P ) = i
(
π(D−(d−1))(P )

) + VolΛ
(
π(D−d)(P )

)
.

d
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However, it follows from Corollary 7.2 that π(D−(d−1))(P ) is a (d − 1)-dimensional fully
integral polytope. Therefore, we obtain (9.9) by recursively applying the above identity.

Finally, by Lemma 3.12, the dilation mP of P is fully integral, for any positive integer m.
Thus, (9.10) follows. �
Proof of Theorem 1.3. If k = d , the theorem follows from (9.10). Now we assume k < d . Let
m be a positive integer. By Lemma 3.12, mP is a k-integral polytope. For any F ∈ F�k+1(P ),
one checks that βk(mP,mF) = βk(P,F ) and lin(mF) = lin(F ). Hence, by Proposition 9.6, we
have that

i(P,m) = i
(
π(D−k)(P ),m

) +
∑

F∈F�k+1(P )

βk(P,F )VolΛlin(F )
(mF)

= i
(
π(D−k)(P ),m

) +
∑

F∈F�k+1(P )

βk(P,F )VolΛlin(F )
(F )mdim(F ).

By Corollary 7.2, π(D−k)(P ) is a k-dimensional fully integral polytope. Therefore, we con-
clude our theorem using (9.3) and (9.10). �
References

[1] A. Barvinok, Computing the volume, counting integral points, and exponential sums, Discrete Comput. Geom. 10
(1993) 123–141.

[2] A. Barvinok, Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006) 1449–1466.
[3] A. Barvinok, Integer points in polyhedra, Zur. Lect. Adv. Math. (2008).
[4] A.I. Barvinok, J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in: New Perspectives in

Algebraic Combinatorics, Berkeley, CA, 1996–1997, in: Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press,
Cambridge, 1999, pp. 91–147.

[5] N. Berline, M. Vergne, Local Euler–Maclaurin formula for polytopes, Mosc. Math. J. 7 (4) (2007) 355–386.
[6] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (2) (1978) 97–154.
[7] E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962) 616–618.
[8] F. Liu, Ehrhart polynomials of cyclic polytopes, J. Combin. Theory Ser. A 111 (2005) 111–127.
[9] F. Liu, Ehrhart polynomials of lattice-face polytopes, Trans. Amer. Math. Soc. 360 (2008) 3041–3069.

[10] F. Liu, A note on lattice-face polytopes and their Ehrhart polynomials, Proc. Amer. Math. Soc. 137 (2009) 3247–
3258.

[11] P. McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/1979) 509–516.
[12] R. Morelli, Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100 (1993) 183–231.
[13] J. Pommersheim, H. Thomas, Cycles representing the Todd class of a toric variety, J. Amer. Math. Soc. 17 (4)

(2004) 983–994.
[14] G.M. Ziegler, Lectures on Polytopes, revised ed., Springer-Verlag, New York, 1998.


	Higher integrality conditions, volumes and Ehrhart polynomials
	Introduction
	Examples of the theorems
	Preliminaries
	On lattices
	On integrality and general position
	Algebra of polyhedra

	Afﬁne transformations that preserve certain properties
	Conditions for preserving integrality and general position
	Conditions for preserving volumes and S-volumes

	Reduction to the full-dimensional case
	A special case of Proposition 3.16
	First proof
	Second proof

	Properties of slices and projections
	Proof of Proposition 3.16 and Theorem 1.5
	Proof of Theorem 1.3
	References


