
How to Encipher Messages on a Small Domain

Deterministic Encryption and the Thorp Shuffle

Ben Morris1, Phillip Rogaway2, and Till Stegers2

1 Dept. of Mathematics, University of California, Davis, California 95616, USA
2 Dept. of Computer Science, University of California, Davis, California 95616, USA

Abstract. We analyze the security of the Thorp shuffle, or, equivalently,
a maximally unbalanced Feistel network. Roughly said, the Thorp shuffle
on N cards mixes any N1−1/r of them in O(r lg N) steps. Correspond-
ingly, making O(r) passes of maximally unbalanced Feistel over an n-bit
string ensures CCA-security to 2n(1−1/r) queries. Our results, which em-
ploy Markov-chain techniques, enable the construction of a practical and
provably-secure blockcipher-based scheme for deterministically encipher-
ing credit card numbers and the like using a conventional blockcipher.

1 Introduction

Small-space encryption. Suppose you want to encrypt a 9-decimal-digit
plaintext, say a U.S. social-security number, into a ciphertext that is again a
9-decimal-digit number. A shared key K is used to control the encryption. Syn-
tactically, you seek a cipher E: K × M → M where M = {0, 1, . . . , N−1},
N = 109, and EK = E(K, ·) is a permutation for each key K ∈ K. You aim to
construct your scheme from a well-known primitive, say AES, and to prove your
scheme is as secure as the primitive from which you start.

The problem is harder than it sounds. You can’t just encode each plaintext
M ∈ M as a 128-bit string and then apply AES, say, as that will return a
128-bit string and projecting back onto M will destroy permutivity. Standard
blockcipher modes of operation are of no use, and constructions like balanced
Feistel [17,31] or Benes [1,30] have security that falls off by, at best, the square
root of the size of the domain, N . Here N is so small that such a result may
provide no practically-useful guarantee.

The above small-space encryption problem was first investigated by Black
and Rogaway [6], but those authors could find no practical and provably-secure
solution for N -values where q >

√
N queries are feasible but having an encryp-

tion take N computational steps is not—values like 220 ≤ N ≤ 250. This paper
provides a solution for these troublesome domains.

Thorp shuffle. Our approach is based on the Thorp shuffle [40], which works
like this. Suppose you want to shuffle N cards, where N is even. Cut the deck
into two equal piles. Drop the bottom card from either the left or right pile
according to the outcome of a fair coin flip, and then drop the card from the
bottom of the other pile. Continue in this way, flipping N/2 independent coins

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 286–302, 2009.
c© International Association for Cryptologic Research 2009

How to Encipher Messages on a Small Domain 287

b

x d

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

12 13 14 15

1 bit n − 1 bits

x

FK

Fig. 1. Two views of the Thorp shuffle (one round). Left : each card is paired
with the one N/2 positions away. For cards at positions x and x+N/2, a random bit c
(not shown) determines if the cards get mapped to 2x and 2x + 1 or to 2x + 1 and 2x.
Right : each card is regarded as an n-bit string X (assume N = 2n). Now card b ‖ x
gets sent to x ‖ b⊕FK(x) for a uniform (and round-dependent) random function FK .

and using each to decide if you drop cards left-then-right or right-then-left. This
is one round of the shuffle; repeat for as many rounds as you like. Expressed a
bit more algebraically, for each round r = 1, 2, . . . , R the cards at positions x
and x + N/2, where x ∈ {0, . . . , N/2 − 1}, are moved either to positions 2x
and 2x + 1 or else to positions 2x + 1 and 2x, which ones being determined by a
uniform coin flip c ∈ {0, 1}. See the left-hand side of Fig. 1. Let Th[N, R] denote
the Thorp shuffle with message space M = {0, . . . , N − 1} and R rounds.

The potential utility of the Thorp shuffle to cryptography and complexity
theory was first noticed by Naor some 20 years ago [27, p. 62], [34, p. 17]. He
observed that the Thorp shuffle is oblivious in the following sense: one can trace
the route of any given card in the deck without attending to the remaining
cards in the deck. If the Thorp shuffle mixes cards quickly enough, this property
would make it suitable for small-space encryption. Namely, the random bit c
used for cards x and x + N/2 at round r could be determined by applying
a pseudorandom function F , keyed by some underlying key K, to x and r.
Conceptually, the string K compactly names all of the (N/2) · R random bits
that would be needed to shuffle the entire deck. But because the Thorp shuffle
is oblivious, only R of these bits, so that many PRF calls, would be needed to
encipher a message x.

Feistel connection. There are a variety of alternative views of what goes on
in the Thorp shuffle. The one most resonant to cryptographers is this. Suppose
that N = 2n is a power of two. In this case the Thorp shuffle coincides with a
maximally unbalanced Feistel network. In an unbalanced Feistel network [18,36],
the left and right portions in the n-bit string that is acted on may have different
lengths. Throughout this paper, “maximally unbalanced Feistel” means that the
round function takes in n − 1 bits and outputs a single bit, a “source-heavy”
scheme. See the right-hand side of Fig. 1. A moment’s reflection will make clear
that, if the round function FK provides uniform random bits, independently
selected for each round, then unbalanced Feistel is the Thorp shuffle.

288 B. Morris, P. Rogaway, and T. Stegers

As it takes n rounds of maximally unbalanced Feistel until each bit gets its
turn in being replaced, we term n rounds of maximally unbalanced Feistel (or
�lg N� rounds of Thorp) a pass. One might hope that the Thorp shuffle mixes
the deck well after a small number of passes.

Our results. Assume N = 2n is a power of two, r ≥ 1, and let E = Th[N, R] be
the Thorp shuffle with R = 2rn rounds (that is, 2r passes). We will show that an
adversary mounting a nonadaptive chosen-plaintext attack and making q queries
will have advantage that is at most (q/(r + 1)) · (4nq/N)r at distinguishing E
from a random permutation on n bits. We prove this bound by regarding the
Thorp shuffle of a designated q out of N cards as a Markov chain and applying a
coupling argument. To the best of our knowledge, this is the first time that cou-
pling has been used to prove security for a symmetric cryptographic primitive.
Using a result of Maurer, Pietrzak, and Renner [21], we can infer that 4r passes
are enough so that a q-query adversary making an adaptive chosen-ciphertext
attack will have advantage at most (2q/(r + 1)) · (4nq/N)r at distinguishing E
from a random permutation and its inverse. Put in asymptotic terms, one can
construct an n-bit permutation that is CCA-secure to 2n(1−1/r) queries by mak-
ing 4r passes of a maximally unbalanced Feistel (its round function being a uni-
formly random function from n−1 bits to 1 bit). This far exceeds what balanced
Feistel can achieve, providing a demonstrable separation between the security of
balanced and unbalanced Feistel. Finally, we consider a weaker notion of secu-
rity than customary—withstanding a (nonadaptive) designated-point attack. For
achieving this, just two passes of unbalanced Feistel are already enough.

In applying the results above to solve the small-space encryption problem
using a blockcipher like AES, the number of rounds R becomes the number
of blockcipher calls. We describe a trick to reduce this by a factor of five (for
a 128-bit blockcipher). We sketch other such “engineering” improvements, like
making the constructed cipher tweakable [16], and we tabulate the number of
blockcipher calls needed for various provable-security guarantees.

Further related work. Morris proved that the mixing time for the Thorp
shuffle—roughly, the number of steps until all q = N cards are ordered nearly
uniformly—is polylogarithmic: it is O(lg44 N) [25]. This was subsequently im-
proved to O(lg19 N) [22] and then to O(lg4 N) [23].

Naor and Reingold analyzed unbalanced Feistel constructions, showing, in
particular, that one pass over a maximally unbalanced Feistel network that op-
erates on n bits remains secure to nearly 2n/2 queries.

For balanced Feistel, the classical analysis by Luby and Rackoff [17] shows that
three rounds provide CPA-security (four rounds for CCA-security) to nearly 2n/4

queries. This was improved by Maurer and Pietrzak [20], who showed that r rounds
of balanced Feistel could withstand about 2n/2−1/r queries (in the CCA setting).
Patarin [31,29] went on to show that a constant number of rounds (six for CCA-
security) was already enough to withstand about 2n/2 queries. He suggested that

How to Encipher Messages on a Small Domain 289

enough rounds of maximally unbalanced Feistel ought to achieve security for up
to 2n(1−ε) queries [29, p. 527], a conjecture that our work now proves.

Granboulan and Pornin [12] describe a method to perfectly realize a ran-
dom permutation using a clever shuffling procedure due to Czumaj, Kanarek,
Kuty�lowski, and Loryś [8]. The shuffle requires one to repeatedly sample in a
hypergeometric distribution using parameters that are large and vary during
the shuffle. In an implementation, Granboulan and Pornin employ an arbitrary-
precision floating-point package to help achieve the needed sampling. In the end,
about 109 machine cycles are used to encipher on a space of N < 232 points.
While improvements may come [41], the method is currently impractical.

Kaplan, Naor, and Reingold describe a method to reduce the number of bits
needed to specify a permutation that will appear uniform against some number q
of queries [14]. They do this by derandomizing a construction such as the Thorp
shuffle. They discuss this case, invoking the result of Morris [25].

H̊astad analyzes the mixing time of the following square lattice shuffle: given
an m×m array, uniformly permute the entries in each row, and then uniformly
permute the entries in each column [13]. He shows that a constant number of such
passes are enough to mix well. The shuffle is oblivious, and a recursive realization
of it would give rise to another solution to the small-space encryption problem.

The problem of enciphering on a small or unusual-size domain can be regarded
as a special case of format-preserving encryption, a goal informally described by
Brightwell and Smith [7], named by Spies [38], and recently formalized by Bellare
and Ristenpart [5] and by Rogaway [33].

In a recent proposal to NIST, Spies [37] describes a blockcipher mode of
operation, FFSEM, to encipher on an arbitrary intermediate-size domain M =
{0, 1, . . . , N−1}. The mechanism combines the use of a balanced Feistel network
and the folklore cycle-walking approach.1

The problem with balanced Feistel. It seems likely that, for any even n,
enough rounds of balanced Feistel using a pseudorandom round function yield a
computationally-secure small-domain encryption scheme, even up to q = 2n−2
queries (recall that a Feistel-determined permutation is always even [28, Th 6.1]).
No remotely practical attack is known [28], and the construction is of course
quite old. But proofs of security for ciphers made from pseudorandom functions
invariably work by proving information-theoretic security and then passing to the
complexity-theoretic setting. Since balanced Feistel is information-theoretically
insecure beyond 2n/2 queries, such an approach is inherently doomed. More
precisely, if the adversary may ask q = 2θ+n/2 queries for some θ ≥ 0, then,
to have any chance of information-theoretic security, one will need a number of
rounds that is at least r = 2θ+1. A simple analysis giving this bound is in the
full version of this paper.

1 Cycle-walking works like this. To construct a cipher EK that enciphers on M =
{0, 1, . . . , N − 1} using a cipher E′

K that works on M′ = {0, 1, . . . , N ′ − 1}, where
N ′ ≥ N , iterate E′

K(X) until the first point is found that lies in M. Return this.
The method is efficient if E′ is and N ′ is not too much larger than N .

290 B. Morris, P. Rogaway, and T. Stegers

2 Preliminaries

Ciphers. By a cipher we mean a map E: K ×M → M where K and M are
finite nonempty sets (the key space and the domain) and EK(·) = E(K, ·) is
a permutation on M for every K ∈ K. Let A be an adversary, meaning an
algorithm with access to an oracle. For the game used to define E’s indistin-
guishability from a random permutation, the oracle will depend on a permuta-
tion f : M→M. It will respond to a query (enc, x) with f(x) and it will respond
to a query (dec, y) with f−1(y). Queries outside of {enc, dec} ×M are ignored.
Define Advcca

E (A) = P (K $←K : A±EK ⇒ 1) − P (π $← Perm(M) : A±π ⇒ 1)
where A±f denotes A interacting with the f -dependent oracle just described
and Af ⇒ 1 is the event that it outputs a 1.

We say that adversaryA is nonadaptive if its queries are the same on each and
every run. It carries out a chosen-plaintext attack if each query is an encryption
query, and a chosen-ciphertext attack if queries may be either encryption or
decryption queries. Let Advncpa

E (q) = maxA Advcca
E (A) where the maximum

is taken over all nonadaptive adversaries that ask at most q encryption queries
and no decryption queries. By the standard averaging argument, the notion
is unchanged if nonadaptive adversaries are assumed to be deterministic: they
statically choose their queries x1, . . . , xq. Let Advcca

E (q) = maxA Advcca
E (A)

where the maximum is taken over all adversaries that ask at most q queries.

Markov chains. The next section assumes some familiarity with Markov chains
and how to show rapid mixing for them using coupling arguments. See any text
on the subject, such as Levin, Peres, and Wilmer [15], for some background on
this topic.

Let Ω be a finite nonempty set and let μ, ν be probability distributions on Ω.
A coupling of μ and ν is a pair of random variables (X, Y), defined on the same
probability space, such that the marginal distributions of X and Y are μ and ν,
respectively. Let

‖μ− ν‖ = max
S⊂Ω

μ(S)− ν(S) = min
X∼μ, Y ∼ν

P(X �= Y) (1)

be the total variation distance between μ and ν, where Z ∼ τ means that Z
has distribution τ . The minimum in the right-hand side of (1) is taken over all
couplings (X, Y) of μ and ν. We shall call a coupling that achieves the minimum
an optimal coupling of μ and ν.

3 Variational Distance of the Projected Thorp Shuffle

Fix N = 2n. Let {Tht : t ≥ 0} be the Markov chain representing the Thorp
shuffle with N cards. More formally, let C be a set of cardinality N , whose
elements we call cards. For concreteness, C = {0, 1}n. The state space of {Tht}
is the set of bijections from C to {0, 1}n. For a card z ∈ C, we interpret Tht(z)
as the position of card z at time t.

Let A be a deterministic adversary that makes exactly q queries. Our proof is
based on an analysis of the mixing rate of the Thorp shuffle. However, since A

How to Encipher Messages on a Small Domain 291

makes only q ≤ N queries, we need only bound the rate at which some q-element
subset of the cards mixes. So let z1, . . . , zq be distinct cards in C, and let Xt be the
vector of positions of cards z1, . . . , zq at time t. For j in {1, . . . , q} we write Xt(j)
for the position of card zj at time t, and define Xt(1, . . . , j) = (Xt(1), . . . , Xt(j)).

We shall call Xt the projected Thorp shuffle. Note that since the Thorp shuffle
is a random walk on a group (see, e.g., [35]), it has uniform stationary distribu-
tion. Hence the stationary distribution of Xt, which we denote by π, is uniform
over the set of distinct q-tuples of elements from {0, 1}n. Equivalently, π is the
distribution of q samples without replacement from {0, 1}n. Let τt denote the
distribution of Xt.

Theorem 1 (Rapid mixing). Let N = 2n and q ∈ {1, . . . , N}, {Xt : t ≥ 0}
the corresponding projected Thorp shuffle, π its stationary distribution, and τt

the distribution of Xt. Then, for any r ≥ 1,

‖τr(2n−1) − π‖ ≤ q

r + 1

(
4nq

N

)r

.

Proof. For a distribution ν on distinct q-tuples of Ω, define

ν(u1, . . . , uj) = P (Z1 = u1, . . . , Zj = uj)
ν(uj | u1, . . . , uj−1) = P (Zj = uj | Z1 = u1, . . . , Zj−1 = uj−1)

where (Z1, . . . , Zq) ∼ ν. For example, τt(u1, . . . , uj) is the probability that, in
the Thorp shuffle, cards z1, . . . , zj land in positions u1, . . . , uj at time t, while
τt(uj | u1, . . . , uj−1) is the probability that at time t card zj is in position uj

given that cards z1, . . . , zj−1 are in positions u1, . . . , uj−1. On the other hand,
π(uj | u1, . . . uj−1) is the probability that, in a uniform random ordering, card zj

is in position uj given that cards z1, . . . , zj−1 land in positions u1, . . . , uj−1.
Each of the conditional distributions τt(· | u1, . . . , uj−1) converges to uniform

as t → ∞. When all of these distributions are “close” to uniform, then τt will
be close to π. In fact, we only need the conditional distributions to be close “on
average,” as is formalized in the following lemma, which is proved in Appendix A.

Lemma 2. Fix a finite nonempty set Ω and let μ and ν be probability distribu-
tions supported on q-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ μ.
Then

‖μ− ν‖ ≤
q−1∑
l=0

E
(
‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖

)
. (2)

Note that in the above lemma, since Z1, . . . , Zq are random variables (whose
joint distribution is governed by μ), so is ‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖
for every l ≤ q; each summand in the right-hand side of (2) is the expectation
of one of these random variables.

Coupling arguments. Later in the proof, we will be using a coupling argument
to bound E

(‖μ(· | Y1, . . . , Yl) − ν(· | Y1, . . . , Yl)‖
)
. Typically, such arguments

292 B. Morris, P. Rogaway, and T. Stegers

are used in the following way. There is a Markov chain with transition matrix P
and stationary distribution π, started from state x. One wants to estimate the
total variation distance ‖P t(x, ·) − π‖ between the distribution of the chain at
time t and the stationary distribution. To do so, one constructs a pair process
{(Xt, Yt) : t ≥ 0}, the coupling, that satisfies the following conditions:

1. Individually, {Xt} and {Yt} are Markov chains with transition matrix P .
2. For every t ≥ 0, if Xt = Yt then Xt+1 = Yt+1.
3. We have X0 = x and Y0 ∼ π.

The random variable T = min{t : Xt = Yt} is called the coupling time. Note
that condition (3) implies that Yt ∼ π for all t ≥ 0. Hence equation (1) implies

‖P t(x, ·)− π‖ ≤ P (Xt �= Yt)
= P (T > t) .

The idea is to define the coupling in such a way that T is unlikely to be large.

Defining the coupling. Let τt be the distribution of Xt. We wish to use
coupling to bound the expected distance between τt(· | Xt(1), . . . , Xt(l)) and the
uniform distribution on {0, 1}n \ {Xt(1), . . . , Xt(l)}, for each l ∈ {1, . . . , q − 1}.

Our approach will be as follows. For each value of l we will construct a process
{Ut} on the same probability space as {Xt}, to get a coupling {(Xt, Ut) : t ≥ 0}.
The process {Ut} will satisfy the following conditions.

• The positions of the first l cards in Ut always agree with Xt.
• For every t, the distribution of the position of card zl+1 at time t, given the

positions of cards z1, . . . , zl, is uniform.

We begin with a key definition. Say that two cards are adjacent at time t if their
positions (viewed as elements of {0, 1}n) are the same except for the first bit (or,
viewed as elements of {0, . . . , N − 1}, they differ by N/2).

Let Xt be the projected Thorp shuffle. It will be convenient to use a rule for
generating the evolution of Xt that uses q fair coins, c1, . . . , cq, each of which is
flipped at each step. Formally, each cj is a sequence {cj

t : t ≥ 0} of Bernoulli(1/2)
random variables, where we interpret cj

t as the outcome of coin cj at time t. We
assume that all of the cj

t are independent.
Note that for a given step, it is enough to describe, for each pair zi, zj of

adjacent cards, i < j, how the position of zi is updated (since this dictates how
the position of zj must be updated). We shall use the following update rule:

Update rule. For each pair of cards zi, zj with i < j that are adjacent
at time t, we determine the position of zi at time t + 1 using coin ci and
coin flip ci

t as follows:
1. the first (leftmost) bit of the position of zi is set to ci

t, and then
2. the position of zi undergoes a cyclic left bit shift.

How to Encipher Messages on a Small Domain 293

Thus if ci is at position x at time t then at time t+1 it will be at position 2(x mod
N/2) + ci

t, or, in string-oriented notation, at position x[2..N] ‖ ci
t. We claim that

if t ≥ n− 1 then for any pair of cards zi and zj we have

P (zi and zj are adjacent at time t) ≤ 21−n . (3)

To verify this claim, note that (by reordering if necessary) we may assume that
i = 1, j = 2, and the evolution of Xt is governed by the update rule described
above. Let E be the event that z1 and z2 are adjacent at time t. In order for E to
happen, at each step during times t−1, . . . , t−n+1, when their bits are changed
(in step 1 of the update rule), the same change must occur for both z1 and z2.
Thus E = A∩B, where A is the event that z1 and z2 were not adjacent at any of
the times t−1, . . . , t−n+1, and B is the event that coins ci and cj had the same
outcomes at times t − 1, . . . , t − n + 1. It follows that P (E) ≤ P (B) = 21−n,
and the claim is verified.

We are now ready to describe {Ut : t ≥ 0}. The starting state U0 is constructed
as follows.

1. We set U0(1, . . . , l) = X0(1, . . . , l). That is, cards z1, . . . , zl have the same
initial positions in U0 as X0.

2. The distribution of U0(l + 1) is uniform over {0, 1}n \ {U0(1), . . . , U0(l)}.
(We may assume without loss of generality that the probability space on which
{Xt : t ≥ 0} is defined is rich enough to allow us to construct such a U0.) Note
that the final condition implies that for every time t the conditional distribution
of Ut(l) given Ut(1, . . . , l) is uniform over {0, 1}n \ {Ut(1), . . . , Ut(l)}.

We now describe the rule for generating (Xt+1, Ut+1) from (Xt, Ut). Note that
the rule for generating {Xt : t ≥ 0} using coins c1, . . . , cq leads to a natural way
to generate the evolution of {(Xt, Ut) : t ≥ 0}. Namely, we use the same coins
c1, . . . , cq to update both Xt and Ut in each step. Since the positions of cards
z1, . . . , zl initially agree in both X0 and U0, and we are using the same coin flips
c1
t , . . . , c

l
t to update them each step, the positions of these cards remain matched

for all times t. Furthermore, note that if at any point the position of card zl+1

becomes matched, then it remains matched from then on. Recall that τt is the
distribution of Xt, and let Z1, . . . , Zl be the positions of cards z1, . . . , zl at time t.
(Note that these positions are the same in both Xt and Ut.) By (1), we have

‖τt(· | Z1, . . . , Zl)− π(· | Z1, . . . , Zl)‖ ≤ P (Xt(l + 1) �= Ut(l + 1) | Z1, . . . , Zl)
= P (T > t | Z1, . . . , Zl) ,

where T = min{t : Xt(l + 1) = Ut(l + 1)} is the coupling time. Taking expecta-
tions gives

E
(
‖τt(· | Z1, . . . , Zl)− π(· | Z1, . . . , Zl‖

)
≤ P (T > t) . (4)

We claim that
P (T > 2n− 1) ≤ p , (5)

294 B. Morris, P. Rogaway, and T. Stegers

where p = nl22−n. Let A be the event that at some time in {n−1, n, . . . , 2n−2}
card zl+1 is adjacent to some card of smaller index in the Y or Z process.
Unless A occurs, coupling occurs by time 2n − 1. Summing equation (3) over
2 processes, n timesteps, and l smaller indices verifies the claim by showing that

P (A) ≤ 2nl · 21−n = p . (6)

Note that equation (5) holds regardless of the initial state (X0, U0), and that the
process {(Xt, Ut) : t ≥ 0} is itself a Markov chain. Now imagine that we have a
sequence of trials where in each trial we run the coupling for an additional 2n−1
steps. The probability that card zl+1 remains unmatched after the first trial is at
most p. Furthermore, by the memoryless property of Markov chains, given that
card zl+1 remained unmatched after the first r − 1 trials, the conditional prob-
ability that it remains unmatched after the r-th trial is again at most p. Hence,
by induction, P (card zl+1 remains unmatched after r trials) ≤ pr = (nl22−n)r,
that is,

P (T > r(2n− 1)) ≤ (nl22−n)r . (7)

Summing over l ∈ {0, . . . , q − 1} and using Lemma 2 gives

‖τr(2n−1) − π‖ ≤
q−1∑
l=0

(nl22−n)r ≤
∫ q

0

(n22−n)rxr dx

≤ qr+1

r + 1
· nr22r−nr =

q

r + 1

(
4nq

N

)r

. ��

4 Pseudorandomness of the Thorp Shuffle

CPA-security. The total variation distance is identical to the advantage with
respect to a (deterministic) nonadaptive chosen-plaintext attack. So, reformu-
lating Theorem 1 in cryptographic terms, what we have shown is the following.

Theorem 3 (nCPA-security, concrete). Let N = 2n and 1 ≤ q ≤ N . Then,
for any r ≥ 1,

Advncpa
Th[N,r(2n−1)](q) ≤ q

r + 1

(
4nq

N

)r

.

Time reversal. Let Th−1[N, R] = (Th[N, R])−1 denote the time-reverse Thorp
shuffle on N cards with R rounds: in round r ∈ {1, . . . , R} it sends cards 2x and
2x + 1, where 0 ≤ x < N/2, either to x and x + N/2, or to x + N/2 and x,
depending on a random bit c(x, r). For N a power of two the forward and
reverse Thorp shuffle are “isomorphic” Markov chains in the sense that there is
a relabeling of states from Th[N, R] to Th−1[N, R] that preserves the transition
rule. As a consequence, the bound of Theorem 1 applies to the reverse Thorp
shuffle as well, giving us the following.

Corollary 4 (nCPA-security, reverse Thorp). Let N = 2n and 1 ≤ q ≤ N .
Then, for any r ≥ 1, Advncpa

Th−1[N,r(2n−1)](q) ≤ (q/(r + 1)) · (4nq/N)r.

How to Encipher Messages on a Small Domain 295

nCPA
n = 30

CCA
n = 30

nCPA
n = 40

CCA
n = 40

Fig. 2. Proven security of the Thorp shuffle. The x-axis gives the log (base 2)
of the number of queries. The y-axis gives an upper bound on an adversary’s nCPA
advantage by Theorem 3 (top) or its CCA advantage by Theorem 5 (bottom). The
curves are for N = 230 points (left) or N = 240 points (right). The curves, from left to
right, are for 4, 8, 16, 32, and 64 passes.

CCA-security. A lovely result of Maurer, Pietrzak, and Renner [21] allows us
to easily extend Theorem 3 to a larger class of adversaries, namely, we can trade
our nCPA-adversaries for CCA ones. The cost of doing so will be a doubling in
the number of rounds, as well as in the advantage bound.

Theorem 5 (CCA-security, concrete). Let N = 2n and 1 ≤ q ≤ N . Then,
for any r ≥ 1,

Advcca
Th[N,r(4n−2)](q) ≤ 2q

r + 1

(
4nq

N

)r

.

Proof. We use the second half of Corollary 5 from Maurer et al. [21]. In their
notation, we have that F = Th[N, R/2], which is stateless, G = Th−1[N, R/2],
which also stateless, and thus Δq(〈F � G−1〉, 〈P〉) = Advcca

Th[N,R](q) is bounded
above by ΔNA

q (F,P)+ΔNA
q (G,P) = Advncpa

Th[N,R/2](q)+Advncpa
Th−1[N,R/2]

(q). Note
that nonadaptive adversaries in [21] may be probabilistic, but that the best deter-
ministic adversary must do at least as well. Applying Theorem 3 and Corollary 4
to bound the last two summands yields the result. ��
Graphical illustration. The bounds of Theorems 3 and 5 are illustrated in
Fig. 4. For example, for 16 passes and N = 240 points (third curve on the bottom
right), an adversary must ask at least 226.2 queries to have CCA advantage 0.5.
For comparison, when applied to a maximally unbalanced Feistel network, the
earlier analysis of Naor and Reingold [27, Th 6.2] would have topped out—with

296 B. Morris, P. Rogaway, and T. Stegers

DPA
n = 30

DPA
n = 40

Fig. 3. Proven security of the Thorp shuffle, continued. The x-axis gives the log
(base 2) of the number of queries. The y-axis gives an upper bound on an adversary’s
DPA advantage by Theorem 8, both for N = 230 points (left) and N = 240 points
(right). The curves, from left to right, are for two passes and then four.

one pass—at 216.8 queries. Had we enciphered strings using a balanced Feistel
network instead, then the result of Maurer and Pietrzak [20, Th 1], would give
a family of curves (depending, like ours, on how many rounds were performed)
that would top out by 218.5 queries. Patarin’s result for six-round Feistel [31]
would apparently be similar, but the concrete security is not explicitly given in
that work, and the quantitative bounds are difficult to infer.

Asymptotic interpretation. For an asymptotic interpretation of Theorem 3,
fix r > 0 and suppose that q = N1−1/r and where, as before, N = 2n. Then

Advncpa
Th[N,2rn](q) ≤ q

r + 1

(
4nq

N

)r

=
4rnr

r + 1
· 1
N1/r

.

In other words, we have upper-bounded the advantage by an expression of the
form (a logb N)/N1/r for r-dependent constants a and b. Since this goes to 0 as
n→∞, we conclude the following.

Corollary 6 (nCPA-security, asymptotic). Let r ≥ 1 be an integer. Then

lim
n→∞Advncpa

Th[2n,2rn]

(
2n(1−1/r)

)
= 0 .

In English, a maximally-unbalanced Feistel network on n bits employing 2r
passes maintains security to nearly 2n queries: specifically, to 2n(1−1/r) queries for
large enough n. Said differently, you can achieve security up to N1−ε nonadaptive
queries, for any ε > 0, provided you make at least 2 · �1/ε� passes. This is far
better than what a balanced Feistel network can achieve. The asymptotic version
of Theorem 5 is similar.

Corollary 7 (CCA-security, asymptotic). Let r ≥ 1 be an integer. Then

lim
n→∞Advcca

Th[2n,4rn]

(
2n(1−1/r)

)
= 0 .

Designated-point security. The PRP notion of security formalizes an ad-
versary’s inability to detect non-uniform behavior when it sees a population of

How to Encipher Messages on a Small Domain 297

plaintext/ciphertext pairs. Many security notions instead demand that the ad-
versary figure something out about a designated point that it selects: the custom-
ary formulations for find-then-guess security, semantic security, unforgeability,
and non-malleability are all this way. Weakening the security notion along these
lines facilitates a stronger bound for the Thorp shuffle.

Let E: K × M → M be a cipher and let A be an adversary. We mea-
sure the effectiveness of A in carrying out a designated-point attack on E by
Advdpa

E (A) = P
(AG ⇒ 1

)−P
(AH ⇒ 1

)
where oracles G and H behave like

this. Both begin by choosing K
$←K and then answering queries (enc, x) by

EK(x). Oracle G answers the same way for a query (test, x), but H answers
such a query by a uniformly chosen value that has not yet been returned to A.
No other types of queries are allowed. The adversary may ask a single test
query, its last: once a test query is asked, any subsequent query returns ⊥. Let
Advdpa

E (q) = maxA Advdpa
E (A) where the maximum is taken over all determin-

istic nonadaptive adversaries that ask exactly q enc queries. The DPA notion is
similar to, but weaker than, the IUP notion investigated by Desai and Miner [9].

Theorem 8 (Designated-point security). Let N = 2n and 1 ≤ q ≤ N .
Then, for any r ≥ 1,

Advdpa
Th[N,r(2n−1)](q) ≤

(
4nq

N

)r

.

The proof follows immediately from equations (4) and (7). The bounds are il-
lustrated in Fig. 3. An asymptotic counterpart for the result is as follows.

Corollary 9 (Designated-point security, asymptotic). For any ε > 0 we
have that limn→∞ Advdpa

Th[2n,2n]

(
2n(1−ε)

)
= 0.

More general message spaces. We emphasize that our results on the Thorp
shuffle have assumed that the size of the message is a power of two. By using the
cycle-walking construction [6], this suffices to encipher messages on any message
space {0, . . . , N − 1}. But the cost of applying this domain transformation can
be nearly as bad as an expected doubling in the encryption and decryption time.
It would be more desirable for the results to directly apply to Thorp-enciphering
for any even N . We expect the full version of this paper to report on such results.

5 Efficiently Realizing the Thorp Shuffle

In this section we sketch a practical realization of Thorp-shuffle encryption.
We assume a pseudorandom function f : K × Σ∗ → {0, 1}128. In the analysis,
ρ = f(K, ·) is regarded as a uniform random function. The translation to the
complexity-theoretic setting is standard, the PRF’s key K naming a particular ρ.
A natural instantiation of f would be the CBC MAC of AES (after a prefix-free
encoding of the input [32]). Typically, only one AES call would be needed per
PRF invocation.

298 B. Morris, P. Rogaway, and T. Stegers

p = n = 20 n = 30 n = 40

#passes #AES dpa ncpa cca #AES dpa ncpa cca #AES dpa ncpa cca

2 8 12.7 6.9 — 12 22.1 11.6 — 16 31.7 16.4 —

4 16 13.2 9.4 6.4 24 22.6 15.7 11.2 32 32.2 22.1 15.9

8 32 13.4 11.3 9.1 48 22.8 18.8 15.3 64 32.4 26.5 21.7

16 64 13.6 12.4 11.1 96 23.0 20.8 18.6 128 32.6 29.3 26.3

32 128 13.6 13.4 13.0 192 23.1 22.5 20.0 256 32.6 31.8 30.9

64 256 13.6 13.4 13.0 384 23.1 22.6 21.9 512 32.6 31.8 30.9

Fig. 4. Security and its cost. The columns indicate the domain size N = 2n, the
number of passes p, the number of AES calls per encryption (with 5x-speedup), and val-
ues lg q such that our bound on Advxxx

Th[2n,np](q) is about 0.5, for xxx ∈ {dpa, ncpa, cca}.

Update rule. Our realization of Th[N, R] will effectively use a different update
rule than that of Section 3: to each x, x+N/2 ∈ {0, . . . , N−1} and each round r
we associate a coin flip c(x, r) that is used to map the card occupying position x
in round r to position 2x + c(x, r) if x < N/2 and to 2x−N + 1− c if x ≥ N/2.
When N is a power of two and c(x, r) = ρ(x mod N/2, r), this corresponds to
an unbalanced Feistel network.

Five rounds at once. We now describe a technique that lets one compute
several rounds of the Thorp shuffle with a single call to the underlying PRF.
With a PRF outputting 128 bits, one call will let us do five rounds of enciphering
or deciphering instead of just one. We call this the 5x trick. With it, one needs
�R/5� PRF calls to realize Th[N, R]. See Fig. 4 for a representation of how many
AES calls would be needed to make various numbers of passes over domains of
various sizes, and our proven security bounds in each case.

To explain the idea behind the 5x trick, assume for now that we are enci-
phering N = 2n points for some n ≥ 5. We will use the following notation. If
X ∈ {0, 1}� and i, j ∈ {0, . . . , � − 1}, we write X [i] for its i-th bit, where the
leftmost bit of X is X [0]. The substring consisting of the i-th through j-th bit
of X is written X [i..j]. It is empty if i > j. If v1, . . . , vk are bitstrings or integers,
〈v1, . . . , vk〉 is the tuple (v1, . . . , vk) encoded as a bitstring in some fixed way.

Denote the ciphertext of X ∈ {0, 1}n after i rounds of Thorp-enciphering by
Xi, with X0 = X . Instead of evaluating ρ at 〈Xi[1 .. n−1], i〉 and using only one
of the resulting 128 bits as c(Xi[1 .. n−1], i), we will instead extract a sufficient
number of bits to determine all coin flips c(U, r) that may be needed in the same
group of five consecutive rounds. Realizing this idea is slightly tricky because
it is essential that each coin c(U, r) taken from ρ’s output be well-defined no
matter how this value may arise, and, at the same time, that it be independent
from c(V, s) unless (U, r) = (V, s).

Our strategy is illustrated by Fig. 5. We group the round into runs of five
which we call phases, beginning with the first. (The last group of five may be
shorter.) We exploit the fact that, for j ∈ {0, 1, 2, 3, 4}, the strings X5i and X5i+j

How to Encipher Messages on a Small Domain 299

Fig. 5. The 5x trick. The lines show successive n-bit strings Xj as we encipher
(going down) or decipher (going up) using Th[2n, R]. For any A ∈ {0, 1}n−5 and round
j divisible by 5, a single call computes the coins associated to all (n − 1)-bit strings
� � � � A for round j, � � � A � for round j +1, � � A � � for round j +2, � A � � � for
round j+3, and A � � � � for round j+4, where each � may be 0 or 1.

have at least an (n−5)-bit substring A in common. We evaluate ρ only on 〈A, i〉,
obtaining 128 random bits. The coin flip c(Xt[1..n−1], t) used to encrypt Xt in
round t = 5i + j is then picked out of these 128 bits using 〈B, j〉 where B is
the concatenation of bits 1 .. (4−j) and (n−j+4) .. (n−1) of the string X5i+j .
The independence requirement is satisfied since the tuple (A, B, i, j) uniquely
determines (X5i+j [1 .. n−1], 5i + j).

The real complexity comes when N is not a power of 2. Carefully generalizing
the idea just sketched by replacing string operations with modulo arithmetic
gives rise to the same 5x speedup for Thorp-enciphering any number of points N
provided that N is a multiple of 32. We specify this case in Fig. 6. The cycle-
walking trick (see footnote 1 on p. 289) can then be used to extend the domain
to arbitrary N while never enciphering on a domain that exceeds the size of the
original one by more than 31 points. The 5x trick uses 5 · 24 = 80 of the 128 bits
output by the PRF. It generalizes to yield a k-fold speedup if the PRF outputs
at least k · 2k−1 bits, though this necessitates rounding N to the next multiple
of 2k. We omit a proof of the following.

Theorem 10. Suppose 32 | N and R ≥ 1. If ρ : Σ∗ → {0, 1}128 is a uniform
random function then the permutation Encρ defined in Fig. 6 realizes Th[N, R].
Also, Decρ is its inverse. Furthermore, computing Encρ(x) or Decρ(x) requires ρ
to be evaluated on at most �R/5� points.

Tweaking. A practical realization for small-space encryption should be tweak-
able, a notion formalized by Liskov, Rivest, and Wagner [16]. The syntax of the
cipher is extended to take an additional argument, the tweak, and each tweak
effectively names a random independent cipher. The algorithm of Fig. 6 is easily
modified to accommodate a tweak by adding it to the tuple Y in line 37. As a
simple example, an application might need to encipher the upper five digits of
a U.S. social security number using a tweak that is the lower four digits.

Variable input length. In Fig. 6, we included the domain size N within
the scope of ρ’s input (lines 37–38). This makes the scheme secure in the sense
of a variable-input-length (VIL) cipher. The property allows to, for example,
encipher under a common key database fields that have different domain sizes.

300 B. Morris, P. Rogaway, and T. Stegers

10 algorithm Encρ(x)
11 for r ← 0 to R− 1 do
12 c← F r

ρ (x mod N/2)
13 if x < N/2 then x← 2x + c
14 else x← 2(x mod N/2) + 1− c
15 return x

20 algorithm Decρ(y)
21 for r ← R− 1 downto 0 do
22 c← F r

ρ (y div 2)
23 if c = y mod 2 then y ← y div 2
24 else y ← y div 2 + N/2
25 return x

30 algorithm F r
ρ (x)

31 i← r div 5
32 j ← r mod 5
33 a← (x div 2j) mod N/32
34 hi← (x div 2j) div N/32
35 lo← x mod 2j

36 b← hi · 2j + lo
37 Y ← 〈N, i, a〉
38 table← ρ(Y)
39 k ← 16j + b
40 c← table [k]
41 return c

Fig. 6. Realization of Th[N, R] that incorporates the 5x trick. We assume that 32 | N
and ρ : {0, 1}∗ → {0, 1}128. Line 38 need only be evaluated once every five rounds.

Acknowledgments

Many thanks to Terence Spies, and Voltage Security, for renewing the second
author’s interest in the small-space encryption problem; without their interest,
this work would not exist.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transfor-
mations: Benes: a non-reversible alternative to Feistel. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)

2. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. American Mathemat-
ical Monthly 93, 333–348 (1986)

3. Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Advances
in Applied Mathematics 8(1), 69–97 (1987)

4. Bayer, D., Diaconis, P.: Tracing the dovetail shuffle to its lair. Annals of Applied
Probability 2(2), 294–313 (1992)

5. Bellare, M., Ristenpart, T.: Format-preserving encryption. Cryptology ePrint re-
port 2009/251

6. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

7. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th National Information Systems Security Conference
Proceedings (NISSC), pp. 141–149 (1997)

8. Czumaj, A., Kanarek, P., Kuty�lowski, M., Loryś, K.: Fast generation of random
permutations via networks simulation. Algorithmica 21(1) (May 1998)

9. Desai, A., Miner, S.: Concrete security characterizations of PRFs and PRPs: reduc-
tions and applications. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 503–516. Springer, Heidelberg (2000)

10. Diaconis, P.: Group representations in Probability and Statistics. Lecture Notes—
Monograph series, vol. 11. Institute of Mathematical Statistics (1988)

How to Encipher Messages on a Small Domain 301

11. Diaconis, P., Fill, J.: Strong stationary times via a new form of duality. Annals of
Probability 18(4), 1483–1522 (1990)

12. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)

13. H̊astad, J.: The square lattice shuffle. Random Structures and Algorithms 29(4),
466–474 (2006)

14. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost)
independent permutations. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L.
(eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 354–365. Springer,
Heidelberg (2005)

15. Levin, D., Peres, Y., Wilmer, E.: Markov chains and mixing times. American Math-
ematical Society (2008)

16. Liskov, M., Rivest, R., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. on Computing 17(2), 373–386 (1988)

18. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 180–203. Springer, Heidelberg (1996)

19. Maurer, U.: A simplified and generalized treatment of Luby-Rackoff pseudoran-
dom permutation generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 239–255. Springer, Heidelberg (1993)

20. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-random
permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–
561. Springer, Heidelberg (2003)

21. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

22. Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in Markov chains.
Foundations and Trends in Theoretical Computer Science 1(3) (2006)

23. Morris, B.: Improved mixing time bounds for the Thorp shuffle and L-reversal
chain (February 4, 2008) arXiv:0802.0339

24. Morris, B.: The mixing time for simple exclusion. Annals of Applied Probabil-
ity 16(2) (2006)

25. Morris, B.: The mixing time of the Thorp shuffle. SIAM J. on Computing 38(2),
484–504 (2008); Earlier version in STOC 2005

26. Morris, B., Peres, Y.: Evolving sets, mixing and heat kernel bounds. Probability
Theory and Related Fields 133(2), 245–266 (2005)

27. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. J. of Cryptology 12(1), 29–66 (1999)

28. Patarin, J.: Generic attacks on Feistel schemes. Cryptology ePrint report 2008/036
29. Patarin, J.: Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)
30. Patarin, J.: A proof of security in O(2n) for the Benes scheme. In: Vaudenay, S.

(ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 209–220. Springer, Heidelberg
(2008)

31. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

32. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. of Cryptol-
ogy 13(3), 315–338 (2000)

33. Rogaway, P.: A synopsis of format-preserving encryption (manuscript) (September
2008)

302 B. Morris, P. Rogaway, and T. Stegers

34. Rudich, S.: Limits on the provable consequences of one-way functions. Ph.D. The-
sis, UC Berkeley (1989)

35. Saloff-Coste, L.: Random walks on finite groups. In: Kesten, H. (ed.) Probability on
Discrete Structures. Encyclopedia of Mathematical Sciences, vol. 110, pp. 263–346.
Springer, Heidelberg (2004)

36. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block-cipher design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

37. Spies, T.: Feistel finite set encryption. NIST submission (February 2008),
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

38. Spies, T.: Personal communications (February 2009)
39. Steiger, W.: A best possible Kolmogoroff-type inequality for martingales and a

characteristic property. Annals of Mathematical Statistics 40, 764–769 (1969)
40. Thorp, E.: Nonrandom shuffling with applications to the game of Faro. Journal of

the American Statistical Association 68, 842–847 (1973)
41. Zechner, H.: Efficient sampling from continuous and discrete distributions.

Ph.D. Thesis, Institute for Statistics, TU Graz (1997)

A Lemma about Total Variation Distance

The following Lemma was used in the proof of Theorem 1. It is essentially
Lemma 12 in [24]. We reproduce it here for the convenience of the reader.

Lemma 2. Fix a finite set Ω and let μ and ν be probability distributions sup-
ported on q-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ μ. Then

‖μ− ν‖ ≤
q−1∑
l=0

E
(
‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖

)
. (8)

Proof. For probability distributions μ̂ and ν̂, the total variation distance is

‖μ̂− ν̂‖ = min
W1∼μ̂, W2∼ν̂

P(W1 �= W2) . (9)

Thus for every l and z1, . . . , zl, we can construct W1 ∼ μ(· | z1, . . . , zl) and
W2 ∼ ν(· | z1, . . . , zl) such that

P(W1 �= W2) = ‖μ(· |z1, . . . , zl)− ν(· | z1, . . . , zl)‖ .

We couple Z ∼ μ with Y ∼ ν as follows. Choose (X1, Z1) according to the
optimal coupling (i.e., a coupling that achieves the minimum in the RHS of (9)),
and subsequently for all l with 1 ≤ l ≤ q−1, if (Z1, . . . , Zl) = (X1, . . . , Xl), then
choose (Zl+1, Xl+1) according to the optimal coupling of μ(· | Z1, . . . , Zl) and
ν(· | Z1, . . . , Zl); else couple (Xl+1, Zl+1) in an arbitrary way. Note that

P(Z �= Y) =
q−1∑
l=0

P
(

(Z1, . . . , Zl) = (Y1, . . . , Yl), Zl+1 �= Yl+1

)
. (10)

But on the event that (Z1, . . . , Zl) = (Y1, . . . , Yl), the pair (Zl+1, Yl+1) is chosen
according to the optimal coupling of μ(· | Z1, . . . , Zl) and ν(· | Z1, . . . , Zl), so
the RHS of (10) is at most

∑q−1
l=0 E

(
‖μ(· | Z1, . . . , Zl)− ν(· | Z1, . . . , Zl)‖

)
. ��

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

	How to Encipher Messages on a Small Domain
	Introduction
	Preliminaries
	Variational Distance of the Projected Thorp Shuffle
	Pseudorandomness of the Thorp Shuffle
	Efficiently Realizing the Thorp Shuffle
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

