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INTERNAL DLA AND THE STEFAN PROBLEM

By Janko Gravner1 and Jeremy Quastel2

University of California and University of Toronto

Generalized internal diffusion limited aggregation is a stochastic
growth model on the lattice in which a finite number of sites act as Poisson
sources of particles which then perform symmetric random walks with an
attractive zero-range interaction until they reach the first site which has
been visited by fewer than α particles, at which point they stop. Sites on
which particles are frozen constitute the occupied set. We prove that in
appropriate regimes the particle density has a hydrodynamic limit which
is the one-phase Stefan problem. This is then used to study the asymptotic
behavior of the occupied set. In two dimensions when the walks are inde-
pendent with one source at the origin and α = 1, we obtain in particular
that the occupied set is asymptotically a disc of radiusK

√
t, whereK is the

solution of exp�−K2/4� = πK2, settling a conjecture of Lawler, Bramson
and Griffeath.

0. Introduction. Internal diffusion limited aggregation is a stochastic
growth model in which a set in the integer lattice grows by addition of bound-
ary sites hit by random walks produced within the set. The model also goes by
the names anti-DLA and diffusion limited erosion. It has been used in physics
as a model of erosion processes, but its introduction into the mathematical lit-
erature was from the unlikely direction of an algebraic construction. Diaconis
and Fulton [7] consider a vector space whose basis elements are finite sub-
sets of the lattice, and introduce a smash product making it a commutative
algebra. The product �x� ∗ A of a singleton �x� with a set A containing it is
given by

∑
y p�x
y��A ∪ �y��, where p�x
y� is the probability that y is the

first site in the complement of A visited by a symmetric nearest-neighbor ran-
dom walk starting at x. For general finite sets A and B, the smash product is
A∗B = �xn�∗�xn−1�∗ · · · ∗�x1�∗�A∪B�, where A∩B = �x1
    
 xn�, the key
observation being that this is independent of the ordering �x1
    
 xn�. It can
now be extended to general vectors by linearity and gives a well-defined prod-
uct. The construction admits many generalizations, but already in this simple
case there is the very interesting question of the behavior of the.random set
An obtained from A0 = �0� by successively adding on the first point y in the
complement visited by a symmetric nearest-neighbor random walk starting at
the origin.
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In [3], Bramson, Griffeath and Lawler studied the asymptotic shape of An

and found that in any dimension d, An is asymptotically a ball B�0
 r� of
radius r = adn

1/d around the origin, where ad = �d��d/2�/2�1/d/√π, so that
B�0
 r� has volume n. More precisely, they proved that, for every δ > 0, with
probability 1, for sufficiently large n,

B
(
0
 �1− δ�adn

1/d) ⊂ An ⊂ B�0
 (1+ δ�adn
1/d)

In another version of the model, particles are produced at the origin as a
Poisson process at rate 1 and perform continuous-time random walks jumping
at rate 1 to each nearest neighbor, until they hit the boundary, at which time
the hitting site is added to the set. Now one has a set At and a configuration
of particles on it together performing a continuous-time Markov process. In
dimensions d ≥ 3, [3] showed that the set has an asymptotic shape which is
still a ball of radius adt

1/d around the origin. Their proof relies on the fact that
t1/d grows slowly enough in d ≥ 3 that particles essentially hit the boundary
before the next particle is produced, and therefore the model can be reduced
to the discrete-time case.
In dimensions 1 and 2, however, the methods of [3] break down, and in fact,

computer simulations show a nontrivial density of particles in the occupied
region. They conjectured that in two dimensions the set grows as K

√
t with a

constantK which could, in principle, be computed with the following heuristic
argument. Assume that the occupied setAt is asymptotically a ball B�0
K√

t�
around the origin. The expected number of particles that hit the boundary
before time T is then, after Brownian scaling,

T
∫ 1

0
P0

(
sup

0≤s≤1−t
�t + s�−1/2�

√
2βs� ≥ K

)
dt
(0.1)

where βs is a standard Brownian motion starting at the origin. (We use the
convention that random walks jump at rate 1 to each nearest neighbor and
therefore the diffusion approximation is

√
2βs.) On the other hand, the number

of particles which hit by time T is clearly

TπK2(0.2)

Bramson, Griffeath and Lawler conjectured that the correct growth rate is the
unique K for which these expressions coincide.
In this article we prove the conjectures of [3] by showing that internal DLA

has a hydrodynamic limit which is the one-phase Stefan problem. This is then
used to study the asymptotic shape of the occupied set. For example, in the
two-dimensional case described above, the occupied set grows as K

√
t, where

exp�−K2/4� = πK2


which one can check is the unique K for which (0.1) and (0.2) coincide by
solving the heat equation in two dimensions with a source at the origin and
Dirichlet boundary conditions on an expanding circle of size

√
t.

Our approach yields somewhat weaker shape theorems than the methods
of [3] but has the advantage of being rather robust: it works in all dimensions
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and extends readily to interacting versions of the model. In particular, we
consider particles produced at rates of order ε−d at various sites in �d, then
performing interacting random walks on the reduced lattice ε�d at rates of
order ε−2. The interaction is zero-range: the jump rate of a particle depends
on the number of particles at that site. We also choose some positive integer
α and decree that the first α particles at a site are frozen. The set of frozen
sites is the occupied set Aε�t� and we show that it is asymptotically a ball of
radius of order

{
t1/d
 d ≥ 2,
�t log t�1/2
 d = 1.

We comment briefly on the relation between our scaling and that in [3].
If we consider time t = 1 in our model and some small ε > 0, then we will
have created O�ε−d� particles which have each taken O�ε−2� steps of size
ε, producing an occupied set which is a ball of order 1. This corresponds to
taking times of order ε−2 in [3], at which time-order ε−2 particles will have
been created and the occupied set will be a ball of radius O�1� only if we
rescale the lattice width to be O�ε2/d�. In d ≥ 3, therefore, our model is in
some sense a renormalized version of the model in [3], with each of their
particles corresponding to ε2−d of our particles. The surprise is that the size
of the occupied set is the same in both models, which means that the dynamics
is essentially unaffected by this renormalization.
The convergence to the Stefan problem is proved using a fairly standard

method in hydrodynamics, the H−1 method, with technical modifications to
deal with the lousy ergodicity properties of the model, and the singular behav-
ior of the Stefan problem at creation points. The H−1 method was developed
in [18] and [5] to study the metastability and nonequilibrium properties of
conservative Ginzburg–Landau models. It is probably the easiest method in
hydrodynamic scaling limits; however, it is restricted to gradient systems. In
particular, it completely avoids the use of entropy arguments and the two-
block estimate, which in the internal DLA models seem to be hopeless. In
fact, the only type of ergodicity result needed as input is the characterization
of the translation-invariant, invariant measures for the process in infinite
volume which is proved using coupling methods of [1, 13]. This unfortunately
forces us to assume the attractiveness (monotonicity) of the dynamics. We
should also remark that the H−1 method as presented in this paper works for
internal DLA if the nearest-neighbor walk is replaced by any symmetric finite-
range random walk. Then one obtains ellipses as limiting shapes. Although
one expects the same phenomena for mean-zero asymmetric models, they will
require a different approach. The free random walk, or zero-range dynam-
ics of the live particles can also be replaced by symmetric simple exclusions.
Alternatively, the number of particles α frozen at a site can be replaced by
a stationary random field. The method yields comparable results in all these
cases.
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1. Notation and results. We now describe the generalized internal DLA
model. Particles are moving on the lattice ε�d. We let ηx denote the number
of particles at x ∈ ε�d. The rate of jumping of particles from x to nearest-
neighbor site y is ε−2a�ηx�, where a�n� = g�n−α� for n > α and a�n� = 0 for
n ≤ α corresponding to the freezing of the first α particles. g�n� are the rates of
an attractive zero-range process and are assumed to satisfy, for some C < ∞,

C−1 ≤ g�n + 1� − g�n� ≤ C

for all n. We will also assume that g�n� is approximately linear, that is,
�g�n� − Kn� ≤ C for all n = 0
1
    , for some finite C and K. Of course,
by rescaling time we can and will assume K = 1 so the assumption is that,
for all n = 0
1
    , for some finite C,

�g�n� − n� ≤ C

Particles are created at a finite number of sites xi = �xi� at rates ci, i =
1
    
 n. We use x to denote locations on �d, x to denote locations on ε�d and
�x� to denote the closest point of ε� to x. The generator of the process is

L = ε−2L0 + ε−dLc


where

L0f�η� = ∑
x
 e

a�ηx�
(
f�ηx
x+e� − f�η�)
(1.1)

where e denote the basis vectors of length ε in our lattice and η
x
y
z = ηy + 1

if z = y, ηx − 1 if z = x and ηz otherwise, and

Lcf�η� =
n∑

i=1
ci
(
f�ηxi� − f�η�)


where ηx
z = ηz + 1 if z = x and ηx

z = ηz otherwise. The corresponding zero-
range process, with generator

L1f�ζ� = ∑
x
 e

g�ζx�
(
f�ζx
x+e� − f�ζ�)
(1.2)

has as invariant measures the product measures with marginal probability
that ζx = n given by

Z−1�γ�γn/�g�n� · · ·g�1��
for each x. The factor Z�γ� is the normalization to make it into a probability
measure. The parameter γ is related to the density ρ by the formula

ρ = γZ′�γ�/Z�γ�
Define

λ�u� =
{
γ�u − α�
 if u ≥ α,
0
 if 0 ≤ u < α.
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Note that from the assumptions on g�n� we have, for some finite C,

C−1�u1 − u2� ≤ �λ�u1� − λ�u2�� ≤ C�u1 − u2�
 u1
 u2 ∈ �α
∞�(1.3)

The upper bound actually holds trivially for all u1
 u2. Note also that the
assumptions imply that �γ�ρ� − ρ� ≤ C for all ρ and therefore

�λ�u� − u� ≤ C(1.4)

for all u.
The Stefan problem corresponding to our microscopic system is to find func-

tions ρ�x
 t� and s�x� on �d satisfying
∂ρ

∂t
= ,γ�ρ� +

n∑
i=1

ciδxi

 in the region �ρ > 0�,

ρ = 0
 on s�x� ≥ t,
∇0ρ · ∇s = −α/γ′�0�
 on s�x� = t,

(1.5)

where ∇0ρ denotes the gradient taken from the inside of the region s�x� < t.
The initial condition is ρ�x
 t� = 0. Note the last equation can be rewritten
∇0γ�ρ� · ∇s = −α. The set s�x� ≤ t is the occupied set at time t, and the
density ρ�x
 t� evolves according to the nonlinear heat equation with Dirichlet
boundary conditions on the occupied set, whose boundary in addition moves
in the outward normal direction at a rate proportional to ∇γ�ρ�. Physically, ρ
corresponds to the density of live particles in our model and ��x
 t�� s�x� ≤ t�
to the occupied region.
We make the following entropy transformation to obtain a weak formu-

lation of the problem. Let ρ be a classical solution. Let ϕ be a smooth test
function with compact support in �0
T� × �d. Multiplying by ϕ and using
Green’s identity,∫ T

0

∫ [
ρ
∂ϕ

∂t
+ γ�ρ�,ϕ

]
dxdt +

∫ T

0

∫
s�x�=t

ϕ∇γ�ρ� · ∇s

�∇s� dSdt

+
∫ T

0

n∑
i=1

ciϕ�t
xi�dt = 0

Using ∇γ�ρ� · ∇s = −α on s�x� = t, the middle term gives

−α
∫ T

0

∫
s�x�=t

ϕ
dS

�∇s� dt = −α
∫
ϕ�s�x�
x�dx =

∫ T

0

∫
α1ρ>0

∂ϕ

∂t
dxdt

Let

σ�ρ� =
{
ρ + α
 if ρ > 0,
0
 if ρ = 0.

We conclude that∫ T

0

∫ [
γ�ρ�,ϕ + σ�ρ�∂ϕ

∂t

]
dxdt +

∫ T

0

n∑
i=1

ciϕ�t
xi�dt = 0
(1.6)
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for all smooth test functions ϕ with compact support in �0
T� ×�d. Now let ρ
satisfy (1.6) and define

u = σ�ρ�
Note that γ�ρ� = λ�u�. Thus u is a weak solution of

∂u

∂t
= ,λ�u� +

n∑
i=1

ciδxi
(1.7)

in the sense that, for each smooth test function ϕ with compact support in
�0
T� × �d, ∫ T

0

∫ [
λ�u�,ϕ + u

∂ϕ

∂t

]
dxdt +

∫ T

0

n∑
i=1

ciϕ�t
xi�dt = 0(1.8)

We will call such a ρ a weak solution of the Stefan problem. We will prove
below an existence and uniqueness theorem for such weak solutions. Note that
even in the simple case of two creation sites, at some time the clusters will
meet and the weak solution will fail to satisfy (1.5) in a classical sense. We
will not pursue the issue here of in what sense weak solutions satisfy (1.5)
but refer the reader to the extensive literature (see, e.g., [16]).
The main results of this paper are the hydrodynamic limit for the particle

density and the consequent shape theorems:

Theorem 1.1. For each t > 0, as ε → 0, the empirical density field εd∑
x∈ε�d ηε

x�t�δx of the generalized internal DLA process converges weakly in
probability to the unique weak solution u�t� of the Stefan problem �15�.

To state the shape theorems, let us introduce some notation. Let Aε
t be the

occupied set in the generalized internal DLA process with creation at rate ε−d

at the origin. Note that A1
t is in the occupied set when creation and diffusion

occur at the same rate, hence it corresponds to the occupied set for the model
in [3]. In all dimensions we denote by B�x
 r� the Euclidean ball of radius r
centered at x.

Definition. The distance dist�A
� � between a set A ⊂ ε�d and a Borel
set� ⊂ �d is defined as follows. Let �A = ∪x∈ε�d

∏d
i=1�x
 x+εei� be the natural

embedding of A in �d, where ei are the unit vectors in the positive coordinate
directions. We define

dist�A
� � = � �A � � �

where �·� is Lebesgue measure and � � � denotes the symmetric difference
� ∪ � − � ∩ �.

Theorem 1.2. �i� In any dimension d and for each t > 0,

dist
(
Aε

t 
�t

) → 0
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as ε → 0 in probability, where �t = �x� s�x� ≤ t� is the occupied set in the
Stefan problem �15�.

In the following results about the occupied set of Stefan problem �15�, we
will assume that the creation of particles is at the origin, at rate 1, that is,
n = 1 and x1 = 0 in �15�.

�ii� Assume d = 1. There exist constants K1 and K2 such that, for suffi-
ciently large t,

B
(
0
K1

√
2t log t

) ⊂ �t ⊂ B
(
0
K2

√
2t log t

)
(1.9)

If g�n� = n (the case of independent random walks), then, for arbitrary δ > 0
and K1 = 1 − δ and K2 = 1 + δ, �19� holds for sufficiently large t, and it
continues to hold with probability 1 if �t is replaced with A1

t .
�iii� Assume d = 2. There exists a constant K such that

�t = B�0
K√
t�

and

dist
(
A1

t /
√
t
B�0
K�� → 0

in probability, as t → ∞. In the case g�n� = n, K is the solution of

exp�−K2/4� = παK2

�iv� Assume d ≥ 3. There exist constants K1 and K2 such that, for suffi-
ciently large t,

B
(
0
K1t

1/d) ⊂ �t ⊂ B
(
0
K2t

1/d)(1.10)

If g�n� = n, then, for arbitrary δ > 0 and K1 = �1− δ�ad and K2 = �1+ δ�ad,
�110� holds for sufficiently large t, and it continues to hold with probability
1 if �t is replaced with A1

t . Here, ad = �d��d/2�/2�1/d/√π, where � is the
gamma function.

When g�n� = n, (1.10) for A1
t was proved already in [3]. (The random walks

in this paper have different rates, but the argument applies unchanged.) In
the case of zero–range dynamics, strengthening (1.9) or (1.10) to make K1
and K2 arbitrarily close remains an open problem, and so does proving (1.9)
or (1.10) for A1

t instead of �t.

2. Stefan problem. In this section we prove some preliminary results
about the Stefan problem which we will need. Although these results use fairly
standard methods, we were not able to find any references in the vast litera-
ture on the Stefan problem (see references in [16]) dealing with the seemingly
natural situation of delta function sources. The Stefan problem that arises
from the internal DLA models that we are considering are nonstandard in
two ways: the delta function sources and the nonlinearity of the heat equation
inside the occupied region. These break the variational structure and this is
why there is some work to do.
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Let Pε
x�t� be the number of particles created at x up to time t in the internal

DLA process. Of course, Pε
x�t� is just a Poisson process with rate ε−dci if x = xi

and vanishes otherwise. Let ,ε be the lattice Laplacian on ε�d,

�,εφ�x = ε−2 ∑
�e�=ε

�φx+e − φx�

We consider the following lattice approximation to the Stefan problem,

∂uε

∂t
= ,ελ�uε� + dPε(2.1)

on ε�d, with uε�0� = 0. This system is a well-defined realization by realization
of the Poisson process. We can and will identify uε with the function on �d

whose value on the box of side length ε centered at x ∈ ε�d is uε
x.

Let q be the solution of

∂q

∂t
= ,q +

n∑
i=1

ciδxi

(2.2)

with q�0� = 0. Note that (2.2) can be solved explicitly and the solution is
q�x
 t� = ∑n

i=1
∫ t
0 p�x − xi
 t − s�ci ds, where p�x
 t� is the heat kernel on �d.

The main result of this section is

Theorem 2.1. The solutions uε of the lattice version of the Stefan
problem �21� converge weakly to the unique weak solution u of the Stefan
problem �17� with u�0� = 0 satisfying∫ T

0
�u�t� − q�t��2L2��d� dt < ∞(2.3)

Furthermore, the convergence is strong away from the creation points
x1
    
xn.

The theorem will be proved in Lemmas 2.2–2.8. The reason it is not quite
straightforward is that the nice space in which to look for the limit equation
to hold is H−1 and we have to face the fact that the Dirac delta functions
are simply not there if d ≥ 2. The same problem comes up when we try to
prove uniqueness. The idea behind the uniqueness result is that, if u and v
are two solutions of (1.7), theH−1 norm contracts at rate

∫ �u−v��λ�u�−λ�v��,
which is positive because λ is nondecreasing. But in dimensions d ≥ 4, the
solutions to our Stefan problem are not even L2 functions due to the Green’s-
function–like singularities at the creation points. So we have to identify and
subtract the singularities. In fact, the singularities behave in the same way as
for the linear heat equation with delta function sources, which can be solved
analytically (this is why we made the assumption that the jump rates are
not far from linear). In dimensions 1 and 2, the solution is always in L2 and
grows, at rate t1/2 in d = 1 and logarithmically in d = 2. In d ≥ 3, one
can check easily in the linear case γ�u� = u that the solution grows to the
solution of ,λ�u∞� = −∑n

i=1 ciδxi
, and in the nonlinear case one expects the
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same behavior. Let us make this more precise. We compare the solution of (2.1)
with the “free” problem on ε�d,

∂qε

∂t
= ,εq

ε + dPε
 qε�0� = 0(2.4)

The solution qε
x�t� is given explicitly by

∑n
i=1
∫ t
0 p

ε
x−xi

�t − s�dPε
xi

�s�, where
pε

x�t� is the heat kernel on ε�d. For any 1 ≤ p < d/�d − 2� if d ≥ 3, any
1 ≤ p < ∞ if d = 2 and any 1 ≤ p ≤ ∞ if d = 1, and any T ≥ 0, there exists
a finite constant Cp�T� so that, for all ε > 0 and 0 ≤ t ≤ T,

E

[
εd
∑
x

[
qε
x�t�

]p] ≤ Cp�T�(2.5)

It is also clear that, for any δ > 0 and any T > 0, there exists a finite constant
C�δ
T� such that, for all ε > 0 and 0 ≤ t ≤ T,

E

[
εd

∑
�x−xi�≥δ

[
qε
x�t�

]2] ≤ C�δ
T�(2.6)

Note that limδ→0 C�δ
T� < ∞ only in d ≤ 3. These computations are a little bit
standard so we only sketch the idea. By the local limit theorem, limε→0
 x→x

ε−dpε
x�t� = �4πt�−d/2exp�−x2/4t�, and from this and the well-known error

estimates for the convergence, or more directly from discrete versions of the
Nash inequality (see [6]), one can show that εd∑

x �ε−dpε
x�t��p ≤ Ct−d�p−1�/2.

Now one can use Jensen’s inequality to take out the time integral against the
Poisson process and obtain the desired estimates.
Let �·�−1 denote the H−1 norm on f� ε�d → � defined by

�f�2−1 = sup
φ

{
2εd

∑
x

fxφx − εd−2

2

∑
x
 �e�=ε

[
φx+e − φx

]2}
(2.7)

The supremum can be taken over functions φ with finite support. Note that
the norm can only be finite if

∑
x fx = 0. The H−1 norm can be adapted to

remove this restriction, but we will not since all functions we deal with will
automatically sum to 0. Let gε be the kernel of −,−1

ε , that is, at least for
functions f with finite support which sum to zero,[

− ,−1
ε f

]
x

= εd
∑
y

gε�x − y�fy�(2.8)

then we also have

�f�2−1 = ε2d
∑
x
y

gε�y − x�fyfx(2.9)

Equations (2.7) and (2.9) are equivalent definitions of the H−1 norm. If one
is finite, then the other is as well and they are equal. In d ≥ 3, gε is the
Green’s function, gε�x� = ∑∞

n=0pn�0
 x�, where pn are the n step transition
probabilities of a simple random walk on ε�d. In d ≤ 2, it is the potential
kernel, gε�x� = limN→∞

∑N
n=0pn�0
 x� − pn�x
 x�.
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Lemma 2.2. Let uε be the solution of �21� and let qε be the solution of �24�
Then for each T > 0, there exists a finite sure constant C independent of ε such
that ∫ T

0
�uε�t� − qε�t��52�ε�d� dt ≤ C(2.10)

Proof. We have

�uε�t� − qε�t��2−1 = −2
∫ t

0
εd
∑
x

(
uε
x − qε

x

)(
λ
(
uε
x

)− qε
x

)
ds

We use the bounds �λ�u�−u� ≤ C and εd∑
x u

ε
x
 ε

d∑
x q

ε
x ≤ C to bound this by

−2
∫ t

0
εd
∑
x

(
uε
x − qε

x

)2
ds + C

We conclude that the absolute value of the first term is bounded by a constant
independent of ε. ✷

Remark. In dimensions d ≤ 3, both terms in (2.10) are in 52 uniformly in ε
so the lemma is easier. This is proved as follows. If gx = ∫ t

0 p
ε
x�t−s�ds, then by

Schwarz’s inequality, g2
x ≤ ∫ t

0 �pε
x�s��2s−c ds

∫ t
0 s

c ds. Since �pε�s��52 ≤ Cs−d/2,
we have that �g�52 is finite if we can choose −1 < c < �2−d�/2, that is, if d ≤ 3.
For (2.4), one has the integral against a Poisson process instead of Lebesgue
measure, but the same result holds with probability 1. For (2.1), one has the
added complication of the nonlinearity. In this case, the corresponding “free”
problem is ∂qε/∂t = ,εγ�qε� + dPε. We can write ,εγ�qε� = ∑

ε ax
x+e�uε
x+e −

uε
x�, where ax
x+e = �γ�qε

x+e�−γ�ρε
x��/�qε

x+e−qε
x� are bounded above and below.

So ∂qε/∂t = ,εγ�qε� is the forward equation for a reversible random walk
and therefore one knows that the transition probabilities are bounded above
and below by Gaussians, by standard parabolic estimates for divergence form
diffusion equations [6]. Therefore, the above argument shows that the solution
of the inhomogeneous equation ∂qε/∂t = ,εγ�qε�+dPε is square integrable in
dimensions 3 and lower. Finally, the same estimate holds for solutions of (2.1)
by comparison with this case, because uε ≤ qε + α.

Lemma 2.3. Let uε be the solution of �21� Then for each δ > 0, there exists
a constant C�δ� < ∞ depending only on δ and u0 such that

E

[ ∫ T

0
εd

∑
�x−xi�≥δ

∑
�e�=ε

ε−2{λ(uε
x+e

)− λ
(
uε
x

)}2
dt

]
≤ C�δ�(2.11)

Remark. The idea of the lemma is that if one has a solution of ∂u/∂t =
,λ�u�, then the rate of contraction of the L2 norm is 2

∫
λ′�u��∇u�2 dx, so the

time integral of this term can be controlled.
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Proof. Let J�x� be a smooth function vanishing in a neighborhood of
the xi. We have

εd
∑
x

[
uε
x�t�

]2
J�x� = 2

∫ t

0
εd
∑
x

uε,ελ�uε�Jds

After a summation by parts, the last term becomes

−
∫ t

0
εd−2∑

x
 e

∇ε
 eu
ε∇ε
 eλ�uε�Jds −

∫ t

0
εd−2∑

x
 e

uε
x+e∇ε
 eλ�uε�∇ε
 eJds


where ∇ε
 efx = fx+e − fx. Applying Schwarz’s inequality and using the
assumptions on λ, we see that, for some 0 < c and C < ∞, this is bounded
above by

−c
∫ t

0
εd−2∑

x
 e

(∇ε
 eλ�uε�)2Jds + C
∫ t

0
εd−2∑

x
 e

[
uε
x+e

]2(∇ε
 eJ
)2
J−1 ds

Now we choose a smooth J which is unity on �x − xi� ≥ δ, vanishes on a
neighborhood of the xi and has ε−2�J�x+e�−J�x��2J−1�x� uniformly bounded
in ε. (Note this can be done since f�r� = r2 satisfies �f′�2 ≤ Cf.) By the
previous lemma and (2.6), uε have a uniform bound in L2 in any region not
containing the creation points xi. Hence the last term is bounded independent
of ε. We conclude that the first term is also bounded independent of ε, which
is what was to be proved. ✷

For fixed δ > 0, define for random functions f on ε�d, �f�2B = supE�εd ×∑
x fxφx�, where the supremum is over φ on ε�d with εd−2∑

x
 �e�=1 �φx+e −
φx�2 ≤ 1, �φ�∞ ≤ 1, and φ = 0 on �x−xi� ≤ δ. Let B denote the corresponding
Banach space. A comment on spaces is in order. Many of the spaces used in
this paper are defined for functions on ε�d and may at first seem to depend
rather strongly on ε. However, these are all really standard Sobolev spaces of
functions on �d. We always use the natural map of a function f on ε�d to a
function f̃ on �d obtained by setting the latter equal to the former on a box of
side length ε about the lattice point. To keep the connections to the particle
systems concrete, we have decided to always write explicitly the Sobolev norms
in terms of the original lattice functions.

Lemma 2.4. Let g ≤ λ be any smooth function with bounded first and sec-
ond derivatives, and let uε be the solutions of the lattice version of the Stefan
problem �21�. Then g�uε� are precompact as elements of the Banach space

L2��0
T��B� with norm
∫ T
0 �f�s��2B ds.

Proof. By Rellich’s theorem, it comes down to obtaining a uniform
bound on ∫ T

0

∥∥∥∥ ∂

∂s
g
(
uε�s�)∥∥∥∥2

B

ds
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(See [15] for a proof which applies in this context.) Take any φ with �φ�∞ ≤ 1,
εd−2∑

x
 �e�=1�φx+e − φx�2 ≤ 1 and φ = 0 on �x − xi� ≤ δ. We have �∂/∂t�εd∑
x g�uε

x�φx = εd∑
x g

′�uε
x�,ελ�uε

x�φx. Summing by parts, this becomes

εd−2∑
x

g′(uε
x+e

)∇ε
 eλ�uε�∇ε
 eφ + ∇ε
 eλ�uε�∇ε
 eg
′�uε�φx

By Schwarz’s inequality, the assumptions on φ and the bounds on g′ and g′′,
we can control this by a constant plus a constant multiple of

εd−2 ∑
�x−xi�≥δ
 �e�=ε

[∇ε
 eλ�uε�]2
By the previous lemma, this establishes the precompactness. ✷

From the L2 or Lp bounds, and the fact that λ�u� ≤ Cu, it is easy to extract
subsequences of uε and λ�uε� converging weakly on �0
T� × �d to u and λ̄,
respectively. What is not straightforward is that the convergence is strong
away from the creation points and that λ̄ = λ�u�. It is proved below.

Lemma 2.5. λ�uε� → λ�u� strongly.

Proof. Let φ be a smooth function which vanishes on any ball of radius
δ/2 around the creation points and is 1 on the complement of the union of
balls of radius δ around the creation points. Let pa = p�x
 a� be the heat
kernel on �d. Let g ≤ λ be a smooth approximation to λ with two bounded
derivatives. From the previous lemma, we can obtain a limit ḡ in L2��0
T��B�.
In particular, for each fixed a,

lim
ε→0

∫ T

0

∫
��φg�uε� − φḡ� ∗ pa�2 dxdt = 0

It is easy to check that the inequality
∫ �f∗pa −f�2 dx ≤ a

∫ �∇f�2 dx holds
for any function for which it makes sense. Also, since g ≤ λ is smooth with
bounded derivative, Lemma (2.3) holds with λ�uε� replaced by g�uε� with a
possible change of the constant C�δ� to C�δ
g�. Together these give∫ T

0

∫
�φg�uε� − φg�uε� ∗ pa�2 dxdt ≤ Ca


whereC < ∞ again depends on g and δ but not on ε. When we pass to the weak
limit, by lower semicontinuity of the norm we have

∫ T
0

∫
�x−xi�≥δ �∇ḡ�2 dxdt ≤

C�δ
g� as well, so the above estimate holds with g�uε� replaced by ḡ. We can
therefore write∫ T

0

∫
�x−xi�≥δ

�g�uε� − ḡ�2 dxdt ≤
∫ T

0

∫
�φg�uε� − φg�uε� ∗ pa�2 dxdt

+
∫ T

0

∫
��φg�uε� − φḡ� ∗ pa�2 dxdt

+
∫ T

0

∫
�φḡ ∗ pa − φḡ�2 dxdt
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Each term vanishes in the limit as ε → 0; then a → 0. This proves the strong
convergence of g�uε� to ḡ away from the creation points. Now we can choose
g�u� of the form described uniformly close to λ�u� to conclude that λ�u� → λ̄
strongly away from the creation points as well.
Next we want to show that λ̄ = λ�u�. If λ�u� had a Lipschitz inverse,

this would follow directly from the strong convergence away from the creation
points. However, λ�u� is not even invertible, so it requires an argument. Recall
that λ�u� = γ�u − α� for u ≥ α and 0 for u ≤ α, where γ is a nice invertible
function with γ�0� = 0. Suppose that f is a Lipschitz function with f�0� = 0
and f�λ� ≤ γ−1�λ�+α. Because f is Lipschitz, we have that f�λ�u�� converges
strongly to f�λ̄�. Because f�λ� ≤ γ−1�λ� + α, we have that f�λ�uε�� ≤ uε for
each ε > 0. Taking limits, we get f�λ̄� ≤ u. Taking the supremum of the left-
hand side over such f, we get γ−1�λ̄� + α ≤ u whenever u > 0. On the other
hand, uε ≤ γ−1�λ�uε��+α for each ε > 0, and taking limits gives u ≤ γ−1�λ̄�+α.
The two inequalities together suffice to identify λ̄ = λ�u�. ✷

Lemma 2.6. u is a weak solution of the Stefan problem �17� satisfying �23�.

Proof. Since we know now that λ�uε� → λ�u� strongly, we can simply
take limits in the weak formulation of the microscopic Stefan problem to see
that u is a weak solution of (1.7). From (2.10) we obtain∫ T

0
�uε�t� − qε�t��252�ε�d� dt ≤ C

Since uε−qε converge to u−q weakly, (2.3) follows by lower semicontinuity. ✷

Lemma 2.7. There is at most one solution of the Stefan problem �17�
satisfying �23�.

Proof. Suppose u and v are two such solutions. From (2.3) we obtain∫ T

0
�u�t� − v�t��2L2��d� dt < ∞

By a well-known theorem [14], if V ⊂ H ⊂ V′ are separable Hilbert spaces
with V and V′ being in duality relative to the inner product of H and we have
a curve u�t�� 0 ≤ t ≤ T satisfying u ∈ L2�0
T�V� and u′ ∈ L2�0
T�V′�, then
u is almost everywhere equal to a function continuous from �0
T� into H and
for 0 ≤ t1 ≤ t2 ≤ T, �u�t2��2H − �u�t1��2H = 2

∫ t2
t1

"u�t�
 u′�t�# dt. Therefore,

�u�T� − v�T��2H−1��d� ≤ −2
∫ T

0

∫
�u − v��λ�u� − λ�v�� dx dt

Since λ is nondecreasing, we conclude that �u�T� − v�T��H−1��d� = 0. This is
true for every T > 0 and therefore u ≡ v. ✷

Lemma 2.8. uε → u strongly away from the creation points.
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Proof. First note that for our solution, the Lebesgue measure of the
mushy region 0 < u ≤ α must be zero, because if u is a weak solution, then so
is u − u1�0<u≤α� and then uniqueness tells us that u1�0<u≤α� ≡ 0.
Now let fn�u� = u if u ≥ α + 1/n, fn�u� = 0 if u ≤ α and fn is linear in

between. Each function fn is Lipschitz continuous and they approximate the
function f�u� = u1�u > α�. We write uε = fn�uε�+�uε−fn�uε��. By the strong
convergence of λ�uε� to λ�u� away from creation points, we have that fn�uε�
converges strongly to fn�u� as ε → 0 there, too. Since uε converges weakly to
u, the final term uε − fn�uε� converges weakly to u − fn�u�. By the previous
paragraph, this converges to 0 as n → ∞. Choosing a diagonal sequence,
we can therefore have fn�ε��uε� → u1�u > α� strongly and uε − fn�ε��uε� →
0 weakly. However, all terms are nonnegative, and a nonnegative sequence
converging weakly to zero, must in fact converge strongly. From this we infer
the strong convergence of the sequence uε away from the creation points, and
this completes the proof. ✷

One of the nice consequences of having the lattice approximation to the
Stefan problem is that it allows us to prove very easily comparison principles
for solutions even though the creation rates are singular. For example, passing
to the limit after an easy computation on the lattice level using the maximum
principle, we obtain the following result which will be useful in Section 4.

Lemma 2.9. Let u be the weak solution of �17� with bounded initial con-
dition u0 and let v be a subsolution (respectively, supersolution) satisfying

∂v

∂t
− ,λ�v� ≤

n∑
i=1

ciδxi

 v�0
x� = v0�x� �resp ≥�(2.12)

If v0 ≤ u0, then v ≤ u�resp. ≥�.

3. Hydrodynamic limit. Recall the definition (2.7), (2.9) of theH−1 norm
�·�−1 on ε�d. The main result of this section is

Theorem 3.1. Let ηε be the configuration of the generalized internal DLA
process and let uε be the solution of the discretized Stefan problem �21� with
the same initial condition. Then

lim
ε→0

E
[�ηε�T� − uε�T��2−1

] = 0

Here and in the rest of the section, E denotes expectation with respect to
the generalized internal DLA process ηε�·�. The theorem will be proved in
Lemmas (3.2)–(3.11).

Lemma 3.2. Let ηε be the configuration of the generalized internal DLA
process and let uε be the solution of the discretized Stefan problem �21� with
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the same initial condition. Then

�ηε�T� − uε�T��2−1 = 2
∫ T

0
εd
∑
x

V�ηε
x
 u

ε
x� dt + Mε�T�
(3.1)

where

V�n
u� = −�n − u��a�n� − λ�u�� + a�n�(3.2)

and Mε�t� is a martingale.

Proof. This is an explicit computation. We compute

d��ηx − ux��ηy − uy�� =
{
�,ε�a�ηx� − λ�ux����ηy − uy�
+ �ηx − ux��,ε�a�ηy� − λ�uy���
− ε−21��x − y� = 1��a�ηx� + a�ηy��

+ ε−21�x = y�∑
e

�a�ηx� + a�ηx+e��
}
dt + dMxy


where Mxy are martingales, and then use the fact that �−,εg
ε�0 = ε−d. ✷

Now consider the generalized IDLA process running in a finite box 9 with
reflecting boundary conditions and no creation. The set of invariant measures
will be denoted µ

β
9 running over the parameter set β ∈ B. They are described

as follows. For each N ≥ α�9�, there is exactly one invariant measure with N
particles. Under that measure, each ηx ≥ α and the configuration ηx−α, x ∈ 9
is distributed according to the canonical invariant measure for our reference
zero-range process with N − α�9� particles. On the other hand, if N < α�9�,
then for each configuration ofN particles in 9 with no more than α particles at
each site, the Dirac mass at that configuration is invariant. So the parameter
set B consists really of each fixed configuration with no more than α particles
per site, together with each N ≥ α�9�.

Lemma 3.3. The marginal on 9 of any translation-invariant, invariant

measure for L0 on �d is a mixture of the µ
β
9.

The proof of this lemma is given in Section 5. We now continue with the
proof of Theorem 3.1

Lemma 3.4. Let V be as in �32� and let µ be a translation-invariant,
invariant measure for the process. Then for any u,

Eµ�V�η0
 u�� ≤ 0

Proof. Let 9 be a box around the origin and let µ9 be the marginal of µ on
9. By the previous lemma, µ9 is a mixture of the extremal invariant measures
µ

β
9 on 9. Let f�n� be any function of whole numbers which vanishes if n ≤ α
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and let µβ
9 be an extremal invariant measure on 9 with density vβ. Let νγ be

an invariant measure for the zero-range dynamics, that is, a product measure
with marginals νγ�ηx = n� = Z−1�γ�γn�g�n� · · ·g�1��−1. We have

Eµ
β
9
�f�η0�� =

{
0
 if vβ ≤ α,
Eνγ�vβ−α� �f�η0 − α�� + O��9�−1� if vβ > α.

In the second case, the error O��9�−1� comes from changing the measure µ
β
9

with fixed density to the product measure ([11, section 6] is a good reference
for the equivalence of ensembles in this context). Note that both a�n� and
na�n� vanish if n ≤ α. Furthermore, if v > α,

Eνγ�v−α� �a�η0�� = λ�v�

Eνγ�v−α� �η0a�η0�� = �v + 1�λ�v�

Letting �9� → ∞, we have

Eµ�V�η0
 u�� = −
∫

�vβ − u��λ�vβ� − λ�u��dϒβ


where ϒβ is a probability measure on the parameter set for the extremal
invariant measures. This is nonpositive since λ is nondecreasing. Note the
apparent lack of uniformity in the argument is easily resolved: except for
small densities, the extremal invariant measures on 9 are parameterized by
the density itself, and because of the stationarity of µ one has an easy cutoff
of large densities uniform in 9. ✷

Consider the right-hand side of (3.1). If we take the expectation, the mar-
tingale disappears and because of the time averaging we will be evaluating
V�ηx
u� under an invariant measure. In fact, we can do some spatial aver-
aging as well so that the resulting measure is also translation invariant. By
Lemma 3.4, the result is nonpositive, giving the hydrodynamic limit. This
argument is made precise in Lemma 3.10. However, there are several cutoffs
needed first. Lemma 3.5 provides a basic estimate that will be used repeatedly.
Lemma 3.6 cuts off the bad points near the creation sites where the density
is unbounded. Lemma 3.7 cuts off large values of V, and Lemma 3.8 provides
for the averaging in space and time in order to obtain a translation-invariant,
invariant measure when we look at the limit of the distribution around a
macroscopic site as we let ε → 0.

Lemma 3.5. �i� Let 1 ≤ p ≤ 2 if d ≤ 3 and 1 ≤ p < d/�d − 2� if d ≥ 4. For
each T > 0, there is a constant Cp�T� < ∞ such that, for all ε > 0,

E

[ ∫ T

0
εd
∑
x

[
ηε

x�t�
]p

dt

]
≤ Cp�T�
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�ii� There exists a function C�δ� < ∞ for each δ > 0 such that, for all ε > 0,

E

[ ∫ T

0
εd

∑
�x−xi�≥δ

[
ηε

x�t�
]2
dt

]
≤ C�δ�

Proof. Follows from the similar bound on u and Lemma 3.1 which
implies that the expectation of the L2 norm of the difference of u and η can
be controlled. ✷

Lemma 3.6. Let V be as in �32�. Then

E
[�ηε�T� − uε�T��2−1

] ≤ 2εd
∑

�x−xi�≥δ

∫ T

0
E
[
V
(
ηε

x
 u
ε
x

)]
dt + =1�δ
 ε
T�
(3.3)

where for each T > 0,

lim sup
δ→0

lim sup
ε→0

=1�δ
 ε
T� = 0

Proof. Let =1�δ
 ε
T� = CE�∫ T
0 εd∑�x� �x−xi�<δ� ηx dt�, where C is large

enough that a�n� ≤ Cn. Replacing a�n� by λ�n� in (3.2) gives something neg-
ative and the error can be bounded by a finite multiple of n. We can estimate
=1 by part 1 of Lemma 3.5 and Chebyshev’s inequality. ✷

Lemma 3.7. Let φ5�x� = x if x ≤ 5 and φ5�x� = 5 if x ≥ 5 be the cutoff at
level 5. Let

V5�n
x� = −φ5

(�n − x��a�n� − λ�x��)+ φ5�a�n��(3.4)

Then

E
[�ηε�T� − uε�T��2−1

]
≤ 2εd

∑
�x−xi�≥δ

∫ T

0
E
[
V5

(
ηε

x�t�
 uε
x�t�

)]
dt + =2�5
 ε
 δ
T�
(3.5)

where

lim sup
δ→0

lim sup
5→∞

lim sup
ε→0

=2�5
 ε
 δ
T� = 0

Proof. Since one of the error terms from (3.3) is negative, all we have to
show is that

lim sup
5→0

lim sup
ε→0

E

[ ∫ T

0
εd
∑
x

�φ5�a�ηx�� − a�ηx��dt
]

= 0


which follows from Lemma 3.5 and Chebyshev’s inequality. ✷



INTERNAL DLA AND THE STEFAN PROBLEM 1545

Lemma 3.8. Let V5 be as in �34� and let u be the unique solution of
the Stefan problem �15�. For each σ > 0, let Bσ�y
 t� = ��x
 s� ∈ ε�d ×
�0
T�� �x − y� ≤σ , �s − t� ≤ σ�. Then

E
[�ηε�T� − uε�T��2−1

]
≤ 2

∫
�y−xi�≥δ

∫ T

0
Av�x
 s�∈Bσ �y
t�E

[
V5�ηε

x�s�
 u�y
 t��]dtdy
+ =3�ε
 σ
 5
 δ
T�


(3.6)

where for each T > 0,

lim sup
δ→0

lim sup
σ→0

lim sup
5→∞

lim sup
ε→0

=3�ε
 σ
 5
 δ
T� = 0

Here Av denotes the average.

Proof. After a summation by parts, the error term becomes

=3 =
∫ ∫ T

0
Av�x
 s�∈Bσ �y
t�E

[
V5

(
ηε

x�s�
 u�y
 t�)− V5

(
ηε

x�s�
 uε
x�s�

)]
dtdy

The y integral stays away from the creation sites xi by δ − σ . From the
special form of V, and using the bounds a�n� ≤ Cn and λ′ ≤ C, and Schwarz’s
inequality, for each ζ > 0,[

V5

(
ηε

x
 u�y�)− V5

(
ηε

x
 u
ε
x

)]
≤ Cζ−1((ηε

x

)2 + (uε
x

)2 + u�y�2� + ζ
(
u�y� − uε

x

)2


(3.7)

Since δ > 0 goes to zero last, we can use the uniform L2 bounds on ηε and
uε away from the creation sites [(2.6) and Lemma 3.5] to show that the part
of =3 coming from the first term on the right-hand side of (3.7) is bounded by
some C′ζ−1 uniformly in ε and σ for each δ > 0. The second term vanishes
in the limit as ε, then σ are sent to zero, by the strong convergence of the
lattice approximations to the Stefan problem away from the creation points
(Theorem 2.3). Finally, we can send ζ → ∞ to obtain the lemma. ✷

The following lemma provides us cheaply with the cutoff of large space that
we will need.

Lemma 3.9. There are constants C1 < ∞ and C2 > 0 depending only on
the walk rate g�·�, the creation rates ci and on T such that, for all ε > 0,

E

[
εd

∑
�x�≥M

ηx�T�
]

≤ C1M
−1 exp

{−C2M
2}

Proof. Let Xi
t denote the positions at time t of all the particles with

the convention that a particle is held at its creation site up to the time it
is created. Clearly, the left-hand side is just the normalized number of such
particles outside of �x� ≤ M at time T. If we let Yi

t = Xi
t up to the time
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that Xi reaches its resting place, and then walk at rate ε−2 after that, then
the left-hand side is clearly bounded by εdE

[
#i � sup0≤t≤T �Yi

t� ≥ M
]
which,

since there are less than C3ε
−d such particles, is clearly bounded by

C3 sup
i

P

(
sup
0≤t≤T

�Yi
t� ≥ M

)


Let ti be the creation time of particle i and note that after its creation it
behaves as a symmetric random walk with jump rate ε−2at, where at is
bounded above and below away from zero and adapted to the σ-field of the
entire process. Make a random time change τi�t� after time ti so that, after
its creation Yi

τi�t� has jump rate ε−2. Then the probability can be rewritten in
terms of a standard random walk Xt running at rate ε−2 as P

(
sup0≤t≤τ−1

i �T�−ti

�Xt� ≥ M
)
, which, because τi�t� is bounded below by C4t for some C4 > 0, is

bounded above by

P

(
sup

0≤t≤C5T

�Xt� ≥ M

)
for some finite C5. It is now standard to show that this is controlled by the
term on the right-hand side of the lemma. ✷

From now on it will be convenient to think of our configuration η on �d

instead of ε�d because we want to study the limiting measure. Note, however,
that time is still sped up by a factor of ε−2. Let µε�t
 dη� be the distribution
of the η at time t and let

µ̄ε
 σ�y
 t
 dη� = Av�x
 s�∈Bσ �y
t�τxµ
ε�s
 dη�
(3.8)

where τx is the shift acting on measures: τxµ�f�η�� = µ�f�τxη��, where
�τxη�y = ηx+y. Then we can write

Av�x
 s�∈Bσ �y
t�E
[
V5�ηx�s�
 u�y
 t��] = Eµ̄ε
σ �y
t�

[
V5�η0
 u�y
 t��](3.9)

Here we have used the notation Bσ�y
 t� to be consistent with the statement
of Lemma 3.8, but now sites x are on the unscaled lattice �d so the side length
of the box is really σε−1.

Lemma 3.10. For each y ∈ �d with �y − xi� ≥ δ and any t ∈ �0
T� and
0 < σ < δ, the set of measures µ̄ε
 σ�y
 t�, ε > 0, defined in �38� is tight with

respect to the weak topology on the set of configurations ��d
and any weak

limit is a translation-invariant, invariant measure of the internal DLA process
�without creation�.

Proof. Let cx, x ∈ �d, be any positive weights with
∑

cx = 1. The sets∑
cxηx ≤ M are weakly compact and expand to fill the whole configuration

space. By Chebyshev’s inequality,

µ̄ε
 σ�y
 t�
(∑

x

cxηx > M

)
≤ M−1Eµ̄ε
σ �y
 t�

[∑
x

cxηx

]
≤ CM−1σ−d
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from the fact that the expected number of particles is less than some constant
multiple of ε−d. This establishes the tightness.
Since it is constructed as the limit of large averages of bounded measures,

the translation invariance of the limit measure is immediate.
We now prove that such a limit measure µ must be invariant. Let f be

any bounded local function and let L0 be the generator of the internal DLA
process without creation and without the speed up of time (1.1).

Eµ�L0f�η�� = lim
ε→0

Av�x
 s�∈Bσ �y
t�E
[
L0f�τxηs�

]


By the translation invariance of the dynamics,

Av�x−y�≤σε−1E�L0τxf� = E
[
L0
{
Av�x−y�≤σε−1τxf

}]


By the definition of the generator,

1
2σ

∫ t+σ

t−σ
E
[
L0
{
Av�x−y�≤σε−1τxf

}�s�]ds
= ε2

2σ
E
[
Av�x−y�≤σε−1τxf

]∣∣t+σ

t−σ

− ε2−d

2σ

∫ t+σ

t−σ
E
[
Lc

{
Av�x−y�≤σε−1τxf

}]
ds

Note, however, that the last term always vanishes for σ < δ and small enough
ε since the support of τxf never contains any of the creation sites. Therefore,
the right-hand side is bounded by Cε2. Therefore, we have Eµ�L0f� = 0 for
any bounded local function and we conclude that µ is invariant. ✷

Lemma 3.11. lim supε→0E
[�ηε�T� − uε�T��2−1

] = 0

Proof. By Lemma 3.8, we have that the left-hand side is bounded above by

lim sup
δ
 σ→0
δ>σ

lim sup
5→∞

lim sup
ε→0

∫ ∫ T

0
1��y−xi�≥δ�Eµ̄ε
σ �y
 t�

[
V5�η0
 u�y
 t��]dtdy

The first thing we want to do is pass the limit in ε through the integral.
It is simple to check from the assumptions on a�·� that V5 is the sum of a
nonpositive term and a term which is bounded by a constant multiple of η0.
For the integral corresponding to the nonpositive term, commutation of the
limit in ε and the integration in t and y is a direct application of Fatou’s
lemma. For the term which is bounded by a constant multiple of η0, we break
it into the integration over �y� < M and over �y� ≥ M. For fixed M, we can
pass the ε limit through the first piece by the bounded convergence theorem,
since V5 is bounded for each fixed 5. Then we can use Lemma 3.9 to estimate
away the second piece as M → ∞. By the previous lemma, we therefore have
that the left-hand side of the lemma is bounded above by

lim sup
δ
 σ→0
δ>σ

lim sup
5→∞

∫ ∫ T

0
1��y−xi�≥δ�Eµ�y
 t��V5�η0
 u�y
 t���dtdy
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where for each y and t, µ�y
 t� is a translation-invariant, invariant measure
for the dynamics without creation. Referring to (3.4), we can see that V5 is the
sum of two monotonic functions in 5. By the monotone convergence theorem,
and by part 2 of Lemma 3.5, which bounds each term separately, we can take
the limit in 5 through the time and space integrations. The resulting integrand
is the expectation ofV with respect to a translation-invariant, invariant meas-
ure for the dynamics without creation, which vanishes by Lemma 3.4. This
completes the proof of the hydrodynamic limit. ✷

4. Shape theory. This section is devoted to convergence results for the
occupied sets in the internal DLA and Stefan problems. We will denote by
Aε

t ⊂ ε�d the occupied set �x� ηx > 0� and by �t = �x� ρ�x
 t� > 0� the
occupied set of the Stefan problem (1.5). Recall that we defined the distance
between a set on ε�d lattice and a set in Euclidean space to be the Lebesgue
measure of the symmetric difference of the natural embedding of the first with
the second.

Theorem 4.1. For every t > 0,

lim
ε→0

dist
(
Aε

t 
�t

) = 0

in probability.

Remark. What follows immediately from the hydrodynamic limit is that
macroscopic densities on the occupied set Aε

t and the occupied set in the
Stefan problem �t agree. On the other hand, convergence in dist means (1)
that on the complement of a slightly larger set than the occupied set in the
Stefan problem, the density of particles is going to zero and, (2) that on a
slightly smaller set than the occupied set in the Stefan problem, the density
of “holes” is going to zero. Note that the first statement follows immediately
from the weak convergence, but the second does not because the density could
be macroscopically correct while on the microscopic scale there could be clus-
ters of free particles surrounded by seas of holes. The proof of Theorem 4.1
given below utilizes a bootstrapping argument to demonstrate that this does
not happen. Actually, computer simulations leave no doubt that A1

t /
√
t → �1

a.s. in the even stronger Hausdorff metric.

Lemma 4.2. Let 9 ⊂ �d be a box of side length L = aε−1 centered at 0
and let � be a concentric box of side length 9/2. Let 0 < κ1 < 1 and 0 <
κ2 < ∞ be fixed. Let H ⊂ 9 of cardinality κ1L

d. Let N = κ2L
d parti-

cles start at x1
    
 xN ∈ � and perform zero-range dynamics with killing
on the boundary. In other words, the generator of the process is Lf�η� =
ε−2∑

x
 e g�ηx��f�ηx
x+e� − f�η��, where the sum is over x ∈ 9 and �e� = 1
with the convention that if x ∈ 9 and x + e %∈ 9, then ηx
x+e

y = ηy unless

y = x in which case ηx
x+e
x = ηx − 1. Assume that for some c < ∞, g�n� ≤ cn.

Let px1
 
 xN
H�ε� denote the probability that none of the particles are in H at

time a2. Letp�ε� = supx1
 
 xN
Hpx1
 
 xN
H�ε�.Then lim supε→0 ε
d logp�ε� < 0.
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Proof of Lemma 4.2. Suppose first of all that the particles move indepen-
dently. In other words, g�n� = cn for some c. It is not hard to show that there
exists γ > 0 so that the probability for a particle starting in � and killed on the
boundary of 9 to be inH at time a2 is at least γ, uniformly over all such initial
points x and target setsH. We could call such an event a success. By standard
large deviation results for any r < 1, the probability pN to have fewer than
rNγ successes satisfies limN→∞ N−1 logpN < 0, and the probability we seek
is certainly smaller.
Now we do the same computation in a different way again assuming that

g�n� = cn. Define the empirical density field ρε�t
 x� to be the number of
particles at x at time t on the tile of side length ε containing εx. Let Pε be the
distribution of the field ρε�t�, 0 ≤ t < ∞. The event whose probability we want
to compute is a subset of the event A that, given initial mass concentrated in
�−a/4
 a/4�d, the empirical density field vanishes at time a2 on some subset
H ⊂ �−a/2
 a/2�d of Lebesgue measure κ1ad > 0. FixH and note that, for each
ε, supx1
 
 xN

px1
 
 xN
H�ε� is achieved at some N points in �, so let us then
start the system with theN particles at those points. The corresponding set of
initial measures ρε�x
0�dx will be tight. Suppose that for some subsequence
εk, we have ρεk�0
 x�dx ⇒ µ0 for some measure µ0. Since the particles move
independently, it is straightforward to show that then ρεk�t
 x�dx ⇒ ρ�t
 x�dx,
where ρ is the solution of the linear heat equation ∂tρ = c,ρ on �−a/2
 a/2�d
with initial data µ0 and Dirichlet boundary conditions. Let φ be a smooth test
function on �d with support in 9. The quantity Mε�t� = expZε�t�, where

Zε�t� = ε−d
∫
φ�x��ρ�t
 x� − ρ�0
 x��dx

− cε−2−d
∫ t

0

∫
ρ�s
 x�∑

e

eφ�ε�x+e��−φ�εx� dxds

is a martingale under Pε and hence has expectation 1. By standard arguments
(see [10]), one obtains from this the large deviation lower bound

lim inf
k→∞

εd
k logPεk

�B� ≥ − inf
ρ�·
 ·�∈B

∫
dt�∂tρ − c,ρ�2−1
 ρ−1�t�


where �f�2−1
 ρ−1 = supφ�∫ fφdx− ∫ �∇φ�2ρdx� and B is any open set of time-
dependent density functions. We conclude from this, and from the previous
computation, that

inf
ρ�·
 ·�∈A

∫
dt�∂tρ − c,ρ�2−1
 ρ−1�t� > 0

This is really done in two steps. First we enlargeA to Ã slightly by consider-
ing density functions with initial data in a slightly larger set than �−a/4
 a/4�d
and which vanish at time a2 on some subset H ⊂ �−a/2
 a/2�d of Lebesgue
measure slightly smaller than κ1a

d. Repeating the previous arguments, we
obtain the lower bound above for the infimum over the interior of Ã, which
contains A.
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In the general case g�n� ≤ cn, Mε�t� is a submartingale. Its expectation is
therefore bounded by 1, and in particular we have

lim sup
k→∞

εd
k logE

Pεk �expZε�t�� ≤ 0

By standard arguments (see [10]), we can conclude from this the (nonoptimal)
large deviation upper bound

lim sup
k→∞

εd
k logPεk

�A� ≤ − inf
ρ�·
 ·�∈A

∫
dt�∂tρ − c,ρ�2−1
 ρ−1�t�


which is strictly negative by the previous argument. ✷

Proof of Theorem 4.1. A free particle here will mean one at a site where
there are more than α particles and the number of holes at a site x is α − ηx

if ηx ≤ α.
Let t be a fixed time and let γ > 0 be arbitrary. Choose δ > 0 and τ > 0

and let �δ
 τ ⊂ �d be the set where the solution of the Stefan problem (1.7) is
larger than α+2d+1δ at time t−τ. Note that from the definition of�t, we have
�δ
 τ → �t as τ
 δ → 0. Divide the set �δ
 τ into boxes of side length a = √

τ,
throwing away those that are not completely contained in �δ
 τ. It suffices to
show that the probability that the density of holes at time t on a fixed such
box is less than γ approaches 1 as ε goes to zero.
Let n be a positive integer. From the hydrodynamic limit we know that

there are at least δ�aε−1�d free particles in a smaller box of side length a/2
with the same center as our fixed box at each time t0
    
 tn−1, where ti =
t − ��n − i�/n�τ, with probability which goes to 1 as ε → 0. The positive
integer n will be chosen large but bounded independent of ε later in the proof.
We study how many holes are removed in our fixed box in the time interval

�ti
 ti+1�. Our box has side length L = aε−1 sites and we know there are N =
δLd free particles in a concentric box of side length L/2. We can pretend that
only theseN particles are able to remove holes, and furthermore that any free
particle which leaves the box in which it started is annihilated immediately,
for the true number of holes which is destroyed is only decreased in this way.
Furthermore, we can pretend that our N particles only interact with each
other and not with any other stray particles: let ζx denote the total number
of free particles at x and let ξx denote the subset of these that come from
our original group of N. If the ξx particles each jump at rate g�ξx�/ξx and
the other ζx − ξx each jump at rate �g�ζx� − g�ξx��/�ζx − ξx�, then the total
jump rate is g�ζx� as required and the firstN only interact among themselves.
(Note that this relabeling is just the standard first-class/second-class picture
and depends on the attractiveness of the system.) LetM denote the number of
holes in our box (counted according to multiplicity). We also need only consider
the case. M > γLd, for otherwise there is nothing to prove.
To summarize: each of our N particles moves according to a random walk

with zero-range jump rates in the time interval �ti
 ti+1� until either (1) it hits
a hole, in which case the particle is removed and the hole multiplicity at that
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site is reduced by one, or (2) it reaches the boundary of the larger box, in which
case it is also removed from the system. The initial conditions consist ofN,M,
the positions of the N particles and the position of the M holes. These will
be fixed for the estimates which we now derive, which are very rough and
hold uniformly over all initial conditions, as well as all environments for the
particles.
For c0 > 0 with c0N ≤ M, let G denote the event that fewer than c0N

holes are filled during the specified time interval. If G happens, then there
must exist a subset H of the original M holes, with cardinality less than c0N,
so that all holes in the complement HC are unfilled, and there must exist a
subset W of the original N particles, with cardinality less than c0N, so that
all particles in WC avoid all the holes in HC.
Now, let us choose any two subsets H and W of the original holes and par-

ticles, of cardinalities less than c0N. By the previous estimate, the probability
that all particles in WC avoid all the holes in HC is bounded above by e−c1N

for some c1 > 0 for sufficiently small ε.
The number of possible choices for H and W is

∑c0N−1
i
 j=1

(
M
i

)(
N
j

)
. Using that

M ≤ αLd and the bound
(
n
k

) ≤ exp�2k log�n/k�� for large n and kwith k < n/2,
we can bound this by N2 exp�c2N�, where c2 = 2c0 log�α/�c20δ��. Choosing c0
sufficiently small, we can bound this in turn by exp�c1N/2�. Hence we have
shown that there are constants c0 > 0 and c3 = c1/2 independent of the
environment, the initial conditions and ε such that

P�G� ≤ exp
{− c3δL

d
}


Now we choose n large enough that nc0N > M, or in particular n > α/δc0 and
we repeat the process in each of our time intervals, stopping if we ever have
M ≤ γLd, and we say we are successful in the interval if G does not happen;
in other words, if the number of holes filled is greater than or equal to c0N, or
if we have stopped already. If we have success in every single interval, then
for sure we have density less than γ in our box at time t. But by the previous
estimate, the probability of success in every single interval is at least(

1− exp
{− c3δL

d
})n



SinceL = aε−1 and a, c3 and n are independent of ε, this goes to 1 as ε → 0. ✷

We now turn to applying Theorem 4.1 to obtain the desired shape theorems.
Throughout the rest of this section, we will assume that the creation is at the
origin only, at constant rate c1 = 1. Recall that Aε

t ⊂ ε�d is the occupied
set in the diffusively scaled microscopic model and �t = �x� ρ�x
 t� > 0� is
the occupied set in the Stefan problem (1.5). When d = 2, the creation and
diffusion have the same scaling factor and so we obtain the following result.

Corollary 4.3. Assume that d = 2. As t → ∞, dist
(
A1

t /
√
t
�1

) → 0 in
probability as t → ∞.
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We now show that in d = 2,�1 is a circular disc with the conjectured radius
by constructing an explicit radially symmetric solution of (1.5).
Putting the equation into polar coordinates, the problem is to show that

there exists a constant K ∈ �0
∞�, and a function ρ�r
 t� which is smooth in
the interior of ��r
 t�� r ≤ K

√
t� and satisfies

∂ρ

∂t
=
(

∂2

∂r2
+ 1

r

∂

∂r

)
γ�ρ� + 1

2πr
δ0


with boundary conditions

ρ�K√
t
 t� = 0


∂ρ

∂r
�K√

t
 t� = − Kα

2
√
tγ′�0� 

We look for self-similar solutions of the form ρ�r
 t� = v�rt−1/2�. Writing s =
rt−1/2, F = γ−1 and u = γ�v�, one gets

u′′�s� +
(
1
s

+ 1
2
sF′�u��s�

)
u′�s� + 1

2πs
δ0 = 0


u�K� = 0
 u′�K� = −1
2
αK

(4.1)

It follows that, off s = 0, �su′�′ = − 1
2s

2F′�u�u′ and therefore,

su′�s� = −1
2
αK2 +

∫ K

s

1
2
σ2F′�u��σ�u′�σ� dσ(4.2)

In addition, u�K� = 0 and su′�s� → −1/�2π� as s → 0. Recall first that F′

is bounded above and below by positive constants and note that (4.1) implies
that u′ < 0. Moreover, (4.2) and Gronwall’s inequality imply that, for some
constant C (which depends only on γ), − 1

2αK
2 exp�CK2� ≤ su′�s� ≤ − 1

2αK
2.

As su′�s� is also increasing on �0
K�, it has a limit as s → 0, which varies
continuously between 0 and −∞ as K varies between 0 and ∞. Therefore,
there exists a K such that lims→0 su

′�s� = −1/�2π�, and therefore K can be
chosen so that a solution of (4.1) exists [such a solution must be unique, since
it produces a solution of (1.5)].
When γ�u� = u, and therefore F′�u� = 1, (4.1) can be explicitly solved,

giving

u�s� =
∫ K

s

1
2πs

exp�−s2/4� ds


which forces K = K�α� to be the solution of

exp �−K2/4� = παK2(4.3)

For example, to two significant digits,K = 054 if α = 1,K = 039 if α = 2 and
K ∼ 1/

√
πα as α → ∞. It is amusing to note that, for α = 1, the upper bound

onK obtained by pretending that all particles are killed is 1/
√
π ≈ 056. Thus

the system conspires to keep a particular fraction (≈7%) of the particles alive.
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In particular, Lemma 4.2 now implies the following shape theorem.

Theorem 4.4. In dimension d = 2, there exists a constant K, such that

dist�A1�t�/
√
t
B�0
K�� → 0

as t → ∞. In the linear case γ�u� = u, K is given by �43�.

Now we address the long-term behavior of both the particle system and
the Stefan problem in dimensions other than 2. For constant creations at a
single site, there are now no self-similar solutions. One way to circumvent
this problem is to make the creation rate variable with time. Assume that the
creation rate at the origin c1 is a function of t and satisfies c1�t�t−�d−2�/2 → 1
as t → ∞. Then, after speeding up time by factor ε−2, and sending ε → 0, the
macroscopic equation becomes

∂ρ

∂t
= ,γ�ρ� + t�d−2�/2δ0


or in polar coordinates,

∂ρ

∂t
=
(

∂2

∂r2
+ 1

r

∂

∂r

)
γ�ρ� + ��d/2�

2πd/2
r1−dt�d−2�/2δ0


where � is the gamma function. The convergence is proved in the same way
as for constant creation rate. A self-similar solution ρ = v�rt−1/2� exists for
any γ (with the same proof as before). In the case γ�u� = u,

v�s�= ��d/2�
2πd/2

∫ K

s
s1−dexp�−s2/4�ds
 where

��d/2�
πd/2

exp�−K2/4�=αKd

Now we study the problem of long time behavior in dimensions different
from 2 in the case of constant creation rate at the origin. It is proved in [3] that
when d ≥ 3, γ�u� = u and α = 1, the asymptotic behavior of A1

t is the same
as when the source is discrete; that is, with probability 1, for every δ > 0,

��1− δ�t1/d · B�0
K�� ∩ �d ⊂ A1
t ⊂ �1+ δ�t1/d · B�0
K�
(4.4)

eventually in t. Here,Kd = �d��d/2��/2πd/2, so that B�0
K� has unit volume.
Our first theorem shows that the occupied set in the Stefan problem expands
at the same rate.

Proposition 4.5. Assume that d ≥ 3, γ�ρ� = ρ, α = 1 and δ > 0 is fixed.
For sufficiently large t,

�1− δ�t1/d · B�0
K� ⊂ �t ⊂ �1+ δ�t1/d · B�0
K�

with the same K as in �44�. In the case of general γ, there exist two constants
0 < K1 < K2 < ∞, so that

t1/d · B�0
K1� ⊂ �t ⊂ t1/d · B�0
K2�
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Proof. The idea is to construct sub- and supersolutions of the Stefan
problem (1.5) out of the explicit solution

v�r
 t� =
∫ t

0
�4πs�−d/2 exp �−r2/4s�ds = 1

4πd/2
r2−d

∫ ∞

r2/4t
sd/2−2e−s ds

of the heat equation ∂v/∂t = ,v+δ0. Consider first the case γ�ρ� = ρ. We have

∂v

∂r
�r
 t� = − r1−d

2πd/2

∫ ∞

r2/4t
s�d−2�/2e−s ds

= − r1−d

2πd/2
���d/2� + O

(
rdt−d/2�)(4.5)

Let us take a ball of radius Ct1/d. The rate of expansion of the boundary
is Ct1/d−1/d. Note that this coincides with �−�∂v�/�∂r���Ct1/d
 t� up to order
t1/d−d/2 exactly when C = K, where Kd = �d��d/2��/2πd/2 as in (4.4), that is,
exactly when the ball has volume t. Define

ρ�r
 t� = v�r
 t� − v�Ct1/d
 t�
for r ≤ Ct1/d and v = 0 outside the ball. If C > K, then, after a certain time,
ρ is a supersolution of the Stefan problem, and if C < K, then it is eventually
a subsolution. The proposition then follows from Lemma 2.9.
For the case of general γ, note that the spatial coupling term ,γ�ρ� can be

written as ∇ · D∇, where from the assumptions, γ′ = D is uniformly bounded
above and below away from zero. Aronson’s estimates [6] tell us that there are
positive finite constants c1
 c2
 b1
 b2 such that

c1�4πs�−d/2 exp �−b1�x − y�2/4�t − s��
≤ p�s
x
 t
y� ≤ c2�4πs�−d/2 exp �−b2�x − y�2/4�t − s��


where p�s
x
 t
y� is the solution at �y
 t� of the corresponding heat equation,
starting from a Dirac mass at x at time s. Therefore, the flux across the
boundary of the ball of radius Ct1/d is bounded above and below in terms of
the corresponding flux in the linear case (4.5). But now we can repeat the
same argument as in the linear case to obtain the upper and lower bounds. ✷

In one dimension, the proportion of created particles which are killed con-
verges to 0 as time progresses. Therefore, as pointed out in [3], the rate of
boundary expansion is of much slower order than t. Again, [3] have a conjec-
ture in the linear case which we now state and prove as a theorem.

Theorem 4.6. Assume that d = 1, γ�u� = u and α = 1. Then for every
ε > 0, with probability 1, for sufficiently large t,

�1− ε�
√
2t log t · �−1
1� ∩ � ⊂ A1

t ⊂ �1+ ε�
√
2t log t · �−1
1�(4.6)
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Proof. Choose 1 < c1 < c < 1 + ε. Let Nt be the number of parti-
cles created during the time interval �0
 t� which exit �−c

√
2t log t, c

√
2t log t�

before time t. Moreover, let ps
 t be the probability of the event that a random
walk started at the origin at time s ∈ �0
 t� visits a site outside �−c

√
2t log t,

c
√
2t log t� during the time interval �s
 t�. Observe first that ps
 t ≤ p0
 t by a

simple coupling. Next, let Sn be the discrete-time simple symmetric random
walk started at 0, andWt the standard Brownian motion. Then, by elementary
large deviations,

p0
 t ≤ 2P�max�Sk� 0 ≤ k ≤ 2c1t� > c
√
2t log t� + e−βt


for some β > 0. Using first the Skorohod embedding, and then the reflection
principle, we obtain

p0
 t ≤ 2P
(
max�Ws� 0 ≤ t ≤ 2c1t� > c

√
2t log t

)+ e−βt

≤ 4P
(
W2c1t > c

√
2t log t

)+ e−βt

≤ C · t−c2/�2c1� < C · t−c/2


for large t. Let N′
t be the number of particles created during the time interval

�0
 t�. Then
P�Nt ≥ √

t� ≤ P�Nt ≥ √
t
N′

t ≤ 2t� + P
(
N′

t > 2t
)


Here, P
(
N′

t > 2t
)
is exponentially small and

P
(
Nt ≥ √

t
N′
t ≤ 2t

) ≤ exp
(−√

t
)
E
(
exp�Nt�1N′

t≤2t
)

≤ exp
(−√

t
)(
1+ 2p0
 t

)2t
≤ exp

(− √
t + Ct1−c/2)

Thus, by the Borel–Cantelli lemma, P�Nt ≤ √
t eventually) = 1. Hence, even

if all of Nt particles get killed outside �−c
√
2t log t, c

√
2t log t� by time t, A1

t is
with probability 1 eventually included in �−c

√
2t log t−2

√
t
 c
√
2t log t+2

√
t�.

The upper bound in (4.7) now follows since �1 + ε − c�√2t log t eventually
exceeds 2

√
t.

To prove the lower bound, let A1
t = �−Lt
Rt�. We will first show that, with

large probability, at least one of Lt and Rt must be at least c
√
2t log t, for

some small c. Then we will show that both Lt and Rt must satisfy this lower
bound; in the final step we will bootstrap c close to 1.
To this end, fix c < 1 − 2ε and let c1 = c/�1 − 2ε�. Let us momentarily

consider the free particle system with creation only, without killing. In this
case, let Nt (resp. N′

t) be the number of particles created in �0
 εt�, whose
position is at least c

√
2t log t (resp. at most −c

√
2t log t) at time t. Again,

P�Nt ≤ c
√
2t log t� ≤ E�exp�c√2t log t−Nt��, and normal approximation can

be used to show that

E�exp�−Nt�� ≤ exp
(−Cεt1−c21/2

)

(4.8)
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so that P
(
Nt ≥ c

√
2t log t eventually) = 1 and by symmetry the same is true

for Nt replaced by N′
t. The natural coupling between the internal DLA and

the free particle system is the one in which the particles in the internal DLA
are tagged but allowed to continue to diffuse. Under this coupling, if Nt and
N′

t are both larger than c
√
2t log t, then Rt ∨ Lt ≥ c

√
2t log t.

From the previous paragraph, it follows that for large enough t, Rεt ∨Lεt ≥
cε
√
2t log t. Assume, for example, that Lεt ≥ cε

√
2t log t. Now make particles

created after time εt execute free random walks, and defineN1
t to be the num-

ber of particles created in �εt
2εt�, which satisfy the following two conditions:
1. the particle’s position at time t is at least c

√
2t log t, and

2. the particle does not go below −Lεt during the time interval �εt
 t�.
Once again, one can use the Skorohod embedding and the reflection princi-

ple for Brownian motion to show that a single particle will satisfy (1) and (2)
above with probability at least εt−c21/2, and so (4.8) holds with Nt replaced by
N1

t and ε replaced by ε2. Thus it follows that, with probability 1, for large t,
Rt ∧ Lt ≥ cε

√
2t log t.

For the final bootstrapping step, notice that what we proved so far implies
that Rεt ∧ Lεt ≥ cε2

√
t log t for t large enough. Then repeat the argument in

the previous paragraph with ε replaced by ε2 to show that Rt∧Lt ≥ c
√
2t log t

with probability at least exp�−Cε3t1−c21/2�. ✷

Again, it turns out that �t has exactly the same rate of expansion.

Proposition 4.7. Assume that d = 1, γ�v� = v and α = 1, and fix an ε > 0.
Then, for large t,

�1− ε�
√
2t log t · �−1
1� ⊂ �t ⊂ �1+ ε�

√
2t log t · �−1
1�

In the case of general γ, there exist two constants 0 < K1 < K2 < ∞, so that
K1

√
t log t · �−1
1� ⊂ �t ⊂ K2

√
t log t · �−1
1�.

Proof. With notation as in the proof of Proposition (4.5), we need to prove
that for large t,

− ∂v

∂r

(
C
√
2t log t
 t

) ≥ C

√
log t
2t


(4.7)

when C < 1, while the inequality is reversed when C > 1. This follows from
the fact that the integral on the left of (4.7) is asymptotic to a constant mul-
tiple of t−C/2�log t�−1/2. The case of general γ again follows as in the proof of
Proposition (4.5) by using Aronson’s estimates. ✷

Remark. Theorem 4.6, as well as the upper and lower bounds obtained
in Propositions 4.6 and 4.7, can easily be extended to the case of multiple
creation sites or α > 1, thereby proving the shape theorems in these cases
as well.
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5. Invariant measures. In this section we prove Lemma 3.3, which iden-
tifies the infinite volume invariant measures of our degenerate zero-range pro-
cesses. We use the methods of [1], [13], with appropriate modifications to deal
with the degeneracy.
The family of measures µβ on configurations η ∈ �0
1
   ��d

comprises the
following two sets of measures:

1. for every u ≥ α, the translation-invariant product measures in which, for
every x, ηx ≥ α and ζx = ηx−α is distributed as the marginal for the grand
canonical invariant measure for the zero-range dynamics L1 from (1.2) with
density ρ = u − α, and

2. all Dirac masses on configurations in �0
1
    
 α��d
.

It is clear that any such µβ is invariant. What we need is the converse.

Theorem 5.1. Any invariant, translation-invariant measure for L0 defined
in �11� is a mixture of µβ. More precisely, any extremal invariant, translation-
invariant measure is one of µβ.

The only methods available at the present time to prove such a result rely
on either attractiveness.or duality. Since there is no useful duality available
in our context, we have to assume attractiveness and use a method based on
coupling. The coupled process makes the usual attempt to “move the two pro-
cesses in unison as much as possible.” Formally, the generator of the coupled
process is given by

�Lf�η
 ξ� = ∑
x∼y

1ηx>ξx
�a�ηx� − a�ξx���f�ηxy
 ξ� − f�η
 ξ��

+ 1ηx<ξx
�a�ξx� − a�ηx���f�η
 ξxy� − f�η
 ξ��

+ a�ηx ∧ ξx��f�ηxy
 ξxy� − f�η
 ξ��
Note that we do not really need to require the rates of the zero-range process

performed by the particles on top of the occupied set to be strictly increasing for
the arguments in this section to hold. This assumption was made to minimize
technical difficulties elsewhere in the proof.
In the statements of Lemmas 5.2–5.5, we assume that ν̄ is an invariant,

translation-invariant measure for the coupled process.

Lemma 5.2. For any two neighboring sites x0 and y0,

ν̄
{�η
 ξ�� ηx0

< ξx0

 ξy0

< ηy0

 α < ηy0

} = 0(5.1)

Proof. Let f�η
 ξ� = �ξx0
− ηx0

�+. Then

�Lf = ∑
x∼x0

1ηx0
>ξx0

�a�ηx0
� − a�ξx0

���f(ηx0x
 ξ
)− f�η
 ξ��

+ 1ηx0
<ξx0

�a�ξx0
� − a�ηx0

���f(η
 ξx0x
)− f�η
 ξ��
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+ a�ηx0
∧ ξx0

��f(ηx0x
 ξx0x
)− f�η
 ξ��

+ 1ηx>ξx
�a�ηx� − a�ξx���f

(
ηxx0
 ξ� − f�η
 ξ�)

+ 1ηx<ξx
�a�ξx� − a�ηx���f

(
η
 ξxx0

)− f�η
 ξ��
+ a�ηx ∧ ξx�

(
f
(
ηxx0
 ξxx0

)− f�η
 ξ�)
= ∑

x∼x0

0

+ 1ξx0>ηx0
− �a�ξx0

� − a�ηx0
���−1�(I)

+ 0

+ 1ηx>ξx
ξx0>ηx0
�a�ηx� − a�ξx���−1�(II)

+ 1ηx<ξx
ξx0≥ηx0
�a�ξx� − a�ηx���+1�(III)

+ 0


where ∼ denotes nearest neighbors on the lattice. Then

Eν̄

( ∑
x∼x0

expression (I)
)

= − ∑
x∼x0

∑
k>5

�a�k� − a�5��ν̄�ξx0
= k
ηx0

= 5�


while

Eν̄

( ∑
x∼x0

expression (III)
)

= ∑
x∼x0

∑
k>5

�a�k� − a�5��ν̄�ξx = k
ηx = 5
 ξx0
≥ ηx0

�

Therefore, by translation invariance,

Eν̄��Lf� ≤ Eν̄

( ∑
x∼x0

expression (II)

)
≤ −∑

k<5

�a�5� − a�k��ν̄(ξy0
= k
ηy0

= 5
 ξx0
> ηx0

)


However, as ν̄ is invariant, Eν̄��Lf� = 0. Since the rates a�5� are strictly
increasing for 5 > α, ν

(
ξy0

= k
ηy0
= 5
 ξx0

> ηx0

) = 0 whenever k < 5
and α < 5, which is equivalent to the statement of the lemma. ✷

Lemma 5.3. For any two neighboring sites x0 and y0,

ν̄
{(
η
 ξ

)� ηy0
> α
ηx0

< α
} = 0(5.2)

Proof. This time, let f = �ηx0
− α�+. Then

�Lf = ∑
x∼x0

(
a�ηx0

�1ηx0
>α�−1� + a�ηx�1ηx0

≥α�+1�
)
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Therefore,

Eν̄��Lf� = ∑
x∼x0

∑
k>α

a�k�(−ν̄�ηx0
= k� + ν̄�ηx = k
ηx0

≥ α�)
= − ∑

x∼x0

∑
k>α

a�k�ν̄�ηx = k
ηx0
< α�

This implies that, for each k > α, ν̄�ηy0
= k
ηx0

< α� = 0. ✷

We will shorten maxη = max�ηx� x ∈ �d� and minη = min�ηx� x ∈ �d�.

Lemma 5.4. ν̄�maxη > α
minη < α� = 0.

Proof. It suffices to show that (5.2) holds for arbitrary sites x0 and y0.
To this end we will prove, by induction on k ≥ 1, that (5.2) holds for all x0,
y0 for which �x0 − y0�1 = k, where �x�1 = ∑d

i=1 �xi� is the L1 distance on the
lattice. To prove the k − 1 → k step, take a y1 with �x0 − y1�1 = k − 1 and
�y1 − y0�1 = 1. Choose the function f = 1ηy1

>α
ηx0
<α. Then, by the induction

hypothesis, f = 0 ν̄-a.s., and therefore, �Lf ≥ 0 ν̄-a.s. However, Eν̄��Lf� = 0,
thus so is Eν̄ of the part of �Lf which corresponds to a particle jumping from
y0 to y1 in η. That is,

0 = Eν̄

(
a�ηy0

�1ηy1
≥α
ηx0

<α

)
= ∑

k>α

a�k�ν̄(ηy0
= k
ηy1

≥ α
ηx0
< α

)
= ∑

k>α

a�k�ν̄(ηy0
= k
ηx0

< α
)



the last inequality being the consequence of Lemma 5.3 applied to y0 and y1.
Thus ν̄�ηy0

= k
ηx0
< α� = 0 for any k > α. ✷

Lemma 5.5. The two marginals of ν̄ are monotonely coupled, that is,

ν̄
(( ∩x∈�d

{�ηx − α�+ ≥ �ξx − α�+
})

∪ ( ∩x∈�d

{�ηx − α�+ ≤ �ξx − α�+
}) = 1

Proof. This proof is very similar to the previous one, so we just point out
the main steps. It suffices to prove that (5.1) holds for arbitrary sites x0 and
y0, that is, for �x0−y0�1 = k for k ≥ 1. Again, take a y1 with �x0−y1�1 = k−1
and �1 − y0� = 1, and choose the function f = 1ηy1

>ξy1 
ξx0>ηx0

α<ηy1

. As before,

the induction hypothesis implies that Eν̄ of the part of �Lf which corresponds
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to a particle jumping from y0 to y1 in η, but not in ξ, is 0:

0 = Eν̄

(�a�ηy0
� − a�ξy0

��1ηy0
>ξy0

f�ηy0y1
 ξ�)
= ∑

k>5

�a�k� − a�5��ν̄�ηy0
= k
 ξy0

= 5
 ηy1
≥ ξy1


 ξx0
> ηx0


 α ≤ ηy1
�

= ∑
k>5

�a�k� − a�5��ν̄�ηy0
= k
 ξy0

= 5
 ξx0
> ηx0


 α ≤ ηy1
�


by Lemma 5.3. It follows that

0 = ν̄�ηy0
> ξy0


 ηy0
> α
 ξx0

> ηx0

 α ≤ ηy1

�
= ν̄�ηy0

> ξy0

 ηy0

> α
 ξx0
> ηx0

�

by Lemma 5.3. This completes the proof. ✷

Proof of Theorem 5.1. Assume that µ1 is an extremal invariant
translation-invariant measure for the process. Pick another extremal invari-
ant translation-invariant measure µ2 (to be specified later). Then there exists
an extremal invariant translation-invariant measure ν̄ for the coupled process,
with marginals µ1 and µ2 (Lemma 4.3 in [1]).
By Lemma 5.4, one can decompose the measure µ1 as follows:

µ1�η ∈ ·� = µ1�η ∈ · �minη < α�µ1�minη < α�
+µ1�η ∈ · �maxη > α�µ1�maxη > α�
+µ1�η ∈ · �η ≡ α�µ1�η ≡ α�

= µ1�η ∈ · �maxη ≤ α · η %≡ α�µ1�minη < α�
+µ1�η ∈ · �minη ≥ α
η %≡ α�µ1�maxη > α�
+µ1�η ∈ · �η ≡ α�µ1�η ≡ α�

The three conditional measures above are invariant and translation invariant.
Since µ1 is extremal, one of the three nonconditional probabilities above must
be 1. If either µ1�minη < α� = 1 or µ1�η ≡ α� = 1, then µ1�maxη ≤ α� = 1,
so there is nothing to prove. If µ1�maxη > α� = 1, then ηx ≥ α for every x
µ1-a.s. Assume this for the rest of the proof.
Now let µ1 be an extremal invariant measure with u = Eµ1

�η0� ≥ α. More-
over, let µ2 be the extremal measure µu from subset (1) of the family µβ; that
is, µu is the product measure in which, for every x, ηx ≥ α and ζx = ηx − α
has the marginal distribution of the grand canonical invariant measure for the
nondegenerate zero-range process L1 defined in (1.2). Then, by Lemma 5.5 and
the fact that ν̄ is extremal (see the proof of Lemma 4.5 in [1]).

ν̄
( ∩x∈�d �ηx ≥ ξx�

) = 1 or ν̄
( ∩x∈�d

{
ηx ≤ ξx

}) = 1(5.3)

As µ1 and µ2 have the same density, Eν̄�ηx − ξx� = 0 for every x. This forces
ηx = ξx ν̄-a.s. in either case of (5.3), that is, ν̄���η
 ξ�� η ≡ ξ�� = 1. In partic-
ular, µ1 = µu. ✷
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Notes added in proof. (i) Internal DLA models, and Stefan problems, can
be classified, as subcritical, critical or supercritical according to whether

t−d/2
∫ t

0
c�s�ds

goes to 0, remains bounded or goes to ∞, as t goes to ∞, where c�t� is the
(time-dependent) creation rate at the origin. In this scheme, [3] study the sub-
critical regime and we study the critical regime for internal DLA. The [3]
method for continuous-time models is by comparison with discrete time. One
can consider also the “soft” version of their models, say in d ≥ 3 with ran-
dom walk at rate ε−2 and creation at the origin at rate ε−d. In this article,
we proved the hydrodynamic limit for such models are Stefan problems and
one can check easily that they are of subcritical type. Then one can reverse
the comparison argument of [3] to infer the shape theorem for the original
discrete- or continuous-time internal DLA from that of the “soft” version. In
this way, the hydrodynamic limit method can imply shape theorems for the
subcritical cases even though they have no hydrodynamic scaling themselves.
We know of no results in the supercritical case except in one dimension.
(ii) Since this paper was submitted, related work has been done by

BenArous and Ramirez and by Funaki. BenArous and Ramirez have an inde-
pendent proof of the one-dimensional case using order statistics. They also
study the large deviations of the lifetime of a tagged particle in the subcritical
case with random obstacles: the first ξx particles at x are frozen, where ξ is a
stationary random field. Funaki studies a model similar to ours without the
creation.
(iii) After we completed this work, we were shown the article [4], which

studies a model related to ours in one dimension, also making the connection
with a Stefan problem. Unfortunately, some of the details of their argument
remain unclear to us, in particular the crucial final sentence of the proof of
their Proposition 2.1.
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