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Level spacings distribution 

for large random matrices: 

Gaussian fluctuations* 

BY ALEXANDER SOSHNIKOV 

Abstract 

We study the level-spacings distribution for eigenvalues of large N X N 

matrices from the classical compact groups in the scaling limit when the mean 
distance between nearest eigenvalues equals 1. 

Defining by 77N(S) the number of nearest neighbors spacings greater than 
s > 0 (smaller than s > 0) we prove functional limit theorem for the process 
(77N(S)-E%/N(S))/N1/2, giving weak convergence of this distribution to some 
Gaussian random process on [0, x). 

The limiting Gaussian random process is universal for all classical compact 
groups. It is Holder continuous with any exponent less than 1/2. Similar results 
can be obtained for the n-level-spacings distribution. 

1. Introduction and formulation of tnain results 

The idea that statistical behavior of eigenvalues of large random matri- 
ces would give information about spectra of heavy nuclei was proposed by 
E. Wigner in the fifties ([37], [38], [39], [40]). Since then, random matrices 
have been intensively studied by F. J. Dyson, M. L. Mehta, C. E. Porter, N. 
Rosenzweig, M. Gaudin, L. Pastur, L. Girko and many others. Reference [30] 
contains an extensive collection of early papers on this subject. 

One of the most popular ensembles of random matrices, the so-called 
Circular Unitary Ensemble (C.U.E.) was investigated by Fieeman J. Dyson 
[10] for studying quantum systems without time reversal symmetry. C.U.E. 
is the unitary group U(N) with the normalized translation invariant (Haar) 
measure. It is a classical result ([35]) that the joint probability distribution of 
the eigenvalues {exp(iOj)}^ff=l in the unitary ensemble is given by the density 

(1) PN,: (°1, . . ON) = constN,,g H | exp(iOk)-exp(iAj ) |: v 
1<k<j<N 

*AMS Subject classification: Probability theory and stochastic processes. 
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where the eigenvalues are ordered by increasing their angular coordinates 

(2) -7F < °1 < @@ < N < X 

(here and below we use the segment [-7r7 7r] with the coinciding ends as the rep- 

resentation for the unitary circle). The Circular Unitary Ensemble corresponds 

to the case 
: = 2, consty,2 = (2X) N 

which is the simplest from the mathematical point of view among all pos- 

sible choices of,(S. Two other cases with clear physical meaning, ,B = 1 and 

,0 = 4, correspond to the so-called Circular Orthogonal Ensemble (C.O.E.) and 

the Circular Symplectic Ensemble (C.S.E.) (no relation to the distribution of 

eigenvalues in the Orthogonal Group O(N) and the Unitary Symplectic Group 

USP(2N), which will be studied later). It is worth mentioning that from the 

statistical mechanics point of view one can think about (1) as an equilibrium 

distributiorl at the temperature T = 1/: of the Coulomb gas of N unit charges, 

confined to the infinitely thin circular conducting wire of radius 1, repelling 

each other according to the Coulomb law of two-dimensional electrostatics, i.e. 

with potential energy 

W =- E log | exp(iSk)-es 'iOj)l. 

l <k< j<N 

Due to the logarithmic repulsion, typical configurations of the particles 

are very regularly distributed on the unit circle. For example, if we consider 

the number of particles hitting the interval 

(-X,X) C [-7F,7r] , pN(X) = #{j: 1°il < x}, 

then the mathematical expectation of,uN(x) is proportional to the number 

N of all particles, E/1N(X) = NX/7r, but the variance Var JUN(X) grows only 

logarithmically, 

7F2 p 

After the normalization, the random variable 

(8N (X)-EMN (X)) / (Var HN (X)) 

conrrerges to the standard Gaussian random variable. This and similar results 

can be found in the papers by O. Costin and J. Lebowitz [8], K. Johansson 

[16], [17], [18], H. Spohn [33], P. Diaconis and M. Shahshahani [9], T. H. Baker 

and P. J. Forrester [1], E. Basor [2]. 
With the exception of [16], [18], [1] the results have been obtained so far 

only for d = 1, 2, 4. Some heuristic arguments for the case of general d have 

been devised in [12], [14]. The main goal of our paper is to study the statistical 
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behavior of level spacings for the Circular Unitary Ensemble (: = 2).1 After 
ordering in (2) the eigenvalues by increasing their angular coordinates, we can 
define the nearest neighbor spacings as 

(3) rj = °j+l-Oj , j = 1 , . . ., N-1 ; TN = °1 + 27F-ON . 

The n-point correlation functions (n = 1, . . . N) of our ensemble 

Pn (X1) * Zn) = (N-n)! j X PN,2(z1, :rN)d:rn+l . . . dZN 

(we extend the domain of definition of PN,2 by symmetry to the whole 
N-dimensional torus) have the following probabilistic meaning: let 
[xl ,xl + dxl], [xn, xn +dxn] be n-infinitesimally small disjoint intervals, then 
P(N) (xl v . . . Xn)dxl . . . dXn is the probability to find eigenvalues in each of them. 

For: = 1, 2, 4, n-point correlation functions have been calculated explic- 
itly by F. Dyson (see [10], [11]) and in the case of C.U.E. 

( ) Pn (Z1v zn) = (1/27r)n det (sin N(Xi-XJ)I2) 

The conditional probability of having no eigenvalues in the interval (O, u] pro- 
vided there is an eigenvalue at the origin (that is, the probability of nearest- 
neighbor spacing r to be greater than u) can be calculated by the inclusion- 
exclusion principle: 

1PN(T > u) = (p(ff)(0) _ A p(ff)(0 z2)dz2 + 1 t t p(ff)(0 Z2 z3)dx2dz3 

3! .t 9( 1; P4 (°Z2 Z3vz4)dz2dx3dz4 + )/p(N)(o) 
The mean distance between the nearest eigenvalues in C.U.E. is equal to 21rN. 
After a suitable rescaling (extension by N(21r) times the segment [ 1r, 1r]), this 
distance becomes equal to 1. In the new coordinates 

Yk = N/2 + NOk/(21r), k = 1, . . . N, 

the rescaled n-point correlation functions 

(6) (2 /y)n p(ff) (27ryl lN, ff 2X8nlN) = d et ( N sin (7r (Sll-YV )/ff) ) i, j=l ,. n 

1We learned from N. Katz and P. Sarnak [19] that our methods can also be applied to study 
other classical compact groups: 

SO(2N), SO(2N + 1), 0(2N), 0(2N + 1), USP(2N), SU(N), 0_ (2N) 

(see §5 for the corresponding results). Similar results for the Circular Orthogonal Ensemble (:-1) 
are discussed in Section 6. 
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have a finite limit as N tends to infinity: 

lim (21r/N)np(ff) (21ryl /Nv . . . 21rUnlN) =: P(°°) (Y1 v * * * Yn) 
N >00 

d t (sin (Yi-yj) ) 
1r(8i-Yi) i,j=l,...n 

and respectively for 
FN(S) := PN(T > 21rs/N) 

(8) N > 00 nEO n! J[o,s] 

Remark. The limiting correlation functions (7) define a random-point field 
on the real line, i.e. the probability measure on the Borel cr-algebra of the space 
of locally finite point configurations 

0 = {(i)i=-x,...+oo FL > O #{xi: Ixil < L} < oo} 

in the following way: If we fix m disjoint intervals [a2j_l, a2j]j-l,...m and define 
random variables ju1, . . . ,um to be the numbers of particles hitting each interval, 
then the generating function 

m 
S(Z1, * * * Zm) : = E H zJ j 

j=l 

is given by the Fiedholm determinant of the integral operator acting on L2 (Rl ), 
with the kernel m (zj-1) ( x-y Ji(Y) 

where the Jj are indicators of the segments [a2j_l,a2y] (see [34]). Such a 
defined random-point field is called a Universal Random Matrix Limit (URML) 
in the literature of physics. It was conjectured by Dyson to be the limiting case 
for the general unitary invariant ensembles of hermitian matrices (see [29], [4], 
[7] for recent results). 

Remarkc. Function F(s) decays at infinity superexponentially: 

log F(s) =-Ir2s2/8 + O(s) 

(see [24, Chap. 12], also [34], [36]). 
Recently, Z. Rodnick and P. Sarnak ([31]) showed that after a suitable 

rescaling the n-point correlation functions for zeroes of the Riemann zeta 
function on the critical line Rez = 1/2 are given exactly by the same for- 
mula (7). These results are valid in a restricted range; see also the early paper 
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on pair-correlations by H. L. Montgomery ([26]), and numerical results by 
A. M. Odlyzko on the spacings distribution of zeroes ([27], [28]). We finish 
this section with the formulation of our main results: 

THEOREM 1.1. Consider an arbitrary subinterval IN of the unit circle 
such that the average number of eigenvalues hitting the subinterval tends to 
infinity as N -- x0 : IIN IN/(2ir) -x oc. Define ri(IN, s) to be the number of 
eigenvalues belonging to IN for which the distance to the nearest right neighbor 
is greater (smaller) than 2ir s/N: 

ri(IN,s) := #fj: Gj E IN, rj = 0j+1 -Gj > (<)27rs/N}. 

Then 

EIP(INs) = NINI PN( > (<)27rs/N) 

and finite-dimensional distributions of the normalized random process 

EN (S) = (rn(IN, s) - E r(IN, s) )/ (NIIN|/27r) 1 /2 

converge to the distributions of the Gaussian random process with ES,(s) = 0 
and b(s, t) := ES,(s),(t) given by the formulas (37), (38), (26) in Section 3. 

To formulate the results about functional convergence we have to define 
the continuous approximation of SN(s). The realizations of r (IN, S) have dis- 
continuities at points 

N N N N 
2Tj = - (Oj+1 -Oj), Qi E IN: r(IN,2Tj + -0) -(INi 2 ) = -1. 

We define the graph of i (IN) s) by linearly connecting the neighboring 
vertices (NTjr,(IN, 2 j 'N, and 

cN(S) :_ (i/(IN, s) - E7(IN, s))/(NIINI/(21r)) 

The distribution of ,NQ) defines a probability measure PN on the space of 
continuous functions C[0, ox) (infinity point is not included!). 

THEOREM 1.2. PN weakly converges to the distribution of the Gaussian 
process &() 

Of course in both theorems we can take IN to be [-7r, 7r]. In this case 
rlN ([-r, 7r], s) will count all nearest-neighbor spacings greater(smaller) than s. 

COROLLARY 1.3. If we consider disjoint intervals 

N c thN 

such that 
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and 
NjII)1/(27r) -> oo as N->oo 

then a random vector 

71(I(, si) - Er7(I), si))/(Var r,(I(), si))1/2) 

converges in distribution to the standard Gaussian random vector with inde- 
pendent components. 

COROLLARY 1.4. For any finite T > 0, 

(9) SUPsE[O,T] Irl(IN, s) - EIr(IN, s) /(N IN/(27r))1/2 

converges in distribution to 
sup j((s)j. 

SE[O,T] 

Remark. Since 

sUP[O,.) Er(IN, s) - NIIN I F(s)/(27r) = o (ININ6/(21r)) 

for any e > 0 (see Lemma 4.2), one can replace in (9) Er;(IN, s) by 
F(s)NIIN 1(27r). 

We have not been able to prove the result of Corollary 1.4 for T = xc (the 
functional convergence of probability distributions is proven for C[O, xc), not 
for C[O, oc]!). Therefore we settle for a weaker version: 

COROLLARY 1.5. With probability 1, 

(10) SuP[oX) rl(IN, vs) -]E(IN, ) = o((NIINI/(2w)) ) 

for any E > 0. The same estimate also holds for the mathematical expectation 
of the left-hand side in (10). 

Remark. The discrepancy at the left-hand side of (10) was studied for the 
first time by N. Katz and P. Sarnak who did it in connection with the theory of 
geometric zeta functions over finite fields (see [19]). They proved the estimate 

E sup[Ox) rl(INs) - E7(IN, ) = o ((NIINI/(2w))5/ ) 

to show that for typical geometric zeta functions the empirical distribution 
functions of the normalized spacings converge to the Gaudin law F(s). 

Remark. Again we can replace Erl(IN, s) by F(s)NIINI/(27r). As usual 
for the C.U.E., similar results also hold for the limiting random-point field (7): 
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THEOREM 1.6. Consider the number of particles hitting the interval 
[0, L] for which the distance to the nearest right neighbor is greater than s: 

r1(L, s) xi: 0< xi < L dist(xi, right ngb (xi)) > s}. 

Then Erj(L, s) = LF(s) and 

(L(S) = (r(L, s) - LF(s)) /L1/2 

converges in finite-dimensional distributions to the Gaussian random process 
of Theorem 1.1. 

Again we can define piecewise linear continuous approximation (L(s) of 
(L(s) such that 

I(L9) - '(L(S)I < L-1/2 

and, as the analogue of Theorem 1.2, we have: 

THEOREM 1.7. The distribution of (L(.) on C[O, oc) weakly converges to 
the distribution of (.). 

Remark. We do not know simple "explicit" formulas for the covariance 
function E((s)>(t) of the limiting Gaussian process. Since 

E(Q(t + 6t) _ -(t))2 = O(16tl) 

uniformly on any finite interval t E [0, T], s(s) is Holder continuous with any 
exponent ar < 1/2. The numerical results by S. Miller ([25]) suggest that s(s) 
is not a standard Brownian bridge, which would be the case had the spacings 
been independent random variables. 

The proofs of Theorems 1.1 and 1.6, Theorems 1.2 and 1.7 are almost 
identical. In the next section we will discuss all necessary prerequisites con- 
cerning n-point correlation and Ursell functions. We will prove Theorem 1.1 
in Section 3. The proofs of Theorem 1.2 and corollaries are given in Section 
4. Results similar to Theorems 1.1 and 1.2 are valid in the case B = 1 and 
for orthogonal and symplectic groups. Minor changes, required in the formu- 
lations and proofs of the theorems are discussed in Sections 5 and 6. Section 7 
is devoted to generalizations and concluding remarks. I would like to express 
my sincere -gratitude to my advisor Ya. Sinai and to M. Aizenman, P. Sarnak 
and H. Spohn for many useful discussions. I would also like to thank N. Katz 
and P. Sarnak for providing me with their notes on the subject ([19]) prior to 
publication. 
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2. Random-point fields on the real line. 
Correlations and Ursell functions 

In this section we give an exposition of some basic facts about random- 
point fields on the real line (for a more detailed account see [21], [22], [20], [8]). 
We consider the space of locally finite configurations 

Q = {w = (xi)i=oo,.oo: VL > 0 #{xi: Ixxi < L} < oo 

and reserve the notation ?7A for the number of particles in A C R1. 
The class of measurable sets in Q is defined as the minimal a-algebra 

containing all {w: rA(w) = k}, where k is a nonnegative integer and A is a 
measurable subset of the real line. 

Assume a probability measure on Q. If there exists the joint density 

Pn(xl.... xn) of n-tuples (i.e. Pn(xlv... xn) dxI ... dxn is the probability of 
finding a particle in each of the infinitesimally small intervals [xi, x1 + dxi], . .. 
[xn, Xn + dxn]) we call Pn an n-point correlation function. 

It was first pointed by Ruelle ([32]) that in general the sequence of corre- 
lation functions Pn, n 1, 2, .. ., does not uniquely characterize the underlying 
probability measure. The existence and uniqueness problems were studied in 
detail by A. Lenard in [21], [22]. In particular, the criterion for uniqueness is 
satisfied when 0 < Pn(xi,... xn) < cnn2n. 

An interesting class of correlation functions (see [33]) can be constructed 
with the help of a nonnegative integrable function 

v:R1 -R', O<v<1 

if we define 

(11) Pn(xl,... Xn) = det (v'(xi -xj))iJ=1,...n 

where v- is the Fourier transform of v: 

+00 

v(x) = 2 exp(ixk) v(k)dk. 
-00 

Choosing v to be the indicator of the segment: 

v(k) = X[-7,r] (k) 

we arrive at URML (7): 

Pn(xl... 17 n) = d ,7r(zz-xi) 
- 

j=1.n 
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If we want to study the number of points (particles) in the interval of 
length L, 

(L) = #{Xi: xi E [O, L]}, 

it is very helpful to introduce the so-called Ursell functions (see [20], [8]) 

(12) ri (xi) = pi (xi) 

r2(xl, X2) = P2(X, X2) - PI(X) PI(X2) 

r3(xlx2,x3) = p3(X x2, X3) - P2(X1, X2) pI(X3) - P2(Xl, X3) Pl (X2) 

-P2 (X2, X3) Pi (X1) + 2pi (X1) Pl (X2) pI (X3) 

In general: 
m 

(13) rn(xl ... xn) = (-1)m-l(m 1)! I-I PGj((Gj)) 
G j=1 

where G is a partition of indices {1, 2,... n} into m subgroups G1,... Gm, m = 

1,... n, and x(Gj) are xi with indices in Gj. Correlation functions can be 
obtained from the Ursell functions by the inversion formula 

m 

(14) Pn(xl... Xn) - 1| rGj (xt(Gj)). 
G j=1 

If we restrict the summation in (14) to the partitions of {1, 2, ... n} into two 
or more point subsets, we will get centralized n-point correlation functions. In 
random matrix literature (-I)k1lrk are usually called cluster functions (see 
[10], [11], [24]). In the particular case of URML 

(15) 
rn(xi. . . -x) = (-1)Th~1 z sinlr(x2 -.Xi) sinlr(x3 - X2) sin7r(xi - xn) rn~x....Xn) (-In-1 

7r(X2 - X1) 7r(X3 -X2) 7r(xl -Xn) 

where the sum is over all cyclic permutations. 
Ursell functions possess a fundamental property of vanishing when vari- 

ables x,.... xn can be decomposed into two nonempty subsets, belonging to the 
intervals with independent probability distributions. As was pointed out in [20] 
"all correlations (which are) due to subsets have been subtracted in forming 
rn (xi,... xn) from Pn(xi, . . xn), leaving only "intrinsic" n-body correlations." 

Ursell functions are closely related to the cumulants Cj(L) of the random 
variable r(L): the integral of rk(x1, . Xk) over the k-dimensional cube 

[O L] x ... x [0, L = [0,L]k 

is equal to the linear combination of Cj (L), j = 1,... k: 

L 
U1 = i r (x)dx = E q7(L) = C1 (L)I 
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JL pL 
U2 = | r2 (x 1, z2 ) dxl dx2 = E 7/ (rB-1 )-(E) 2 = C2 (L)-C1 (L) , 

o o 

oL oL oL 
U3 = a y a r3(xlvx2vx3) dXldx2dx3 

o o o 

= E (7-1)(7-2)-3E 7/(7-1) ErB + 2(Er)3 

= C3 (L) - 3C2(L) + 2C1(L). 

To derive the general formula we can use (12), (13) to write the identities 
for the generating functions 

(16) E kl UkZ = log(1 + E klE7R / (77-k + 1) Zk) 

and 
x n 

(17) E kl zk = log E exp(z7/) 
1 

= log (1 + E k!E7R * * * (7R-k + 1) (eZ _ lVk) 

x 

= kl Uk (eZ _ lik. 

1 

Formulas (16)-(17) yield (see ([8]): 

(18) (<.- 

where 

( bk,j-bk-l,j-1-(k-l)bk_l,j , 2 < j < k-1, 

(l9) < bk,k=-1 , k> 2, 

t bk,l = (-l)k(k- 1)! . 

As an immediate consequence of (18), (19), the following central limit theorem 

holds for the number of particles in the box [O, L],L oo: 

THEOREM 2.1. Ass7sme the mathematical expectation and the variance of 

the n7smber of particles in the interval [O, L] are proportional to L as L x, 

and s7sppose the integrals Uk, k > 2, of the Ursell functions over [O, L]k do not 

grow faster than o(Lk/2). Then the normalized number of particles 

(L) - En(L) 

(Var (L)) 

converpes in distrib7stion to the Ga7sssian normal random variable as L > x. 
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Remark. We have not seen this theorem explicitly stated in the mathe- 
matical literature before. However, all its necessary ingredients could be found 
in [8]. 

Remark. One can see that Theorem 2.1 is not applicable to the case of 
URML (7), since the variance grows only logarithmically, 

Var n(L) = ( 2)10g L+ 0(1) 

(the fact that distinguishes URML from other random-point fields with the de- 
terminantal correlation functions (11)). Because of this, Costin and Lebowitz 
had to use in [8] more subtle arguments to prove the Gaussian fluctuations. 
Namely they show that 

sin 7r(xl-x2) sin 7r(x2-X3) sin 7r(xk-xl) [f f *f. 
J J 7r(x1-x2) 7r(x2-X3) 7r(xk-xl) 

= L+o((logL) / ), k>2; 

that combined with (15), (18), (19) implies Ck(L) = o((log L)k/2), k > 2, and 
thus finishes the proof. 

We will use the general framework of this section, in particular Theorem 
2.1 in our analysis of nearest spacings distribution. Let us fix some s > 0. To 
study the number of spacings greater than s in the interval [0, L] we construct 
an "s-modified random field", keeping only the particles, for which the distance 
to the nearest right neighbor is greater than s. Now the number of spacings 
greater than s in the interval [0, L] for the original random-point field is equal 
to the number of all particles in [0, L] for the modified one. To apply Theorem 
2.1 we need to calculate the correlation and Ursell functions of the modified 
random-point field. This plan is carried out in Section 3, with the conditions 
of Theorem 2.1 checked in (33), (38) and in Lemma 3.2. In particular we prove 
that the Ursell functions rl(xl, . . . xl, s) of the s-modified random field allow 
the estimates 

rl(xl, . . . Xl, s)l 

E (|X2-Zll + 1 |X3-X2| + 1 |X1-Zll + 1) 

which are valid for all £ > O and xl, . . . xl, such that mini7aj lxi-x; i > s. We do 
not derive estimates on the Ursell functions in the region mini7aj Ixi-xjl < s, 
since the combinatorics turns out to be more involved. Rather than that, we 
do this part of the proof in a more straightforward way by calculating the main 
term in the centralized correlation functions. 
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3. Proof of Theorem 1.1 

We shall prove Theorem 1.1 by computing all (to be more precise, first N) 
moments of random variable r (IN, s) -E?7(IN, s). Without loss of generality we 
may assume the interval IN to be the unit circle. In the rescaled coordinates 

{Jy = NOi/(27r) + N/2}1f=1 

the N-dimensional probability density (1) and N-point correlation functions 
are given by the formulas (20) and (21): 

(20) PN,2(Y1,... YN) = N -N fi I exp(i7ryj/N) - exp(i7ryk/N)12 
1<k<j<N 

= det ( sin 7r(yi-yj) 
N sin (ir(yi - y9/IN) ]ij1.. 

0 Y1 < ..<YN N 

and 

(21) p(N) (yi,.r=et( sinlr (yi -yj) (n 2Y1 p * * n ) = det (N sin (r (yi - yj) /N) / i,j=l,. 

We will omit the index N in the notation for n-point correlation functions 
if it does not lead to ambiguity; we also consider all variables yi modulo N. 
The main aim of this section is to show that 

E ((7N (s) - E7tN(s)) /N/2) (2 k -)!! (b(s))k () ) 

E ((iNN(s) - E'NiN(S)) /N 1/2)+ = o 

where b(s, s) is the variance of the limiting Gaussian process i(s). 
To calculate the moments of 

'tN(s) : iU-ir, w], S) 

we introduce a representation of 7XN(s) as "a sum of infinitesimally small ran- 
dom variables." This representation will be used throughout the whole proof. 
Consider the interval [0, N] as the disjoint union of infinitesimally small subin- 
tervals [xi, xi + dxi]: 

[0, N] = U[xi, xi + dxi], xi+, = xi + dxi 

and for each subinterval denote by X(xi, dxi, s) the indicator of the event to 
have an eigenvalue in [xi, xi + dxi] and no eigenvalues in [xi + dxi, xi + s]. Then 

(N 
(22) 77N (S) =/X(x, dx, s). 
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More rigorously, (22) means that 7N(s) is the integral of the discrete measure 
X(dx) which has unit atoms at the points Yi, such that Yi+l-Yi > s (or we 
can say that 71V(S) is the number of points of the s-modified random-point 
field). The representation of 7N(s) as "the sum of weakly dependent random 
variables"2 gives us a natural setting for the central limit theorem. 

Using the inclusion-exclusion principle, one can calculate the mathemati- 
cal expectation of the products of x(xi, dzi, s), i = 1, . . . m. First consider the 
mathematical expectation of the single term: 

(23) EX(xl, dz1, S) = (p(N) (X1) l p(N) ( )d 

+ 2! A X p( )(xlxx2vx3)dx2dx3 - * )d 
= FN(s)dxl 

To calculate Ex(xl, dx1, s)x(x2, dx2, s) we have to consider two cases: 
Ix1-x21l < s and Ix1-x21l > s. In the former, the mathematical expec- 
tation of the product is zero, by definition of x(x,dx,s), and in the latter 

(24) EX(xl, dx1, s)x(x2, dx2, s) 

= ( ml Jp2+m(xl x2; xm+2)dx3 dxm+2)dxldx2 

where each variable X3, . . . xm+2 is integrated over the union of two intervals 
[xl,x1 +s] and [x2,x2 +s] 

The key combinatorial observation used in the proof can be first seen when 
we calculate the covariance of x(x1, dx1, s), X(x2, dx2, s). We are going to use 
the cluster structure of n-point correlatiorl functions (21). Consider the mth 
term in (24) and fix the variables of integration X3, zm+2 

Some of the xi, i = 1, . . .m+ 2, say k of them, 1 < k < m+ 2, belong to 
the interval [x1, x1 + s]; we will denote the indices of those variables by 

i1, . . . ik; 1 = i1 < . . . < ik < m + 2. 

We will denote the indices of the remaining variables by 

jlv)jm+2 k; 2=jl < < jm+2-k m+2 

It is clear that 

Xjl E [x2vx2+s]v I-1,...m+2-k. 

2We will be able to show that Cov(x(xl, dsl, s), x(x2, dx2, s)) = 9N(S, lx1-x2 l1 )dsl dx2 where 
19N (S, X) I < const(s, s)/(1 + Ixl2-6) for any e > O and|xl-x2 |1 := min(|x1-x2 |, 19-|xl-x2 |). 
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From (21) it follows that 

(25) P2+m( ) ( ) 2 Nsin(T(xi-xv(7;)/ff) 

(here we use the notation x for the vector (x1, . . . xm+2) and ff for permutations 

from the symmetric group Sm+2) Now we decompose sum (25) into two, where 

the first corresponds to the ;'interaction" between the particles x1 and x2 and 

is the sum over such ff E Sm+2) so that 

(til, . . . ik}) n {il, im+2-k} + 0, 

and the second is over all other v. Denoting the first sum by P2+m,2 we have 

(26) p2+m (Xl v X2 v * * X2+m) = P2+m,2 (Xl v x2 v X2+m) 

+ Pk (Xil ) * * * Xik ) ' P2+m-k (Xjl ) ' * ' Xj2+m-k ) ' 

Formulas (23), (24), (26) imply for Ix1-x21l > s: 

(27) Cov(x(xl, dx1, s)x(x2, dx2, s)) 

= (E I JP2+m2(xl7z2; xm+2)dx3 dSm+2 +1z)dSldX2 

m 0 m. ' 

where the remainder term 1Z would vanish if the summation in (23), (24), (26) 

were from zero to infinity, and in our case 

(28) O<kl ik2<Xx kl +k2,y kl ! k2! J Pkl t il v Xikl )dzi2 . . dzik 

k Pk2 (xjl ) * * * Xjk2 )dxj2 * * * dXjk2 @ 

In (27) the variables x3 v . . . X2+m are integrated over [x1 , x1 + s] U [X2 ) X2 + s]; in 

(28) the variables xi2, . . . xik are integrated over [x1, x1 + s], and the variables 

xj2, . . . xjm+2_k are integrated over [x2, x2 + s]. 

Remark. Formulas (23), (24) give us one- and two-point correlation func- 

tions of the s-modified random-point field. General formulas for the 2k-point 

correlation functions are given in (42) and for the centralized 2k-point corre- 

lation functions in (46), Prop. 3.1. Since 

(29) °< det(Nsin(7r(xi-x))/N)) <1, 

s is bounded throughout the proof of Theorems 1.1, 1.2, and since these ar- 

guments only for s < (logN)1/2 in the proof of Corollary 1.5, we obtain the 

estimate: 
|R| < N (2s) 2 /N! < ( N ) N . 
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This inequality shows that we can neglect 7? throughout the proof. The upper 
bound for the determinant in (29) is a general property of n-dimensional pos- 
itive defined matrices with the trace less than or equal to n. It follows from 

(26), (29) that 

(30) IP2+m,2 (xI, X2,... X2+m)| < 2 

and the sums (23), (24), (27) are uniformly convergent as N oc. 

To calculate the variance of riN(S) we need to know how fast 

Cov(X(xl, dx1, s), x(x2, dX2, s)) 9N(S, lxi - x21I)dxldx2 

decays as IxI - x21l goes to infinity. 
With this question in mind we remark that P2+m,2 (XI, X2,... X2+m) is the 

sum of at most (2 + m)i! products 

m+2 sin 7r(xi -x()) 

iI Nsin(7r(xi 
- 

0())IN) 

each containing at least two factors 

sin 7r(xi -x()) 

Nsin(7r(xi -x,(i))IN) 

with xi, x,(j) belonging to different intervals [xi, xi + s], [x2, X2 + s]. Thus 

(31) IP2+m,2(X)l (2 + m)! const(s) 
1+ I XI - X2 I 

Here and further in our calculations we use different constants, depending 
on s (but not on N). Usually we will denote all of them const(s). The only 
property which we need from these constants is their uniform boundedness on 
every finite interval s E [0, T]. Now (30) and (31) give us the desired estimate 
of gN(S, x): 

(32) gN(s, X) < E i(2s)m min{2, const(s)(2 + m)!/(1 + Ixl2)} 
m=O 

< Z const(s)m/( + x2) 
O<m<consti (s) log x/ log(log x) 

+ E 2(2s)m/m! 
m>consti (s) log x/ log(log x) 

< const(s,6)/( + lxl2-6) 

for any E > 0. As N tends to infinity, 9N(S, x) converges to the limit, uniformly 
in x: 

g(s, x) := NliM 9N(SX) x)2= i! J P ,2(0, x;.. Xm+2)dX3 ... dXm+2 N--400o M=0 Mm=O 
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where the variables x3,...x2+m are integrated over [O,s] U [x,x + s] and 
P2°+°) 27 m > O, is as defined in (26) with 

( 7r(yt-8)) )i j=l n 

being the n-point correlation functions in URML (7). Estimate (32) holds for 

g(s, x) as well: 
Ig(s, x)l < const(s, £)/(1 + Ixl2-£). 

Now we are in a position to write down the formula for the variance of 77X(s): 

N 

(33) Var rlN(S) = E (J (X(zl,dx1, s) E%(xl,dxl, S)) 
o 
N 

* j(x(z2, dX2, s)-EX(z2, dX2, s))) 
o 
N N 

= E J J (X(zl, dx1, s) 
o o 

lxl-X2 1 1 Zs 

-Ex(xl, dx1, s))(x(x2) dx2, s)-EX(z2, dx2, s)) 
N N 

+EJ z (X(z1,dxl,s) 
o o 

O< lxl-X2 1 1 <s 

-Ex(xl, dxl, s))(x(x2) dx2, s)-EX(z2, dX2, s)) 

N N 
+ EJ X (x(xl,dxl,s) 

o o 
X1 =X2 

-Ex(xl, dxl, s))(X(x27 dx2, s)-EX(z2, dX2, s)) 

N N 
= X X gN(s Ixl z21ledxldx2 

o o 
lxl-X2 1 1 Zs 

N N 

- / / FN (S)2dX1dX2 
o o 

o<lxl-X2 11 <S 

N N + J J FN(S)6(X1-x2)dxldx2 
o o 

= bN(s, s)N + O(ff£), 
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where 

(34) bN(s, s) = gN(S ,x)dx - 2sFN(s) + FN(s). 
IxI>s 

Similar calculations give us the formula for the covariance of rIN(s), rN(t): 

COV(N (S), rN (t)) = bN (s, t)N + 0(N6) 

with 

(35) bN(s, t) = ] 9N(St, x)dx + J 9N(St, x)dx 

- (s + t)FN(S)FN(t) + FN(S V t), 

where the function 9N(S, t, X) is defined as 

gst, x) = 
- ( ) (N) (~; zN(Sm P2+m,2(01 X; ... Xm+2)dX3 ... dxm+2 

m=O 
the variables X3,... X2+m are integrated over [0, s] U [x, x + t], and s V t 

max(s, t). Similar to (32) 

(36) |gN(st,x)I < const(s,t,e)/(1 + Ix12,) for any 8 > 0. 

As N -> oo, gf(s, 
t,jx) 

converges uniformly in x to the limit 

(37) g(s, t, x) = lim 9N(S, t, X) 
N-+oo 

m() m! E p2+v2(x0; X; Xm+2)dX3 ... dXm+2, 

where the variables X3, ... X2+m are integrated over [0, s] U [x, x + t]. 

The covariance function b(s, t) of the limiting Gaussian process s(s) is 
defined as 

+00 

(38) b(s,t) = lim bN(st) g (St,x)dx 
N--00oo 

,^t 
+ J g(s, t, x)dx - (s + t)F(s)F(t) + F(s V t). 

It is a matter of lengthy, but simple, calculations to show that at the origin 

b(s, s) = Var i(s) = ir2s3/9 + 0(s4), 

F(s) = 1-wr2s3/9 + O(S4). 

The functions F(s), b(s, t) - F(s V t) are analytic, which implies 

E(O(s + 6s)- O(s))2 = O(6s) 

and H6lder continuity of the random process i(s) with any exponent less than 
1/2. 
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To proceed with the proof of Theorem 1, we need the formulas for 
2k 

E j7(X(xi, dxi, s) - EX (xi, dxi, s)), 
1 

similar to (26),(27). We will use again the special cluster structure of n-point 
correlation functions (21). In this way we will be able to prove that 

2k 

(39) E fl(x(xi, dxi, s) - EX(xi, dxi, s)) 
1 

= S f CoV(X(xi, dxi, s), x(xj, dxj, s)) + R2k(Xl*.... X2k)dxl ... dX2k, 

(iij) 

where the summation E is over all partitions of {1,.... 2k} into pairs (i, j) and 
for any E > 0 

N N 

(40) A JR2k(Xl ... X2k)ldxl ... dX2k = O(Nkl+e). 

Formulas (39), (40) are the key ingredients in the proof of Theorem 1.1. 
Again, we will consider the contributions to E(TIN (s) - ErN (s))2k from the 

"off-diagonal" terms 

(41) min Ixi - xj j > s, 

"near-diagonal" 0 < miniaj Ixi - xj II < s, and diagonal terms xi = xj sep- 
arately. In calculations to follow we restrict ourselves to the case of even 
moments. However, all arguments work in the case of odd moments as well. 
Let us consider first the "off-diagonal" case (41). By the inclusion-exclusion 
principle 

(42)2k 

ET7X(xi, dxi, s) 

I ( 1)m JJP(N)(X1 ...x 2k;.. X2k+m)dX2k+l ... dX2k+m dxi ... dX2k, 

=0 

the integral is over (U2k[xi, Xi + s])m and 

(43) P~k-m@ = -1 Nk~ sin (ir (xi -x,()IN 
OIES2k+m N= sin(r(x - 

As in (26) we decompose the sum (43) into two: the first subsum corresponds to 
the interaction between the particles X1,... iX2k, where each particle interacts 
with at least one other particle. The formal definition of the first subsum is the 

following: Denote by P) . the variables among Xl, . . .,X2k+m belonging 

to the interval [xj, xj + s], j = 1,... 2k. 
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We will also reserve the notations x(j) for the vector (xil),.. x$)) and 

n(xj) = pj for the number of variables belonging to [xj, xj + s]. We define the 
first subsum as the sum over a E S2k+m, such that for any j = 1,... 2k (i.e. 
for any particle Xj) there exists another index 1 < 1 < 2k (there exists another 
particle xl), such that 

(44) ({ii(j),... ij)}) n{i(l) ,i()}#0 

(particles x; and xi interact with each other). We denote this sum by P2k+m,2k* 

To deal with the second sum, we single out the particles not interacting 
with any others. Iterating, we arrive at the formula: 

(45) 

P2k+m(Xl1 * * * X2k ... X2k+m) P2k+m,2k(Xi *... X2k * ... X2k+m) 

+ E S 
I Pn(xj)(. )) 

0#Ac{1,...2k} jEA 

X P 2k+m- jEA n(xj), 2k-IAI (X\ UjEA X(j)). 

Since the following formula 

2k 
E f vi= S IE fl(vl-E vi) 

1 AC{1,...2k} jGA lA 

is valid for arbitrary random variables vi, (23), (42) and (45) imply: 

PROPOSITION 3.1. Let mini7jIxi - xjI > s, and s < (log N)1!2. Then 

2k 

(46) E ]7(X(xi, dxi, s) - EX(xi, dxi, s)) = dxi ... dx2k 
1 

( m! k mj P2k+m,2k(XI x . 2k; ... X2k+m)dX2k+l ... dX2k+m 
m=O 

+ o( (const(s) logk N.)N N2k)) 

the variables X2k+l, ... X2k+m are integrated over ( Ul [xi, Xj + s] ) 

Remark. The remainder term is of the same nature as in (27) and is 
treated similarly. 

Proposition 3.1 will play the central role in our proof, leading to (39), (40). 
To make our arguments clearer, we associate with any permutation 0a G S2k+m 
an oriented graph J(a). By definition, the vertices of J(a) are integers 1,... 2k 
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(particles XI, ... X2k) and there is a directed bond from the jth particle to the 
1th particle, 1 7 j, if and only if (44) is satisfied. Then in our notation 

(N) ~ ~ 2~m sin i7r(xi - x() 
P~k+)2k(x) = NE m(-1) I Ni(i a(z))- 

* 

where E is the sum over such a that any maximal connected component of j (a) 
has at least two elements. For future consideration it is also useful to define 

P2k+m,2k(Xl ...v X2k * ... X2k+m) as the sum over a for which J(a) is connected. 
We claim that the main contribution to (46) comes from the interaction be- 
tween the pairs of particles. Representing J(a) as a disjoint union of maximal 
connected components 

p 

A I...Ap jAq = {1, ...2k} 
1 

and denoting (xi)iEAq by t(Aq) we obtain the representation of P2k+m,2k@() as 
the sum of products 

p 

(47) S JIf E n(xj), IjAq (I(Aq)) 
(Al)...Ap) 1 jEAq 

fAqj>2, q=lp...p 

Now (46) and (47) give us 

(48) 2k 2k ** p 
E (X(xi, dxi, s) -EX(xi, dxi, s)) = fldxi( f f 

(Al,...Ap) 
jAql>2,q=l...p 

ENIXq _I)M fi PAq I+m, I Aq I(.t(Aq)7,l YI.. m)dy, .. M) m=o 
(Uje4q [xixi+sJ)m 

+ Q((const(s)log kN)N N2k)) 

** 

where the sum > is over all partitions of { 1,... 2k} into two- (or more) element 
subsets. 

Since p2+m,2(x) = P2+m,2(x) the sum over partitions into the two-element 
subsets is exactly 

(49) Cov X (xi, dxi, s), X(xj, dxj, s)) 
partitions (ij) 
into pairs 

To estimate the remaining part, let us introduce the notation 
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(50) r lAql (X(v4q),5) =Nf4ql (-l?m 

m=() 

x l 

(ujEsq [$j1zj+S])' 

P 1 4q 1 +m1 194 1 (x (v4q ) v Y1 v * * Ym ) * dyl * * * Ym v 

The next lemma, together with (48) clearly implies (39), (40): 

LEMMA 3.2. 

(51) 1 

[0,N]I 
minifj lsi-zj 11 >s 

rl (X1, . . . Xl, s)dxl . . . dxl 

f S 9N(S) X)dX N + O(NC) if I-2, 
= < lxl>s 

t o(Nl+6) if I > 2 
for any E > O. 

Remark. One can see from (48) that rl(xl, . . . xl, s) are Ursell functions of 
the s-modified random-point field. Compare (51) with the conditions on Ul in 
Theorem 2.1. 

Proof of Lemma 3.2. The case I-2 was considered aborre when we cal- 
culated the variance of nN (S) * 

Assume now I > 2 and denote by rlm the mth term in (50). We are looking 
for the estimates on Pl+m,l similar to (30), (31). Since Pzurm,l can be obtained 
by the finite number of additions, subtractions and multiplications of 

d t ( sln 7r(xi-xj) ) 

(29) prorrides the estimates 

(52) |Pl+mfl (xl X * * * xl X . . . xlm) l < const 

and 

Irl,m (xl,...xl)l dsl .. .dsl < constlf )! Nl'. 

J[O,N]t 

minioj |Xij 11 Zs 

(53) 

To get an estimate similar to (31), we write by definition: 

E (-l) rI sin7r(zi-z(t)) 
crESz+ i=l Nsi2(T(xi-x(i))/N) 

Z(ff) is connected 

Pt+m,l(Slv * * * Xl, * * * XI+m) = 
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Consider an arbitrary term from this sum. Our goal is to estimate the absolute 
value of 

l+m sin ir(xi -x(i)) 

Nsin(7r(xi -x(i))/N) 

by 

(54) const +m(s) 2 

1 I+lJXj X r(j)lI 

where r is some cyclic permutation of integers 1,... 1 (particles x1,... xl), de- 
pending on a and partition (44). To do this we will replace 

sin 7r(xi - i)) 
Nsin(7r(xi -x,(i))IN) 

by 1 whenever xi, x,(i) belong to the same segment [x;, x; + s], j = 1, ... 1, and 
we will replace it by 2/(1 + lxi - x,(i) I) in the opposite case. 

If we write a as a product of disjoint cyclic permutations 

each up, p = 1,... m determines some cyclic excursion on the graph J(a); 
the steps of the excursion correspond to the terms 2/(1 + lxi - x.(i) I) in our 
estimate. 

Since the graph J(^) is connected, the path of every excursion intersects 
the path of some other excursion, and after several switches we can go from 
one path to another (otherwise we would have a nontrivial maximal connected 
component of J). Therefore we can combine these paths into one big cyclic 
path (with possible self-intersections), along which are all vertices of J. Again, 
to each step of the path, j - 1, there corresponds a term 

1 2+ 1x -X I Xi c [xj, xj + s], X7(i) E [xi, xi + S] 

in our estimate. 
The whole number of steps of the constructed path is 1 + m at most3. Now 

we will eliminate all possible self-intersections. If j is the current position of 
our walk, n is the previous one and 1 is the next one, and the vertex j has 
already been visited, we replace two steps n - j, j - 1 by one n - 1 in 
the new, modified walk. 

Using the inequalities 

2/(1 + Ixi - X,(i))) < const(s)2/(1 + xj - xi), 

2/(1 + Ix - yl) 2/(1 + ly - zI) < 2 .2/(1 + Ix - zl) 

3See remark after the end of proof of Lemma 3.2. 
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and subsequently eliminating from the path the sites visited before, we finally 
obtain the path without self-intersections, which is given by some cyclic per- 
mutation r E sl This leads to (54) and the inequality 

r l+m sin 7r(xi-x(i)) 
(Ul =l [Xj xXj+S])m Nsin(7r(xi xa(i))/N) dXt+l dxl+m 

< (I * s)m(const(s)) E II 1 + lXj-XT(j) 

The inequality 

N 

1 2/(1 + Ix-Yl) * 2/(1 + |Y z13dy < const log(N + 1)2/(1 + lz-Zl) 
o 

* j 

mplles 

I 

j tI 2/(1 + Ixj-z(j) j)dxl . . . dxl < constN logl-2(N + 1) 

[°,N]I j 

and 

(55) j rlXm(xl) . . . xl)dxl . . . dx 

[°,N]t 

< !1!(1 + m)!(l s)m(const(s))l+mNlogl-2(N + 1). 

Finally, to get an estimate (51) on 

J rl(xl,...xl)dxl...dxl < E J irl(xl,...xl)ldxl...dx 

[O,N]t [O,N]t 

one can use (55) for m < const(s,l,)log(N+ 1), where const(s,l,) is small 
enough, and (53) for m > const(s, 1, s) log(N + 1). 0 

Remark. The trivial bound for the number of steps of the path (at most 
I + m) is enough for our purposes now. However in the proof of Corollary 
1.5 we will need an estimate that the number of steps is bounded by some 
number, depending only on 1. To accomplish this we have to eliminate some 
loops of the path (i.e. replace the corresponding multipliers by 1). Namely we 
eliminate a loop, if after throwing it out, we still have a closed path, visiting 
all vertices of Z. After such a procedure is completed we arrive at the path 
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with at most >,1- j + 1 - 1 = 1(1 + 1)/2 - 1 steps. Formulas (48), (49), (51) 
give the following result: 

2k 

(56) E J (X(xi, dxi, s)-Ex(xi, dxi, s)) 
[O,N]2k 1 

minjoj 1xi -xj I I >s 

= (2k - 1)!! ( N(S ,x)dx) Nk + O (const(s, 6)Nk1+e) 

Ixl>s 

In the second part of the proof of Theorem 1.1 we take into account the con- 

tributions to E (rN (s) - Er/N(s)) from the diagonal (xi = xj) and "near- 
diagonal" (O < lxi - xjjj < s) terms. We introduce an equivalence relation 
on the set of particles {X1,.... X2k}, calling xi, x; the "neighbors," if there is a 
sequence of particles 

xio = xxi) i, * ... xip = xj 

such that 

(57) max lxi+ -xi, I i <. 
r=Op-1 ... r+1 

We claim that the contributions to E (7/N(s) - EN (s)) of order of Nk appear 
only when each equivalence class of (57) contains one or two particles. Assume 
that we have l two-element equivalence classes, say 

{X1, X2 } ,.. {X21-1i, X21 I} 

and 2k - 21 one-element equivalence classes {X21l+},*** {X2k Since 

X(xidxis)X(xjdxjs) = 0 

if 0 < lxi - xj I < s, and always X2(xi, dxi, s) = X(xi, dxi, s), we have 

2k 

J (X (xi, dxi, s) - EX(xi, dxi , s)) 

[O,N]2k 

{X1,X2 },.. {X21-1,X21} 

{X21+1 },...{X2k} 

- E J I [-EX(x21i-1 dx2i-1, s)EX(x2i, dx2i, s) 
[ON]2k 

{X1,X2 },... {X21-1,X21} 

{X21+1} ...{X2k} 

- (X(x2i-1 dX2i-1, s)-EX(X2i-, dX2i-l, s)) E X(X2i, dX2i S) 

- (Xx2i, dX2i, s)-EX(X2i, dX2i, s)) E X(X2i-1, dX2i-1, S) 
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+ E X(X2i, dx2i, s) 6(x2i1 - X2i) dx2ii] 

2k 

* (x(xj, dxj, s)-EX(xj, dxj, s)) 
j=21+1 

- (FN(s) - 2sFk(s)) (2k -21- 1)!! /( 9N(s, x)dx) Nk 

\ xI>s/ 

+ O (const(s)Nk-1+e) 

All such choices of equivalence classes produce 

(58) 
k / k-i 

=Y (21)(2k)! (! ). (FN1 (s) -2sFk(s)) (2k - 
21)! ( I kNl 

's(21)!(2k - 21)! l2' (k - 1)!.2k-1 xd) 
Ixl>s 

Nk + O(const (s, E) Nk ) 

=(2k- 1)!! (FN(S) - 2sFNf(s) +J N(sx)dx) Nk + O(const(s,e)Nk1+e). 

If some equivalence classes have three elements or more, the contributing terms 
/ ~~~~ 2k N 

to E r/N(s) -Er/N(s)) will be bounded by some power (say 1) of FN(S) f ldx, 
0 

multiplied by the n-dimensional integral (n < 2k - 21) 

n 

J |EL (X (xi, dxi Xs)-EX(xi, dxi, s)) 
[ON]2k 

minisy lxi-Xj 11>s 

and multiplied by the areas of some polyhedrons of size s. From (39), (40) it 
follows that these terms are of order of O(Nk-l). Thus 

(59) E ((riN(s) - ErN(S)) /N1/2) = (2k-i)!! (bN(ss))k + O(Nl+e) 

= (2k-1)!! (b(s, s))k + o(). 

Similar calculations yield 

E ((rN(S) - ErN(S)) /N1/2)2k = o(N-1/2+E) 

The convergence of the mixed moments 

n 

E (71N (Si) )-E- N (SiE)) /N1/2) 



598 ALEXANDER SOSHNIKOV 

to the moments of the Gaussian random process ((s) can be proved in the 
same way. Since the convergence of all moments to the Gaussian ones implies 
the convergence of finite-dimensional distributions, Theorem 1.1 is proved. C1 

4. Proof of Theorem 1.2 and corollaries 

We start with the proof of Theorem 1.2 . Since 

(60) (N(S) -(N(S) < N-1/2 

the finite-dimensional distributions of &,N( ) also converge to those of the lim- 
iting Gaussian process &,N( ) as N > oo, and for the functional convergence of 
probability distributions of &,N( ) on C [0, oo) it is enough to prove the tightness 
(relative compactness) of any sequence of distributions of &Nn ( ) on C [0, T], T 

is arbitrarily large, as Nn °° ([3]) 

Let us define for continuous function f E c[o, T] and 6 > 0, the modulus 
of continuity as 

gf (6) = sup If (s)-f (t)l: O < s, t < Tv Is-tl < 6. 

The classical criterion of relative compactness ([3]) tells that the family {P} 
of probability measures on C[0, T] is relatively compact if and only if: 

(i) For each arbitrary small positive oe there exists an A(oe), such that 

(61) P{f: If(°)l > A} < ot, for any P. 
(ii) For each oe, p > O there exists some 6(oe, p) such that 

(62) P{f gf(6) > } < a, for any P. 

The results of O. Costin and J. Lebowitz ([8]) tell us that 

(N(O) = O ((logN/N)1/2) 

which gives us (i). To prove (ii) we need the following lemma: 

LEMMA 4.1. There exist some constants cl, C2 depending on T > O, such 
that 

(63) PN {|(N(t)-(X(S)| < C1 (It-511/20 + N 1/4),8t, S E [O, T] It-Sl < 6} 

> 1-C2 (64/5 + N-1/20 log N) . 

Assuming Lemma 4.1 is proven, we can quickly finish the proof of Theo- 
rem 1.2. Choose N*, 6* such that 

Cly*-1/4 < /5/2 c ^1/20 < 5/2 

c2 log N*N*-1/20 < oe/2 c2di4/5 < /2 
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For any fixed probability distribution P on C[O, T] and arbitrary oe, ,B > O one 
can find some o$(oe, :, P) > O such that 

.' P{f: Sf(6) > p} < °g. 

Let us choose such a 6 for any (Ni,Ni < N*, and define the final o$ as the 
minimum of such 6's and 6*. Condition (ii) is satisfied; therefore the family of 
probability distributions given by g-Nn( ) is tight. Theorem 1.2 is proven. Now 
we shall prove Lemma 4.1. 

First, let us note that if t, s belong to some interval of length c3N-3/4, 

c3 < 1: s, t E [s', s' + c3 N-3/4] then 

(64) |(N(t)-(N(S) | < |(N(S + c3 N 3/4)-(N(S ) | + const N 1/4. 

Indeed, by definition, for s' < s < t < s' + c3 N-1/4 

O < (N (t)-(N (S) + FN (t) N1/2-FN (S) N1/2 

_ (N(S + c3N )-(N(S ) + FN(S + c3N-3/4) N1/2 _ FN(S/) N1/2 

which implies 

|(N(t)-(N(S)| < |(N(S + C3 N 3/4)-(N(S )I 

+ N 1/2 * 2 Variati°n [SI ,S/ +C3 N - 3/4 ] (FN ( S) ) @ 

The functions FN(S) are continuously differentiable uniformly in s on any finite 
interval Indeed 

(d/dS)Fy(s) = p(ff)(Ot s) _ X p(ff)(0 s z )dz 

+ 2! A A p4ff)(0XSX x3,x4)dx3dx4-... 

oo 1 

< E kv sk = exp(s). 
k=O 

This proves (64). Now we divide the segment [O, T] into 2k disjoint subsegments 

^( ) = [t T/2k, (t + 1)T/2 ], I = 0,1, . . .2 -1 

with k ranging from 1 to [(logT + 4 logN)/log2] + 1 (i.e. the length of A(k) 

is always greater than -N-3/4). Using the Chebyshev inequality and (59) we 
obtain: 

PN (|(ff (t)-(N (S) | > |t-S l l/20) < E |(N (t)-(N (S) 14 

< 3 (bN (t, t)-bN (s, t)-bN (t, S)-bN (s, S)) + const(T, s)N 1+6 
- It - sll/5 
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Covariance function bN(S, t) can be represented as the sum of two terms: 

bN(SIt) = (j 9(st, x)dx +j g9n(S t) x)dx - (s-+ t)FN(s)FN(t)) 

+ FN(S V t) 

where the partial derivatives of the first are uniformly bounded on any compact 
set (the proof is similar to that of the case of Fn(s) since we have the estimates 
of the type (32) on 9N(S, t, x) and (&/0S)gN(S, t, x), (0/0t)gN(s, t, x)) 
This implies 

PN (I&N(t) - N(S)I >It - S1/20) < const(T) ((t -s)2 + N-19/20) /it - 811/5 

where t,s E [0, T], and we choose E = 1/20 which gives us (we denote all 
constants appearing in our calculations by const(T)): 

PN (Li { (iN((l + 1)T/2k) - N(l T/2k) > (T/2k)1/20}) 

< k (T/2k)2 + N-19/20 
const(T) (T/2k) 1/5 

< const(T) ((2-k)4/5 + N-19/20(2k)6/5) 

< const(T) ((2-k)4/5 + N-19/20N18/20) 

< const(T) ((2-k)4/5 + N-1/20) 

and 

(65) ([log T+d ]+1 2k_1 

'PN Li L { {(N((l + 1)T/2k) - N(l T/2N) > (T/2k)1/20 
k =ko 1=0 

< const(T) ((2-ko)4/5 + N-1120 log N) 

Choosing ko such that 2-ko+1 < 6 < 2-ko+2 and combining (65) with (64) 
and (60), we finish the proof. 

Corollary 1.3 can be proven by using the same machinery as in Theorem 
1.1. To prove Corollary 1.4 one has to consider the continuous functional on 

C[O, oc): 

GT (f) = sup f (s), 
sE[O,TI 

apply Theorem 1.2, and take into account that 

lim sup |N(S)kN(S) = 0 
N- oo sE[0,TI 
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Before we proceed with the proof of Corollary 1.5 we want to obtain an estimate 

on 
SUP E r1(IN , S)-F(S) 2T 

LEMMA 4.2. 

|E r7(INX S)-F(s) IINI | _ o(NE IINI ) 
sup 

[ovoo) 

for any E > O. 

Proof of 4.2. Assume first that 

(66) 

s < (logN)l/2 

|FN(S) F(s)| 

= E ( 1) f 

n=O n! J[ojs] 
°° {_ lxn-1 

+ E n 
n=N * t 

p(N) (0 X)-p(°°) (0 X) dx 

l[ofs]n 
p( +) (O, x) dx 

N-1 1 

< E E Volume([O,s]n) sup 
n 0 n. xs[o,s] 

| p(ff+) (0, X)-p( +) (0 X) | 

00 1 

+ E n Volume ([O, s]n) n 1. 
n=N 

Using the inequality 
sin 7rx sin 7rx 2 

IxlCs Nsin(7rx/ff)- 1rX < Const (s/N) 

and the representation of PnN+) 7 Pn+) as deterininants (6), (7), we have 

Es[uOP] |Pn+l (°7 )-Pn+) (°1 x) | < const (n + 1) ! (n + 1) (s/N)2 . 

Since PnN) X Pn+) are not greater than 1 by absolute value, we finally arrive at 

E ! min (2, const (n+ l)!(n+ 1) (s/N)2) + E ! 
|FN(S) F(s) | < 

- o((s/N)l-6) +o(SN/ff!) 

for any E > O . Thus 

(67) sup |FN(S)-F(s)|-o(N l+6). 
s<(log N)1/2 
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The function F(S) decays at infinity superexponentially: 

(68) log F(S) =-7r2s2/8 + O(S) 

(see [22], [21], [26]), which gives us 

(69) F ((log N) 1/2) = O(N-9/8) 

Since O < FN(S) < FN ((logN)1/2), 0 < F(S) < F((logN)1/2) for any 

s > (logN)1/2, (67) and (68) establish 

(70) sup |FN(S)-F(S)| = O(N-1+E) 
[oXoo) 

SUP |E rl(IN, S)-F(S) IINI | = o(NE IINI ) 

We finish this section with the proof of Corollary 1.5. 

Proof of Corollary 1.5 Since the tails of distribution functions F(S) 

FN(S) are small enough (see (67), (69)), we have to prove only that 

SUP |E/(IN, S)-E r1(IN, S) | = O ((N I IN I ) 1/2 +6) 
o<s< (log N) 1/2 2T 

To do this we will estimate the moments of r1(IN S)-E r1(IN, S), when s is 

allowed to grow up slightly, s < (logN)1/2: 

LEMMA 4.3. For any even anteger 2k, arbitrary small £ > O and O < 

s < (log N)1/2 there exists some constant C(£, 2k), depending only on £ and 2k, 

s?sch that 

E (E/(IN, S)-E r1(IN, S)) < c(e, 2k) (N 2 ) 

Proof. Again, without loss in generality, we can assume IN to be a unit 

circle, IN = [-X,]. Examinating the proof of Theorem 1.1 we realize that 

what is needed is the following generalization of estimates (51) from Lemma 

3.2: 

(71) sup X rl(xl xl s)dxl ..... dx 

O<s<(log N)1/2 [OUNXI 
rninisj lsi zj 11 >s 

< const(e, I) Nl/2+E, I > 2. 

Going along the lines of calculations from Theorem 1.1, we will clarify the 

dependence on s of the constants appearing there. We recall that we derived 
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the formula for the Ursell functions rl of the s-modified random field in (50) 
as 

(72) rl(xl,...zl,s) = E t J (+ml(zlv zl; zl+m)dzl+l dzl+m 

where the integration is over (l [zi, xi + s]) . For simplicity we will consider 
the cases I = 2 and I > 2 separately. Let us first take I = 2. Rewrite (72): 

N-2 (_ l?m > P2+mX2 (Z1 v Z2 X * z2+m)dz3 * * dZ2+m 

m=O (U2 [X*,Xi+S]) 

Estimates (30), (31) give us 

IP2+ 2(z)1 < min (2, (m + 2)! 1 + max (lzl-Z211-sv O) ) 

Using the inequality 

(73) 1/ (1 + max(x-s, O)2) < (2 + s2)/(l + x2) 

we obtain 

I (Z)l < min(2;(m+2)!1+1zl-z212l) 

< 2(2 + log N) min (1; 1 + Izl-x2 121 ) v 

Ir2(zl,z2)l < E m!(2s)m2(2+log N) min(l;l+lzl_ z2l2) 

Fix some E > O. If Ix1-x21l < N6/2, we arrive at 

(74) |r2(zl,z2)l < 2(2 + logN) exp(2s) = 2(2 + logN) exp(2(10gN)l/2). 

If Ix1-x21l > N6/2, then for any s1 > O 

(2s)m = o(jx1-x21l+6l) if (m + 2)!-0(1 + |xl-x21l2) 

and 

(75) |r2(zl, x2) | < 2 (2 + log N)const(£) ( 1 + 1 l2 ) 

Integrating the right-hand side of (74), (75) over 

{xl v x2 E [Ov N], |x1-x2 1 < (>)N6/2} 

we obtain the desired result. The case I > 2 will be treated in a similar fashion. 
Again the inequalities (52), (54) are crucial in our calculations. We keep the 
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former and slightly refine the latter. Namely, using the procedure described 
on pages 21-22, Section 3 and the remark on page 23, we can estimate each 

* < term 1n Pl+m,l as 

l+m sintr(xi Xcr(i)) K 2 

1 N sin(7r(zi Xcs(i))/ff) k=l 1 + max (|xjk+1 Xik 11 s, 0) 

where CJ E Sl+m is such, that J(a) is connected, and 

21 - > J2 * * * - > gK 21 

is some closed path on vf(ff) with possible intersections, visiting all vertices 
{1,...1}, with the number of steps K not greater than 1(1 + 1)/2-1. Using 
the inequality (73) and eliminating possible self-intersections as explained in 
Section 3, we arrive at 

(76) II sin7r(zi-x(i)) _ (2(2+s )) tI 2 
i=l Nsin(7r(xi-X<7(i))/N) 1 + Ixj-x(j)ll 

where r is some cyclic permutation of integers 1,...1. Estimates (52), (76) 
imply 

|pl+ml I 

TE const(l),(m+l)!(2(2+10gN))(l+l)l/2-lH 2 ) 

and 

(77) 

|rl(xl,...xl,s)l < const(l)(2 (2+10gN))( )/ 

E E 1 ! (I s)m min (I; (m + l) ! 1ll 1 + Ixj-xr(;) 1 1) 

Fix r E Sl. If 
I 

(78) II (1 + Ixj - x(S)ll) < N£/(21) 
. 

= 

the corresponding summand in (77) will be estimated from above by 

(79) const(l)(4 + 210gN)(t+l)l/2-l exp(l(logN)1/2) 

If 
I 

(80) I1 (1 + Ixj - x(j) |1) > NE/(21) 
* 1 
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then for any s1 > 0 

(I,s) o(tII(l+lxi x7(j)ll) ),if(m+l)! ° (ttI(1+lxy-xr(i)l1)) 

and the corresponding summand is not greater than 

(81) const(l)(4 + 2 log N)( + ) / const(El) ( tI 1 + Ix -x ( ) I ) 

for any s1 > 0. Integrating (79), (81) over the domains (78), (80) we obtain 
the desired result. Lemma 4.3 is proved. O 

Using Lemma 4.3 and the Chebyshev inequality we conclude that for any 
n > O, e > O, there exists some constant, depending only on , n such that for 
anyfixeds,O<s (logN)1/2 

(82) PN{|t1N(S)-E77N(S)| > l/3Nl/2+6} < const(e,n)N n. 

Dividing the segment [0, (logN)1/2] into M = [(logN)1/2N3/4] segments 

[si, si+l], si-(log N)l/2i/M; i = O, . . . M-1, 

we estimate the probability 

{ sip IE/N (Si)-EE/N (Si) | > 1/2N1/2+E } 

from above by the sum of probabilities: 
(83) 

PN{SUP IE/N(Si)-Er/N(Si)l > 1/2N1/2+e} < const(e, n)(logN)l/2N n+3/4. 

To finish the proof we claim that variations of r/N(S) on the segments [si, si+l] 
are negligibly small, as well as the tails of 7wN(s) and EERN(S) when s > 
(logN)1/2. Namely, 

(84) Variation[si ,si+l ] 77N ( S) = I %/N (Si+1 )-r1N ( Si ) | 
< |%/N (Si+1 )-EE/N (Si+1 ) | + |E/N (Si) EE/N (Si) | 

+Variation[si,si l]E7RN(s) 

and by the smoothness of F(S), 

(85) Variation [si ,si+l ] EZ7N (s) - [O (log N) 1/2] 1 

NVariation[siXsi+l] F(S) 

= o(N6) + o(N1/4) 
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Estimates (83), (84), (85) imply 

PN{ sup |N(S-E7N(S) > Nsp 1/2+} -n+3/4 (log N) 1/2 

O~s<(log N)1!2 

Choosing n > 7/4 we have 

'E -P sup |qNN(s)-E7rN((s) >N1/2+e} < OO 

N=1 [O,(log N)1/2] 

and applying the Borel-Cantelli lemma ([13]) we find that with probability 1 
there exists some integer No, such that for any N > No 

(86) sup ?7NQ9)- E?7N(s) < N1/2+. 
[O,(log N)1/2] 

Since for s > (log N)1!2 

nN(S) < q4(logN)1/2) 

E'qN (s) = NFN (s) < NFN ((log N) 1/2), 

NF(s) < NF((logN)1/2) 

and 
NF ((log N) 1/2) - o (N-1/8) 

N (F ((log N)1/2) - FN ((log N)1/2)) = o(NE) 

(see (69), (70)), we can extend the sup in (86) to the whole real axis: 

sup uqN (s) - ErN (s) < const(e)N1/2+,. 
[oOo) 

Corollary 1.5 is proved. EL 

5. Orthogonal and symplectic groups 

The results formulated in Section 1 are valid for the other classical compact 
groups as well. The key factor here is the Vandermonde determinant nature 
of the density of the distribution function of eigenvalues. Formulas for the 
distribution of the eigenvalues with respect to the normalized Haar measure 
are classical (see ([35])). However it has been noted only recently by N. Katz 
and P. Sarnak ([19]) that the corresponding n-point correlation functions have 
the form of determinants, similar to (6). For the unitary group this fact was 
known for more than thirty years, back to pioneering papers by F. Dyson, 
M. Gaudin and M. L. Mehta ([30], [11]). Below we write the formulas for the 
distribution of the eigenvalues and n-point correlation functions for SO(2N), 

SO(2N + 1), USp(2N), 0_(2N + 2). 



607 LEVEL SPACINGS DISTRIBUTION 

The SO(2N) case. The eigenvalues of matrix M-in SO(2N) can be ar- * a rangec . ln palrs: 

(87) exp(i01 ), exp(-t01 ), . . . exp(i0N), exp(-i0N), 
O < 01 < H2 < * * * ON < T 

The probability distribution of eigenvalues is defined by its density: 

(88) PN(01, SN) = 2 (2 ) fI (2cosOi-2cossj)2. 

In the rescaled coordinates 

zi = (2N-1)2i, O < x1 < ...XN < N-1/2, 
n-point correlation functions are equal to 

( (2N-1) sin(7r(xi-x)/(2N-1)) 
+ sin7r(xi+xj) A 

(2N-1) sin(7r(xi + xj)/(2N-1)) J i j-l n 

Note the similarity of (89) and (6). Since 

sin 7r(xi + Xj) 
(2N-1) sin(7r(xi + xj)/(2N-1)) 

is small when xi, Xj Bp 1, n-point correlation function (89) can be considered as a small perturbation of 

(90) det ( sin7r(xi-Xj) 8 
\ (2N-1) sin(7r(xi-xj)/(2N-1)) J i j-l n 

The SO(2N + 1) case. The first 2N eigenvalues of matrix M from SO(2N + 1) can be arranged in pairs as in (87). The 2N + 1th eigenvalue equals 1. The probability distribution of eigenvalues is defined by its density: 
N 

(91) PN(01,000N) = (2/X)N n (2cosoi-2cossj)2Hsin2(0i/2). 
l<i<j<N i=l 

In the rescaled coordinates 

Xi = NHix, O < xl < . . . XN < N, 
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n-point correlation functions are given by the formula 

(92) 1Zn )(x1, * * * xn) 

-det r sin7r(xi-x;) sin7r(xi + xj) 8 t2N sin(7r(xi-xj)/2N) 2N sin(7r(xi + xj)/2N) Ji j 1 

The USp(2N) case. The eigenvalues of matrix M in USp(2N) can be * a arrangec . 1n pa1rs: 

(93) exp(i01 ), exp(-i01 ), . . . exp(i0X), exp(-i0N), 
°<01 <02 < *<<0N <T 

The probability distribution of eigenvalues is defined by its density: 

N 
(94) PN(01, * * * SN) = (2/T)N [l (2 cos ai-2 cos fJj)2 I| sin2(0i) 

1 <i<j<N i=l 
In the rescaled coordinates 

Xi = (2N + l)0i/(2gr), 0 < x1 < . . . xN < (2N + 1)/2, 
n-point correlation functions are equal to 

((2N + 1) sln(7r(xi-xj)/(2N + 1)) 

singr(xi+ xj) 8 
(2N + 1) sin(7r(zi + xj)/(2N + 1)) Ji j=l n 

The 0_ (2N + 2) case. The first 2N eigenvalues can be arranged in pairs, 
similar to (87); the (2N + l)th and (2N + 2)th eigenvalues are +1 and-1. 
The formulas for Py(fJl. . . fJN)v1;nN)(xlv . . .xn) coincide with those from the 
USp(2N) cas.e. The following universal result is valid for all cases, considered 
above. 

PROPOSITION 5.1. Let IN be an arbitrary subinterval of [O, T] ([-X, O]), 
such that the average number of eigenvalues hitting IN tends to infinity (i.e. 

NgINl/7r x). Then (E1(IN,S)-E(IN,S))/(ff||IN|/7r) converges in 

finite-dimensional distributions to the Gaussian random process of Theorem 
1.1. Theorem 1.2 and Corollaries 1.3, 1.4, 1.5 also hold. 
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We have to examine two aspects of the proof of Theorem 1.1: combina- 
torial and analytical. Since n-point correlation functions (89), (92), (95) still 
have the form 

det (KN (Xiv Xj))i,j=l,...n 

all combinatorial considerations (for example formula (50), expressing Ursell 
functions of the s-modified random field through the n-point correlation func- 
tions of the original random-point field) remain the same. From the analytical 
point of view, we must treat 

tR.(ff)(xl Xn) = det((2N+p)sin(7r(xi-xJ)/(2ff+P)) 

sin 7r(xi + Xj) A 

(2N + p) sin(7r(xi + xj)/(21\F + p)) 

p = -1, O, 1, as a small perturbation of 

( (2N + p) sin(1r (xi-x 7 ) / (2N + P) ) ) i j=l n 

That is, if x2, . . . x1+m E [x1, x1 + s], t-hen 

|2(N+m-P(2+Nm+P) < min(2; (m + l)!(m + 1)2/(1 + Ix111)) 

and 

ENN ([O, T], S) 
2N+ p S 

- j dx1 E m 

* | 7Zl+m(X1 X2, * * * Xl+m)dS2 * * * dSl+m 

[xl ,x1 +som 
2N+ p - 2 N-1 { lxm 

+ | dSl E t- J 

2N+p_S 

* / o7Z( 

[z1 ,(42IV+p)l21m 

2N+P 

j IV-1 (_l)m 

0 m=O [, 

+ Remainder term. 

( +m (X1 X2 0 * * * Xl+m) dx2 * * * dSl+m 

Jlzlexl+sam 

Pl+m )(X1, X2 . . . Xl+m)dS2 * * * dSl+m 
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The remainder term can be estimated as 

|Remainder term| 

N+p 
2 N 1 

< l dx1 E !smmin(2;(m+1)!(m+1)2/(l+lx111))+ sexp(s) 

where Ix l 1 = min(x, N + p/2-x), which implies 

|ENN ([O) 1r] S)-NF2N+P(S) | < const(s, s)NE 

for any E > O. Similarly to calculations in Section 4 one can show that 

SUP |EERN ([O) 1r] S) NF(s)| = o(Nl/26) 

Calculating the variance of rzN ([0v 1r] S) we note that if 

X3 ,...X2+m E [X1,X1+ S]U[X2 X2+S] 

then 

I R (N) _ p(2N+P) | < min (4; (m + 2) !2m+2 

( (l + max(lxl-x2|-s; O)) (1 + 2l(xl + x2)/2ll) 

+ (1 + 21(xl + X2)/2ll ) )) 

and 

IN 2 (_l)m / zR2+) 2(X1,X2,99 X2+m) 

m=0 ( [xl Xxl +s] u [z2 ,x2 +s] )m 

- P22+Nm+2P)(xl, X2) . . . X2+m)dX3 * * * X2+m| 

( )(1/( 1 1991-E/2( /( 1( )/ [ )91-E/2 

The last inequality leads to the estimate 

Var NN ([0 1r] S) = b2X+p(s, s)N + o(N6) 

valid for any E > O and fixed s. The calculation of higher moments (i.e. the 

proof of Lemma 3.2 for I > 2) does not require any alterations. Since the 

distribution of the eigenvalues on [-gr, O] is the mirror image of that on [O, gr], 

NN([-1r 1r] S) = 2r/N([O 1r] S) (0 1 or 2) 

and (E/N ([-7r, 1r], S)-EN/N ([-1r, 1r], S))/(2N) 1/2 converges in finite-dimensional 

distributions to 21/24(s). As soon as we prove Theorems 1.1, 1.2 for SO(2N+P), 
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(U(N)), the same results will hold for 0(2N+p), (SU(N)): Since nN ([-X, T], S) 

is invariant under the matrix multiplication by-1 (or by exp(iS) in the unitary 
case), 

X nN([-,], s)dHaar(S0(2N+p)) = | nN([-,], s)dHa=(0(2N+p)), 

S0(2N+P) 0(2N+P) 

j nN([-X,]s)dHaS(SU(N)) = j nk ([-TX]s)dHaS(U(N))- 

SU(N) U(N) 

Clearly, the analogues of Theorems 1.6, 1.7 are valid for the random-point 
field on the semi-axis [O, oo) with n-point correlation functions given by the 

formula 

Pn(Xl,. . .xn) = det (sin1T(xi-xj) sin7r(xi + rj)) 
7r(xi-Xj) 7r(xi + Xj) i,j=l,...rl 

6. Ciroular orthogonal ensemble 

The C.O.E. (log-gas (1) with the inverse temperature ,B = 1) corresponds 

not to a matrix group, but to the Symmetric Space U(N)/O(N) (see [24], [11]): 

(96) PN,1(01, . . . aN) = constN l TI | exp(iak)-exp(iaj)| 
l <k< j<N 

is the density of the eigenGralue distribution of MMt, where M E U(N)/O(N). 
It is generally assumed, although not proved rigorously, that the short- 

range correlations between eigenvalues of quantum systems, whose classical 

analogues are strongly chaotic (geodesic flows on the surfaces with negative 

curvature, Sinai billiards, Bunimovich stadiums) exhibit C.O.E. statistics ([6], 

[5], [15]). The point-correlation functions for the C.O.E. are calculated in 

[11]. They are again of determinantal nature, and moreover they are now the 

determinants of some n x n quaternion matrices. We will state these results 
in a more precise way. Consider quaternions as 2 x 2 matrices with complex 

coefficients 
{a b 

- q tc d . 

The quaternion units are 

X ( z O ), Y ( 1 0 ), Z ( o -i ) 

and 
q= 2 Id+ t (d-a) z_ t (b+c)X c-b 
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Cutting a 2N X 2N matrix A(M) with real or complex coefficients into 2 X 2 

blocks, we can view it as a N- X N quaternion matrix M. The quaternion 

determinant of M is defined as 

(97) QDetM - E (-1) I| 1/2TR (MiSi2Mi2i3 * Miki1) 
aESN 1 

where the sum is over all permutations, and the factors in the product corre- 

spond to the decomposition of ff into cycles. If M is self-dual, i.e., 

M;i-(I+Mij)Id-Mi;, i,; = 1, N, 

then after the agreement on the order of factors in (97)t the summation over 

all cyclic permutations will give a scalar matrix, and we can omit taking the 

trace in the formula. Moreover, in this case (QDet M)2 = det(A(M)) (see 

[12], [23g, [24]). Define the function YiN(r) as a quaternion 

( ) ( JSN(r), SN(r) ) 

where 

(98) SN(r) = E exp(ipr)= sin(Nr/2) 
1/2-N/2 

-1/2+N/2 

(99) DN(r) = N (d/dr)SN(r) = N E ipexp(iPr)) 
1/2-N/2 

(100) JSy(r) = -- E I-l sin(lr). 

1/2+N/2 

Then n-point correlation functions for the Circular Orthogonal Ensemble are 

(101) Pn )(xlv Xn)-(27r) QDet(X(xi-xj))ij=l n. 

We immediately see that in complete analogy with the C.U.E. case (formula 

(15)) 

(102) rnN)(XlX Sn)-(-1) (27r) SY^(X2-xl)T(x3-x2)...T(xl-xn) 

are the corresponding Ursell functions. Formulas (23), (24), (27), (42), (46) 

for the correlation functions and (50) for the Ursell functions are still valid, 

and so are all other combinatorial aspects of the proofs. The main analytical 

difficulty is that we are not able any longer to claim 

(27/ff)npnN)(Xlv...Sn) 
< 1 

slnce 
A(M) ( SN(Xa-Xj)) DSN(Xi-Xj) A 

\ JSN(Xi-Xj)t SN(Xi Xj) J i j=l n 
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is not a positive-definite matrix. More than that, I do not know how to show 
that 

(103) (27r/N) p~n)(xi,...xn) <Cn 

where C > 1 is arbitrary constant. However, for the purposes of proving 
Theorems 1.1 and 1.2, the following simpler estimate is sufficient: 

LEMMA 6.1. 

0 < (27r/N)np(N)(xI, .. xn) < (Cn)n/2 

where C = 200. 

Proof. Since M = (aN(Xi - xj))i'j=1,-.n is a self-dual matrix, 

((2#7r/Nf)n p(N) (X;.... XN)) (QDet (M)) det -A(M) . 

The elements of A(M)/N are uniformly bounded by some constant (10 is 
enough), 

ISN(r)/NI < 10, IDSN(r)/NI < 10, IJSN(r)/NI < 10 

and 

Tr (kA(M) A(M)t < 102(2n2), 

which implies 

det 1 A(M) NA(M)t < (1022n)2n 

det 1A(M) < (200n)n 

(2/N)np(N) (xI, ... xn) < (200n)n/2. 

In the rescaled coordinates y- = (N/2ir)xi, yj E [0, N], i= 1,... N, the 
elements of the 2 x 2 matrix TN(27ry/N) decay at infinity as 1/y: 

SN(21ry/N)I < const(IyI + 1) 

INDSN(27ry/N)I < const(jyj+1) 

INJSN(27ry/N)I < const(lyj + 1). 

Using these inequalities and the one from Lemma 6.1 we can repeat step by 
step all arguments in the proofs of Theorems 1.1 and 1.2. The correlation 
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function of the limiting Gaussian process ((s) in the case of C.O.E. is different 

from the case of C.U.E. In particular 

Var((s) = lim VarrZy(s)/-N is 12S2+0(S3) as s ) 0. 

However, it is reasonable to conjecture that after choice of the natural time 

parameter t = F(s) the distribution of the limiting Gaussian processes in the 

C.U.E. and C.O.E. cases should coincide. 

Remark. The proof of Corollary 1.5 requires an estimate of the type (103), 

which we are not ready to claim at this time. 

7. Generalizations and concluding remarks 

A) Our methods allow direct generalization to the case of k-level spacings 

distribution. Namely, one can define a random variable ny(I, s) as a number 

of eigenvalues that have exactly I neighbors within the distance 21rs/N to the 

right. (The distribution of ny(O,s) has been studied in our paper.) It is 

straightforward to prove similar results for the k-dimensional random process 

( (t7N (0> S)-E71N (O, s)) /Nl/2, * * (rBN (k-1, S)-E71N (k-1, s)) /Nl/2) 

which in particular would tell us about the global k-level spacings distribution, 

since the number of k-level spacings greater than 21rs/N equals 

#-1 

E nN (1, S) n 

1=0 

One can also count spacings with the help of smooth functions G: Rk ) R 

with compact support. If rj = (#jul-Aj)N/(27r) are normalized spacings, 

then the central limit theorem holds for the statistics 

N 

g = E G(rj, rj+l, . rjok-l) as well. 
j=l, 

B) All our results are valid for the general random field defined by n-point 

correlation functions (11) 

Pn(Xl, . . . Xn) = det (v(xi-Xi))i,j=1,...n n 

provided v(x) decays at infinity as O(1/x). In particular, similar results should 

hold for the Gaussian Orthogonal and Unitary Ensembles (see [24] for the 

definition of the ensembles) in the bulk of the spectrum. 
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C) In the case of the Circular Symplectic Ensemble (p = 4), n-point 

correlation functions are again given by the quaternion-determinants 
(101) 

with 

2 ( IS2N(r), S2N(r) ) 

where S2N, DS2N are defined as in Section 6 and 

-1/2+N 

IS2N(r) = (N/1r) E p-1 sin(pr) = JS2X(r) + s2ff(r), 

1/2-N 

where 

£2ff(r) = { ( ) N, 27rm < r < 27r(m+ l),m = 0 A1 'r2 

([11], [24]). One can see that in the rescaled coordinates Yi = (N/27r)xi,i = 

1, . . . N, the quaternion component 

IS(Y)= lim 2NIS2N(27rY/N)=Sgn(Y) 
7 (t )dt 
o 

has nonzero limits at zEoo, which in particular implies that the limiting two- 

point Ursell function 

(O ) _ (sin(27rz) )2 + 1 J sin(7rt)dt (d/d ) (sin(27rz)) 

o 

decays at infinity as 1/x, not l/x2 (which is the case for C.U.E. and C.O.E.). 

In general, more subtle arguments are required to prove that k-point Ursell 

functions decay fast enough off the diagonals xi-Xj, i, j-1, . . . N, to satisfy 

the conditions of Theorem 2.1. We will return to this problem somewhere else. 
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