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A SUBEXPONENTIAL-TIME QUANTUM ALGORITHM FOR THE
DIHEDRAL HIDDEN SUBGROUP PROBLEM∗

GREG KUPERBERG†

Abstract. We present a quantum algorithm for the dihedral hidden subgroup problem (DHSP)

with time and query complexity 2O(
√

log N). In this problem an oracle computes a function f on
the dihedral group DN which is invariant under a hidden reflection in DN . By contrast, the classical
query complexity of DHSP is O(

√
N). The algorithm also applies to the hidden shift problem for an

arbitrary finitely generated abelian group.

The algorithm begins as usual with a quantum character transform, which in the case of DN is
essentially the abelian quantum Fourier transform. This yields the name of a group representation
of DN , which is not by itself useful, and a state in the representation, which is a valuable but
indecipherable qubit. The algorithm proceeds by repeatedly pairing two unfavorable qubits to make
a new qubit in a more favorable representation of DN . Once the algorithm obtains certain target
representations, direct measurements reveal the hidden subgroup.
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1. Introduction. The hidden subgroup problem (HSP) in quantum computa-
tion takes as input a group G, a finite set S, and a black-box function (or oracle)
f : G → S. By promise there is a subgroup H ⊆ G such that f(a) = f(b) if and only
if a and b are in the same (right) coset of H. The problem is to identify the subgroup
H. We assume that G is given explicitly; black-box groups are a separate topic [13].

Shor’s algorithm [22] solves HSP when G = Z in polynomial time in the length
of the output. An important predecessor is Simon’s algorithm [23] for the case G =
(Z/2)n. Shor’s algorithm extends to the general abelian case [14], to the case when H
is normal [10], and to the case when H has few conjugates [9]. Since the main step in
the generalized algorithm is the quantum character transform on the group algebra
C[G], we will call it the character algorithm.

In the dihedral hidden subgroup problem (DHSP), G is the dihedral group DN

and H is generated by a reflection. (Other subgroups of DN are only easier to find;
see Proposition 2.1.) In this case H has many conjugates and the character algorithm
works poorly. This hidden subgroup problem was first considered by Ettinger and
Høyer [7]. They presented an algorithm that finds H with a linear number of queries
(in the length of the output) but an exponential amount of computation. Ettinger,
Høyer, and Knill generalized this result to the general finite hidden subgroup problem
[8].

In this paper we will describe a new quantum algorithm for the dihedral group
DN with a favorable compromise between query complexity and computation time
per query.
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Fig. 1. Some elements of D8.

Theorem 1.1. There is a quantum algorithm that finds a hidden reflection in the

dihedral group G = DN (of order 2N) with time and query complexity 2O(
√

log N).

The time complexity 2O(
√

log N) is not polynomial, but it is subexponential. By
contrast any classical algorithm requires at least 2N1/2 queries on average. Unfortu-

nately, our algorithm also requires 2O(
√

log N) quantum space.
We will prove Theorem 1.1 in a convenient case, N = 2n, in section 3. In section 5,

we will provide another algorithm that works for all N , and we will obtain the sharper

time and query complexity bound Õ(3
√

2 log3 N ) when N = rn for some fixed radix r.
The algorithm for this last case generalizes to many other smooth values of N .

2. Group conventions. The dihedral group DN with 2N elements has the
conventional presentation

DN = 〈x, y
∣∣ xN = y2 = yxyx = 1〉.

(See Artin [2, section 5.3].) An element of the form xs is a rotation and an element of
the form yxs is a reflection. The parameter s is the slope of the reflection yxs. This
terminology is motivated by realizing DN as the symmetry group of a regular N -gon
in the plane (Figure 1). In this model yxs is a reflection through a line which makes
an angle of πs

N with the reflection line of y.
In this paper we will describe algorithms for the hidden subgroup problem with

G = DN and H = 〈yxs〉. If we know that the hidden subgroup is a reflection, then
the hidden subgroup problem amounts to finding its slope s.

Proposition 2.1. Finding an arbitrary hidden subgroup H of DN reduces to
finding the slope of a hidden reflection.

Proof. If H is not a reflection, then either it is the trivial group or it has a non-
trivial intersection with the cyclic subgroup CN = 〈x〉. Finding the hidden subgroup
H ′ = H ∩ CN in CN is easy if we know the factors of N , and we can factor N using
Shor’s algorithm. Then the quotient group H/H ′ is either trivial or a reflection in
the quotient group G/H ′.

If H is trivial, then this will be revealed by the fact that an algorithm to find the
slope of a hidden reflection must fail.
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3. A basic algorithm. In this section we will describe an algorithm to find the
slope s of a hidden reflection in DN when the period N = 2n is a power of 2. The
main part of the algorithm actually finds only the parity of s. Once this parity is
known, the main part can be repeated with a subgroup of DN isomorphic to DN/2.
The group DN has two such subgroups:

F0 = 〈x2, y〉, F1 = 〈x2, yx〉.

The subgroup Fsmod2 contains H and the other does not, so we can pass to one of
these subgroups if and only if we know s mod 2.

For any finite set S, the notation C[S] denotes a Hilbert space with S as an
orthogonal basis. (This is the quantum analogue of a classical data type that takes
values in S.) Define the constant pure state |S〉 in C[S], or more generally in C[T ] for
any T ⊇ S, as the superposition

|S〉 =
1√
|S|

∑
s∈S

|s〉.

For the moment let us assume an arbitrary finite hidden subgroup problem f :
G → S with hidden subgroup H. Assuming that there is a classical circuit to compute
f , we can dilate it to a unitary embedding

Uf : C[G] → C[G] ⊗ C[S] = C[G× S]

which evaluates f in the standard basis:

Uf |g〉 = |g, f(g)〉.

All finite hidden subgroup algorithms, including ours, begin by computing

Uf |G〉

and then discarding the output register C[S], leaving the input register for further
computation. The result is the mixed state

ρG/H =
1

|G|
∑

|Ha〉〈Ha|

on the input register C[G].
Many works on hidden subgroup algorithms describe these steps differently [22,

18, 7, 8, 9, 10]. Instead of defining Uf as an embedding that creates f(g), they
define it as a unitary operator that adds f(g) to an ancilla. They describe its output
as measured rather than discarded, and they describe the mixed state ρG/H as a
randomly chosen coset state |Ha〉. We have presented an equivalent description in
the formalism of mixed states and quantum operations [18, Chapter 8].

Now let G = DN with N = 2n. The general element of DN is g = ytxs with
s ∈ Z/N and t ∈ Z/2. Thus the input register C[DN ] consists of n qubits to describe
s and 1 qubit to describe t. The second step of our algorithm is to apply a unitary
operator to ρDN/H which is almost the character transform (section 8.2). Explicitly,
we apply the quantum Fourier transform (QFT) to |s〉,

FN : |s〉 �→ 1√
N

∑
k

e2πiks/N |k〉,
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and then measure k ∈ Z/N . The measured value is uniformly random, while the state
on the remaining qubit is

|ψk〉 ∝ |0〉 + e2πiks/N |1〉.

(The symbol ∝ means “proportional to,” so that we can omit normalization and
global phase.) We will always create the same state ρDN/H and perform the same

measurement, so we can suppose that we have a supply of 2O(
√
n states |ψk〉, each

with its own known but random value of k.
Note that |ψ−k〉 and |ψk〉 carry equivalent information about s, because

|ψ−k〉 = X|ψk〉,(1)

where X is the bit flip operator. They will be equivalent in our algorithms as well.
We would like to create the state

|ψ2n−1〉 ∝ |0〉 + (−1)s|1〉

because its measurement in the |±〉 basis reveals the parity of s. To this end we
create a sieve which creates new |ψk〉’s from pairs of old ones. The sieve increases
the number of trailing zeroes α(k) in the binary expansion of k. Given |ψk〉 and |ψ�〉,
their joint state is

|ψk〉 ⊗ |ψ�〉 ∝ |0, 0〉 + e2πiks/N |1, 0〉 + e2πik�/N |0, 1〉 + e2πi(k+�)/N |1, 1〉.

We now apply a CNOT gate

|a, b〉 �→ |a, a + b〉

and measure the right qubit. The left qubit has the residual state

|ψk±�〉 ∝ |0〉 + e2πi(k±�)s/N |1〉

and the label k ± �, which is inferred from the measurement of a + b. Thus we have
a procedure to extract a new qubit |ψk±�〉 from the old qubits |ψk〉 and |ψ�〉. The
extraction makes an unbiased random choice between k + � and k − �. We may well
like the extracted qubit better than either of the old ones.

By iterating qubit extraction, we can eventually create the state that we like best,
|ψ2n−1〉. We will construct a sieve that begins with 2Θ(

√
n) qubits. Each stage of the

sieve will repeatedly find two qubits |ψk〉 and |ψ�〉 such that k and � agree in Θ(
√
n)

low bits in addition to their trailing zeroes. With probability 1
2 , the label k ± � of

the extracted qubit has
√
n more trailing zeroes than k or �. If the sieve has depth

Θ(
√
n), we can expect it to produce copies of |ψ2n−1〉.
In conclusion, here is a complete description of the algorithm to find a hidden

reflection in DN with N = 2n. Also let m = 

√
n− 1�.

Algorithm 3.1. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉 and N = 2n.
1. Make a list L0 of copies of the state ρDN/H by applying the dilation Df to the

constant pure state |DN 〉 and discarding the input. Extract |ψk〉 from each
ρDN/H with a QFT-based measurement.

2. For each 0 ≤ j < m, we assume a list Lj of qubit states |ψk〉 such that k has
at least mj trailing zeroes. Divide Lj into pairs of qubits |ψk〉 and |ψ�〉 that
share at least m low bits (in addition to trailing zeroes), or n − 1 −mj bits
if m = j − 1. Extract the state |ψk±�〉 from each pair. Let the new list Lj+1

consist of those qubit states of the form |ψk−�〉.
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3. The final list Lm consists of states |ψ0〉 and |ψ2n−1〉. Measure a state |ψ2n−1〉 in
the |±〉 basis to determine the parity of the slope s.

4. Repeat steps 1–3 with the subgroup of DN which is isomorphic to DN/2 and which
contains H.

3.1. Proof of the complexity.
Theorem 3.2. Algorithm 3.1 requires O(8

√
n) queries and Õ(8

√
n) computation

time.
Proof. In outline, if |Lj | � 2m, then we can pair almost all the elements of Lj so

that k and � share m low bits for each pair |ψk〉 and |ψ�〉. Then about half the pairs
will form Lj+1, so that

|Lj+1|
|Lj |

≈ 1

4
.

We can set |Lm| = Θ(2m). Working backward, we can set |L0| = Θ(8m). The
computation time consists of tasks with only logarithmic overhead.

In detail, we will assume that

|Lj | ≥ Cm−j2
3m−2j

for a certain constant 9 > Ck ≥ 3. We will bound the probability that this assumption
survives as j increases. The constants are defined by letting C0 = 3 and letting

Ck =
Ck−1

1 − 2−k−m
3

+ 2−2k

by induction on k. It is not hard to check that

Ck > Ck−1, lim
k→∞

Ck < 9.

(A calculator may help for the first few terms of the limit, the worst case being m = 1.)
Since we create L0 directly from oracle calls, we can set

|L0| = C02
3m.

Given Lj , let Pj be a maximal set of pairs |ψk〉 and |ψ�〉 with m low matching bits.
Then

|Pj | ≥
|Lj | − 2m

2
≥ 23m−2jCj(1 − 22j−2m)

2
,

because there are at most 2m unmatched pairs. The list Lj+1 is then formed from Pj

by summand extraction, so |Lj+1| can be understood as the sum of N independent,
unbiased Bernoulli random variables. In general, if BN is a sum of N unbiased
Bernoulli random variables, then

P [BN ≤ (1 − b)N

2
] ≤ (cosh b)Ne−Nb2 ≤ e−Nb2/2.

(The first inequality is the Chernoff bound on large deviations.) Setting

b = 2j−
4m
3 ,



A QUANTUM ALGORITHM FOR DHSP 175

we learn that

|Lj+1| ≥
23m−2j(Cj − 22j−2m)(1 − 2j−

4m
3 )

4
= Cj+12

3m−2j−2

with probability at least

1 − e−2
m
3

−1

.

Finally by induction on j,

P [|Pj | ≥ Cm−j2
3m−2j ∀j] ≥ (1 − e−2

m
3

−1

)m → 1

as m → ∞.
Thus the final list Lm is very likely to be large. Since the highest bit of k in |ψk〉

was never used for any decisions in the algorithm, it is unbiased Bernoulli for each
entry of Lm. Therefore Lm is very likely to contain copies of |ψ2n−1〉.

4. Some motivation. Algorithm 3.1 can be motivated by related ideas in rep-
resentation theory and the theory of classical algorithms.

On the representation theory side, the input space C[DN ] has an orthogonal
decomposition into two-dimensional representations Vk of DN ,

C[DN ] ∼=
⊕

k∈Z/N

Vk.(2)

This means that each element of DN is represented by a unitary operator on C[DN ]
(given by left multiplication) and each Vk is an invariant subspace, so that each ele-
ment of DN is also represented by a unitary operator on each Vk [2, section 9.2]. Every
orthogonal decomposition of a Hilbert space corresponds to a projective measurement
[18, section 2.2.5]; this particular measurement can be computed using a QFT.

In the representation Vk, the generators x and y are represented as follows:

x �→
(
e2π/N 0

0 e−2π/N

)
, y �→

(
0 1
1 0

)
.

Since the state |Ha〉 is invariant under the represented action of H, the residual state
|ψk〉 is too. Thus abstract representation theory motivates the use of this state to
find H. Note also that Vk

∼= V−k as representations, as if reflected in the equivalence
between |ψk〉 and |ψ−k〉 in (1).

The representation Vk is irreducible except when k = 0 or k = N/2. Thus (2)
is not far from the Burnside decomposition of C[G] into irreducible representations
in the special case G = DN . When expressed as a unitary operator, the Burnside
decomposition is called the character transform or the noncommutative Fourier trans-
form. (Measuring the character name solves the hidden subgroup problem for normal
subgroups [10] and almost normal subgroups [9].) Use of VN/2 as the target of Al-
gorithm 3.1 is motivated by its reducibility; the measurement corresponding to its
irreducible decomposition is the one that reveals the slope of s.

On the algorithm side, the sieve in Algorithm 3.1 is similar to a sieve algorithm
for a learning problem due to Blum, Kalai, and Wasserman [5] and to a sieve to find
shortest vector in a lattice due to Ajtai, Kumar, and Sivakumar [1].
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Ettinger and Høyer [7] observed that if the state |ψk〉 for the hidden subgroup
H = 〈xsy〉 will be found in the state |ψ′

k〉 for a reference subgroup H ′ = 〈xty〉 with
probability

cos(πi(s− t)k/N)2.

Thus the state |ψk〉 can provide a coin flip with this bias. We call such a coin flip
a cosine observation of the slope s. Ettinger and Høyer showed that s is revealed
by a maximum likelihood test with respect to O(log N) cosine observations with
random values of k. They suggested a brute-force search to solve this maximum
likelihood problem. Our first version of Algorithm 3.1 was a slightly subexponential,
classical sieve on cosine observations that even more closely resembles the Blum–
Kalai–Wasserman algorithm. Replacing the cosine observations by the qubit states
|ψk〉 themselves significantly accelerates the algorithm.

5. Other algorithms. Algorithm 3.1 presents a simplified sieve which is close
to the author’s original thinking. But it is neither optimal nor fully general. In this
section we present several variations which are faster or more general.

The first task is to prove Theorem 1.1 when N is not a power of 2. Given any
qubit state |ψk〉, we can assume that 0 ≤ k ≤ N

2 , since |ψk〉 and |ψ−k〉 are equivalent.
The list Lj will consist of qubits |ψk〉 with

0 ≤ k < 2m
2−mj+1,

where

m =
⌈√

(log2 N) − 2
⌉
.

Another difference when N is not a power of 2 is that the quantum Fourier
transform on Z/N is more complicated. An efficient approximate algorithm was
given by Kitaev [14]; another algorithm which is exact (in a sense) is due to Mosca
and Zalka [17].

Algorithm 5.1. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉.
1. Make a list L0 of copies of ρDN/H . Extract a qubit state |ψk〉 from each ρDN/H

using a QFT on Z/N and a measurement.
2. For each 0 ≤ j < m, we assume a list Lj of qubit states |ψk〉 such that 0 ≤ k ≤

2m
2−mj+1. Randomly divide Lj into pairs of qubits |ψk〉 and |ψ�〉 that such

that

|k − �| ≤ 2m
2−m(j+1)+1.

Let the new list Lj+1 consist of those qubit states of the form |ψ|k−�|〉.
3. The final list Lm consists of states |ψ0〉 and |ψ1〉. Perform the Ettinger–Høyer

measurement on the copies of |ψ1〉 with different values of t to learn s ∈ Z/N
to within N/4.

4. Write N = 2aM with M odd. By the Chinese remainder theorem,

CN
∼= C2a × CM .

For each 1 ≤ j ≤ 
log2 N�, apply Algorithm 3.1 to produce many |ψk〉 with
2min(a,j)|k. Then repeat steps 1–4 after applying the group automorphism

x �→ x2−j

to the CM factor of DN . This produces copies of |ψ2j 〉, and hence
cosine observations cos(πi2j(s− t)/N)2. These observations determine s.
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Table 1

Average canceled bits in a simulation (100 trials).

Queries 3 32 33 34 35 36 37 38

Zeroed bits 3.62 6.75 12.53 19.07 27.14 36.44 47.51 59.76√
2 log3 2n 2.14 2.92 3.98 4.91 5.85 6.78 7.74 8.68

The proof of Theorem 3.2 carries-over to show that Algorithm 5.1 also requires

only O(8
√

log2 N ) queries and quasi-linear time in its data. The only new step is to
check that in the final list Lm, the qubit states |ψ0〉 and |ψ1〉 are almost equally
likely. This is a bit tricky but inevitable, given that the lowest bit of k can be almost
uncorrelated with the way that |ψk〉 is paired.

Remark 5.2. Høyer described a simplification of Algorithm 5.1 [11]. Given only
one copy each of

|ψ1〉, |ψ2〉, . . . , |ψ2k〉,

with 2k ≥ N , the slope s can be recovered directly by a quantum Fourier transform.
More precisely, the measured Fourier number t of these qubits reveals s by the relation

t

2k
∼ s

N
.

This simplification saves a factor of O(logN) computation time.
Now suppose that N = rn for some small radix r; Algorithm 3.1 generalizes to

this case with only slight changes. It is natural to accelerate it by recasting it as a
greedy algorithm. To this end, we define an objective function α(k) that expresses
how much we like a given state |ψk〉. Namely, let αk be the number of factors of r in
k with the exception that α(0) = 0. Within the list L of qubit states available at any
given time, we will greedily pick |ψk〉 and |ψ�〉 to maximize α(k± �). It is also natural
to restrict our greed to the qubits that minimize α, because there is no advantage to
postponing their use in the sieve.

Algorithm 5.3. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉 and N = rn.
1. Make a list L of qubit states |ψk〉 extracted from copies of ρDN/H .
2. Within the sublist L′ of L that minimizes α, repeatedly extract |ψ(〉k ± �) from a

pair of qubits |ψk〉 and |ψ�〉 that maximize α(k ± �).
3. After enough qubits |ψk〉 appear with N

r |k, measure s mod r using state tomogra-
phy. Then repeat the algorithm with a subgroup of DN isomorphic to DN/r.

The behavior of Algorithm 5.3 (but not its quantum state) can be simulated by
a classical randomized algorithm. We include the source code of a simulator written
in Python with this article [15] with r = 2. Our experiments with this simulator led
to a false conjecture for algorithm’s precise query complexity. Nonetheless we present
some of its results in Table 1. The last line of the table is roughly consistent with
Theorem 5.4. Note that the sieve is a bit more efficient when r = 2 because then k±�
increases by 1 in the unfavorable case and at least 2 in the favorable case.

Theorem 5.4. Algorithm 5.3 requires Õ(3
√

2 log3 N ) queries and quasi-linear time
in the number of queries.

Here is a heuristic justification of the query bound in Theorem 5.4. We assume,

as the proof will, that r = 3 and N = 3n. Then with 3
√

2n queries, we can expect
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qubit extraction to initially cancel about
√

2n ternary digits (trits) with probability
1
2 . If we believe the query estimate for n′ < n, then we can expect the new qubit to
be about 3 times as valuable as the old one, since

√
2n−

√
2n−

√
2n ≈ 1.

Such a qubit extraction trades 2 qubits for 1 qubit, which is half the time equivalent
to the original 2 and half the time 3 times as valuable. Thus each step of the sieve
breaks even; it is like a gamble with $2 that is equally likely to return $1 or $3.

Sketch of proof. We will show that the sieve produces states |ψaN/r〉 (which we will

call final states) with adequate probability when provided with at least Cn3
√

2 log3 N

queries. The work per query is quasi-linear in |L| (initially the number of queries)
if the list L is dynamically sorted. To simplify the formulas, we assume that r = 3,
although the proof works for all r.

We can think of a qubit state |ψk〉 as a monetary asset, valued by the function

V (k) = 3−
√

2(n−1−α(k)).

Thus the total value V (L) of the initial list L is at least

V (L) ≥ Cn.

We claim that over a period of the sieve that increases minα by 1, the expected
change in V (L) is at worst −C. Since minα can only increase n− 1 times, V (L) ≥ C
when minα = n − 1. Thus the sieve produces at least C final states on average.
Along the way, the changes to V (L) are independent (but not identically distributed)
Bernoulli trials. One can show using a version of the Chernoff bound (as in the proof
of Theorem 3.2) that the number of final states is not maldistributed. We will omit
this refinement of the estimates and spell out the expected behavior of V (L).

Given k, let

β = β(k) = n− 1 − α(k)

for short, so that β can be thought of as the number of uncancelled trits in the label
k of |ψk〉. Suppose that two labels k and � or −� share m trits in addition to α(k)
cancelled trits. Then

V (k) = V (�) = 3−
√

2β .(3)

The state |ψk±�〉 extracted from |ψk〉 and |ψ�〉 has the expected value

E[V (k ± �)] =
3−

√
2β + 3−

√
2(β−m)

2

> 2V (k)
1 + 3m/

√
2β

4
,(4)

using the elementary relation√
2β −

√
2(β −m) =

2m
√

2β +
√

2(β −m)
>

m√
2β

.
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The most important feature of (4) is that if m >
√

2β, the expected change
in V (L) is positive. Thus in bounding the attrition of V (L), we can assume that
m ≤

√
2β for the best-matching qubits |ψk〉 and |ψ�〉 in the sublist L′ that minimizes

α. By the pigeonhole principle, this can happen only when

|L′| ≤ 3
√

2β .

(To apply the pigeonhole principle properly, use the equivalence between |ψk〉 and
|ψ−k〉 to assume that the first nonzero digit is 1. There are then 3m choices for the
next m digits.)

When qubit extraction decreases V (L), it decreases by at worst the value of one
parent, given by the right side of (3). Likewise, if |L′| = 1 and its unique element
|ψk〉 must be discarded, the loss to V (L) is again the right side of (3). Thus the total
expected loss as L′ is exhausted is at most

3−
√

2β3
√

2β < 1.

We can therefore take C = 1, although a larger C may be convenient to facilitate the
Chernoff bound.

Remark 5.5. A close examination of Algorithm 5.3 and Theorem 5.4 reveals that
the sieve works with the same complexity bound if N factors as

N = N1N2 . . . Nm

and Nk is within a bounded factor of 3k. In this case the sieve will determine s mod
N1. This is enough values of N to extend to an algorithm for all N by the method of
spliced approximation section 7.

6. Generalized dihedral groups and hidden shifts. In this section we con-
sider several other problems that are equivalent or closely related to the hidden dihe-
dral subgroup problem.

In general if A is an abelian group, let exp(A) denote the multiplicative form of
the same group. Let Cn = exp(Z/n) be the multiplicative cyclic group of order n.
If A is any abelian group, define the generalized dihedral group to be the semidirect
product

DA
∼= C2 � exp(A)

with the conjugation relation

x−1 = yxy

for all x ∈ exp(A) and for the nontrivial y ∈ C2. Any element of the form yx is a
reflection in DA.

Suppose that A is an abelian group and f, g : A → S are two injective functions
that differ by a shift:

f(a) = g(a + s).

Then the task of finding s from f and g is the abelian hidden shift problem. Another
problem is the hidden reflection problem in A (as opposed to in DA). In this problem,
f : A → S is a function which is injective except that

f(a) = f(s− a)
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Table 2

An oracle that hides 〈yx3〉 in D8 and its hidden shift.

a 1 x x2 x3 x4 x5 x6 x7

f(a) A B C D E F G H

a y yx yx2 yx3 yx4 yx5 yx6 yx7

f(a) F G H A B C D E

for some hidden s.
Proposition 6.1. If A is an abelian group, the hidden shift and hidden reflection

problems in A are equivalent to the hidden reflection problem in DA.
See Table 2 for an example.
Proof. If a ∈ A, let xa denote the corresponding element in exp(A). Given

f, g : A → S, define

h(xa) = f(a), h(yxa) = g(a).

Then evidently

h(xa) = h(yxs+a)

if and only if

f(a) = g(a + s).

We can also reduce the pair f and g to a function with a hidden reflection. Namely,
let S(2) be the set of unordered pairs of elements of S and define h : A → S(2) by

h(a) = {f(−a), g(a)}.

Then h is injective save for the relation

h(a) = h(s− a).

Conversely, suppose that h : A → S is injective save for the relation

h(a) = h(s− a).

If there is a v ∈ A such that 2v �= 0, define

f : A → S×2, g : A → S×2

by

f(a) = (h(−a), h(v − a)), g(a) = (h(a), h(a− v)).

(If A is cyclic, we can just take v = 1.) Then f and g are injective and

f(a) = g(a + s).

If all v ∈ A satisfy 2v = 0, then h hides a subgroup of A generated by s, so we can
find s by Simon’s algorithm.
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Note also that Proposition 2.1 generalizes readily to generalized dihedral sub-
groups: finding a hidden reflection in DA is as difficult as finding any hidden sub-
group.

A final variation of DHSP is the hidden substring problem. In the N ↪→ M hidden
substring problem,

f : {0, 1, 2, . . . , N − 1} → S,

g : {0, 1, 2, . . . ,M − 1} → S

are two injective functions such that f is a shifted restriction of g, i.e.,

f(x) = g(x + s)

for all 0 ≤ x < N and for some fixed 0 ≤ s < M −N .

7. More algorithms. In this section we will establish a generalization of The-
orem 1.1 and a corollary.

Theorem 7.1. The abelian hidden shift problem has an algorithm with time and
query complexity 2O(

√
n), where n is the length of the output, uniformly for all finitely

generated abelian groups.
Corollary 7.2. The N ↪→ 2N hidden substring problem has an algorithm with

time and query complexity 2O(
√

log N).
The proof of Corollary 7.2 serves as a warm-up to the proof of Theorem 7.1.

It introduces a technique for converting hidden shift algorithms that we call spliced
approximation.

Proof of Corollary 7.2. Identify the domain of f with Z/N (no matter that this
identification is artificial). Make a random estimate t for the value of s, and define
h : DN → S by

g′(n) = g(n + t).

If t is a good estimate for s, then f and g′ approximately hide the hidden shift s− t.
If we convert f and g to a function h : DN → S, then apply its dilation Uh with input
|DN 〉 and discard the output, the result is a state ρh = ρf,g′ which is close to the
state ρDN/H used in Algorithm 5.1.

We need to quantify how close. The relevant metric on states for us is the trace
distance [18, section 9.2]. In general if ρ and ρ′ are two states on a Hilbert space H,
the trace distance ||ρ−ρ′|| is the maximum probability that any measurement, indeed
any use in a quantum algorithm, will distinguish them. In our case,

||ρh − ρDN/H || =
|s− t|
N

.

If

|s− t|
N

= 2−O(
√

log N),

then with bounded probability, Algorithm 5.1 will never see the difference between

ρh and ρDN/H . Thus 2O(
√

log N) guesses for s suffice.
A second warm-up to the general case of Theorem 7.1 is the special case A = Z.

Recall that more computation is allowed for longer output. Suppose that the output
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has n bits, i.e., the shift s is at most 2n. In the language of deterministic hiding, we
restrict the domain of f, g : Z → S to the set {0, 1, 2, . . . , 2m}, where m = n+Θ(

√
n),

and interpret this set as Z/2m. Then f and g approximately differ by the shift s. If
we form the state ρf,g as in the proof of Corollary 7.2, then its trace distance from

the state ρDN/H , with N = 2m, is 2−O(
√
n). Thus Algorithm 5.1 will never see the

states differ.
Sketch of proof of Theorem 7.1. In the general case, the classification of finitely

generated abelian groups says that

A ∼= Z
b ⊕ Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na.

Assuming a bound on the length of the output, we can truncate each Z summand of
A, as in the case A = Z. (We suppose that we know how many bits of output are
allocated to each free summand of A.) Thus we can assume that

A = Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na,

and the problem is to find s in time 2O(
√

log |A|). In other words, the problem is to
solve HSP for a finite group DA.

The general element of DA can be written ytxa with t ∈ Z/2 and a ∈ A. Following
the usual first step, we can first prepare the state ρDA/H . Then we can perform a
quantum Fourier transform on each factor of A, then measure the answer, to obtain
a label

k = (k1, k2, . . . , ka) ∈ A

and a qubit state

|ψk〉 ∝ |0〉 + e
2πi

∑
j
sjkj/Nj |1〉.

(As in section 4, this state is H-invariant in a two-dimensional representation Vk of
DA.) We will outline a sieve algorithm to compute any one coordinate of the slope,
without loss of generality sa.

As in Algorithm 5.3, we will guide the behavior of the sieve by an objective
function α on A. Given k, let b(k) be the first j such that kj �= 0. If b < a, then let

α(k) =

b∑
j=1


1 + log2(Nj + 1)� − 
log2(kb + 1)�.

If b = a, then let

α(k) =

a∑
j=1


1 + log2(Nj + 1)�.

As in Algorithm 5.3, we produce a list L of 2O(
√

log |A|) qubits with states |ψk〉.
Within the minimum of α on L, we repeatedly find pairs |ψk〉 and |ψ�〉 that maximize
α(k + �) or α(k − �), then we extract |ψk+�〉 from each such pair. The end result is a
list of qubit states |ψk〉 with

k = (0, 0, . . . , 0, ka).
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The set of k of this form is closed under sums and differences, so we can switch to
Algorithm 5.1 to eventually determine the slope sa.

Note that many abelian groups A are not very different from cyclic groups, so
that the generalized dihedral group DA can be approximated for our purposes by a
standard dihedral group. For example, if A ∼= Z

a is free abelian with many bits of
output allocated to each coordinate, then we can pass to a truncation

Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na

with relatively prime Nj ’s. In this case the truncation is cyclic.

8. Hidden subgroup generalities. In this section we will make some general
observations about quantum algorithms for hidden subgroup problems. Our com-
ments are related to work by Hallgren, Russell, and Ta-Shma [10] and by Grigni et
al. [9].

8.1. Quantum oracles. The first step of all quantum algorithms for the hidden
subgroup problem is to form the state ρG/H , or an approximation when G is infinite,
except when the oracle f : G → S has special properties.

Suppose that a function f : G → S that hides the subgroup H. We can say that
f deterministically hides H because it is a deterministic function. Some problems in
quantum computation might reduce to a nondeterministic oracle f : G → H, where
H is a Hilbert space. We say that such an f orthogonally hides H if f is constant on
each right coset Ha of H and orthogonal on distinct cosets. If a quantum algorithm
invokes the dilation Df of f and then discards the output, then it solves the orthogonal
hidden subgroup problem as well as the deterministic one.

Computing Df and discarding its output can also be viewed as a quantum oracle.
A general quantum computation involving both unitary and nonunitary actions can
be expressed as a quantum operation [18, Chapter 8]. In this case the operation is a
map EG/H on M(C[G]), where in general M(H) denotes the algebra of operators on
a Hilbert space H. It is defined by

EG/H(|a〉〈b|) =

{
|a〉〈b| if Ha = Hb,

0 if Ha �= Hb.

We say that the quantum oracle EG/H projectively hides the subgroup H. Unlike
deterministic and orthogonal oracles, the projective oracle is uniquely determined by
H. Again, all quantum algorithms for hidden subgroup problems work with this more
difficult oracle.

Finally, if G is finite, the projective oracle EG/H can be applied to the constant
pure state |G〉 to produce the state

ρG/H =
|H|
|G|

∑
|Ha〉〈Ha|.

So an algorithm could use a no-input oracle that simply broadcasts copies of ρG/H .
Such an oracle coherently hides H. This oracle has been also been called the random
coset oracle [20] because the state ρG/H is equivalent to the constant pure state |Ha〉
on a uniformly randomly chosen coset. Almost all existing quantum algorithms for
finite hidden subgroup problems need only copies of the state ρG/H . Algorithms 3.1
and 5.3 are exceptions: They use ρDN/H to find the parity of the slope s and then
rely on EDN/H with other inputs (constant pure states on subgroups) for later stages.
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The possibly slower algorithm, Algorithm 5.1, works with the coherent oracle; it uses
only ρDN/H .

The distinctions between deterministic, orthogonal, and projective hiding apply to
any hidden partition problem. In one special case, called the hidden stabilizer problem
[14], a group G acts transitively on a set S and a function f : S → T is invariant
under a subgroup H ⊆ G. The hidden stabilizer problem has enough symmetry to
justify consideration of coherent hiding. It would be interesting to determine when
one kind of hiding is harder than another. For example, if f is injective save for a
single repeated value, then there is a sublinear algorithm for deterministic hiding [6].
But projective hiding requires at least linear time and we do not know an algorithm
for coherent hiding which is faster than quadratic time.

In a variant of coherent HSP, the oracle outputs nonuniform mixtures of coset
states |Ha〉. The mixtures may even be chosen adversarially. This can make the
subgroup H less hidden, for example, in the trivial extreme in which the state is
|H〉 with certainty. At the other extreme, we can always uniformize the state by
translating by a random group element. Thus uniform coherent HSP is the hardest
representative of this class of problems.

8.2. The character measurement. The second step of all quantum algorithms
for the generic hidden subgroup problem is to perform the character measurement.
(The measurement in our algorithms is only trivially different.) The result is the
name or character of an irreducible unitary representation (or irrep) V and a state in
V . Mathematically the character measurement is expressed by the Burnside decom-
position of the group algebra C[G] as a direct sum of matrix algebras [21]:

C[G] ∼=
⊕
V

M(V ).

Here M(V ) is the algebra of operators on the irrep V ; the direct sum runs over one
representative of each isomorphism type of unitary irreps. The group algebra C[G]
has two commuting actions of G, given by left and right multiplication, and with
respect to these two actions,

M(V ) ∼= V ⊗ V ∗,

so that the Burnside decomposition can also be written

C[G] ∼=
⊕
V

V ⊗ V ∗.(5)

In light of the identification with matrices, the factor of V ∗ is called the row space,
while the factor of V is the column space.

The Burnside decomposition is also an orthogonal decomposition of Hilbert spaces
and so corresponds to a projective measurement on C[G]. This is the character mea-
surement. A character transform is an orthonormal change of basis that refines equa-
tion (5). Its precise structure as a unitary operator depends on choosing a basis for
each V .

The state ρG/H has an interesting structure with respect to the Burnside de-
composition. In general if H is a finite-dimensional Hilbert space, let ρH denote the
uniform mixed state on H; if V is a representation of a group G, let V G denote its
invariant space. It is easy to check that

ρG/H = ρC[G]H ,
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where G (and therefore H) acts on C[G] by left multiplication. In the Burnside
decomposition, the left multiplication action on each V ⊗ V ∗ is trivial on the right
factor V ∗ and is just the defining action of G on V . Since ρG/H is the uniform
state on all H-invariant vectors in C[G], this property descends through the Burnside
decomposition:

ρG/H =
⊕
V

ρV H ⊗ ρV ∗ .

This relation has two consequences. First, as has been noted previously [9], the state
on the row space V ∗ has no useful information. Second, since ρG/H decomposes as
a direct sum with respect to the Burnside decomposition, the character measure-
ment sacrifices no coherence to the environment; it only measures something that the
environment already knows. Our reasoning here establishes the following proposition.

Proposition 8.1. Let G be a finite group and assume an algorithm or oracle to
compute the character transform on C[G]. Then a process provides the state ρG/H is
equivalent to a process that provides the name of an irrep V and the state ρV H with
probability

P [V ] =
(dimV )(dimV H)|H|

|G| .

Proposition 8.1 sharpens the motivation to work with irreps in the hidden sub-
group problem. If you obtain the state ρG/H , and if you can efficiently perform the
character measurement on states, then you might as well apply it to ρG/H .

Proposition 8.1 and the definition of coherent HSP in section 8.1 suggest another
class of oracles related to the hidden subgroup problem. In general an oracle might
provide the name of a representation V and a state ρ which is some mixture of H-
invariant pure states in V . It is tempting to describe such a ρ as H-invariant, but
technically that is a weaker condition that also applies to other states. For example,
the uniform state on V is H-invariant. So we say that ρ is purely H-invariant if it
is supported on the H-invariant space V H . For example, the uniform state ρG/H is
purely H-invariant. More generally the purely H-invariant states on C[G] are exactly
the mixtures of constant pure states of right cosets |Ha〉.

Proposition 8.2. Let G be a finite group. Then any purely H-invariant state
ρ on C[G] can be converted to ρG/H . In the presence of an algorithm or oracle to
perform the character transform on C[G], any purely H-invariant state ρ on any
irrep V can be converted to ρG/H .

Proof. If we right-multiply ρ by a uniformly random element of G, it becomes
ρG/H . If we perform the reverse character transform to a purely H-invariant state ρ
on V , it becomes a purely H-invariant state on ρG/H itself.

The message of Proposition 8.2 is that the uniform mixture ρG/H reveals the least
information about H among all mixtures of coset states |Ha〉. The distribution on
irreps V described in Proposition 8.1, together with the uniform state on V H , also
reveals the least information about H among all such distributions.

9. A general algorithm. In this section we will discuss a general algorithm
for coherent HSP for an arbitrary finite group G and an arbitrary subgroup H. It
is an interesting abstract presentation of all the algorithms for dihedral groups in
this paper. Unfortunately, it might not be directly useful for any groups other than
dihedral groups.
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The algorithm uses the definitions and methods of section 8.2, together with a
generalized notion of summand extraction. In general if V and W are two unitary
representations of G, their tensor product decomposes as an orthogonal direct sum of
irreps with respect to the diagonal action of G:

V ⊗W ∼=
⊕
X

HW,V
X ⊗X.(6)

Here again the direct sum runs over one representative of each isomorphism class
of irreps. The Hilbert space HW,V

X is the multiplicity factor of the decomposition;
its dimension is the number of times that X arises as a summand of V ⊗ W . The
decomposition defines a partial measurement of the joint Hilbert space V ⊗W , which
extracts X (and HW,V

X ). If V and W carry purely H-invariant states, then the state
on X is also purely H-invariant.

Algorithm 9.1. Input: An oracle that produces ρG/H .
1. Make a list L of copies of ρG/H . Extract an irrep V with a purely H-invariant

state from each copy.
2. Choose an objective function α on Irrep(G), the set of irreps of G.
3. Find a pair of irreps V and W in L such that α(V ) and α(W ) are both low, but

such that α is significantly higher for at least one summand of V ⊗W . Extract
an irreducible summand X from V ⊗W and replace V and W in L with X.
Discard the multiplicity factor.

4. Repeat step 3 until α is maximized on some irrep V . Perform tomography on V to
reveal useful information about H.

5. Repeat steps 2–4 to fully identify H.
For any given group G, Algorithm 9.1 requires subalgorithms to compute the

character measurement (5) and the tensor decomposition measurement (6). Efficient
algorithms for character measurements and character transforms are a topic of active
research [4, 16] and are unknown for many groups. We observe that tensor decompo-
sition measurement at least reduces to the character measurement.

Proposition 9.2. Let V and W be irreducible representations of a finite group
G. If group operations in G and summand extraction from C[G] are both efficient,
then summand extraction from V ⊗W is also efficient.

Proof. Embed V and W into separate copies of C[G] in a G-equivariant way.
Then apply the unitary operator

U(|a〉 ⊗ |b〉) = |b−1a〉 ⊗ |b〉

to C[G]⊗C[G]. The operator U transports left multiplication by the diagonal subgroup
GΔ ⊂ G×G to left multiplication by G on the right factor. Then summand extraction
from the right factor of C[G]⊗C[G] is equivalent to summand extraction from V ⊗W ,
since, after U is applied, the group action on the right factor of C[G]⊗C[G] coincides
with the diagonal action on V ⊗W .

In light of Beals’s algorithm to compute a character transform on the symmetric
group [4] and Proposition 9.2, Algorithm 9.1 may look promising when G = Sn is the
symmetric group. But the algorithm seems to work poorly for this group, because
the typical irrep V of Sn is very large. Consequently the decomposition (6) typically
involves many irreps of Sn. This offers very little control for a sieve.

Note that if Algorithm 9.1 were useful for the symmetric group, its time com-

plexity would be 2O(
√

log |G|) at best. This is the same complexity class as a known
classical algorithm for the graph isomorphism or automorphism problem [3], which
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is the original motivation for the symmetric hidden subgroup problem (SHSP). We
believe that general SHSP is actually much harder than graph isomorphism. If graph
isomorphism does admit a special quantum algorithm, it could be analogous to a
quantum polynomial time algorithm found by van Dam, Hallgren, and Ip [24] for
certain special abelian hidden shift problems. (In particular their algorithm applies
to the Legendre symbol with a hidden shift.) All these problems have special oracles
f that allow faster algorithms.

One reason that SHSP looks hard is that symmetric groups have many different
kinds of large subgroups. For example, if p1, p2, . . . , pn is a set of distinct primes, then

Dp1p2...pn
↪→ Sp1+p2+···+pn

(exercise). Thus DHSP reduces to SHSP. Hidden shift in the symmetric group also
reduces to SHSP (exercise).

The sieve of Algorithm 9.1 looks the most promising when the group G is large but
V ⊗W always has few terms. This is similar to demanding that most or all irreps of G
are low-dimensional. So suppose that all irreps have dimension at most k and consider
the limit |G| → ∞ for fixed k. Isaacs and Passman [12] showed that there is a function
f(k) such that if all irreps have dimension at most k, then G has an abelian subgroup
exp(A) of index at most f(k). By the reasoning of Proposition 2.1, the hardest
hidden subgroup H for a such a G is one which is disjoint from exp(A) (except for
the identity). But by the reasoning of section 6, any such hidden subgroup problem
reduces to the hidden shift problem on A. The generalized sieve of Algorithm 9.1 is
not as fast as the dihedral sieve on DA.
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