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Abstract. In this paper we construct an isomorphism between the card game
SetR© and the four-dimensional vector space over the three element field, F3,
to draw various results about the game. By creating a one-to-one and onto
correspondence between the cards and points in F4

3
, we find that a collectable

set is in fact a line in the vector space. Using this, we are able to determine
the total number of collectable sets that exist in the game, as well as find the
maximum number of cards that can be played without having a collectable
set. Furthermore, we can simulate the game using the Monte Carlo method to
find the probability of having a collectable set in a random selection of cards
from the deck.

1. The Game SetR©

The game SetR© was invented in 1974 by geneticist Marsha Jean Falco in an
attempt to determine if epilepsy was an inherited disease in German Shepherds.
She found through recording information about each dog that certain characteristics
were grouped together. Instead of rewriting data, she decided to draw symbols on
file cards to represent different gene combinations found in each dog. Her work
of observing the different symbol combinations inspired her to create the game
SetR© [1].

Today, the game SetR© is composed of 81 cards, each with a unique image. To
play, one must lay down a 3x4 grid cards, face up. The purpose of the game
is to collect three cards that meet a specific criteria, thus forming what we call
a collectable set. Each card in the game has one quality from each of the four

Figure 1. A collectable set containing all the same shape, and all
different colors, number of symbols, and fills
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categories, which are: color (green, purple, red), shape (oval, squiggle, diamond),
fill (no fill, medium fill, solid), and the number of objects on the card (one, two,
three). For instance, one card in the game has two solid green squiggles on it. To
create a collectable set, one must find a collection of three cards in the grid for
which all properties are the same, or each card has a different property, for each
respective category. So a collectable set might have three cards that are all the
same color, but each has a different shape, number, and fill. Clearly, each card
cannot be the same for each of the four categories because there is only one card of
that kind. After removing a collectable set, three more cards are placed down and
the game continues until the deck is exhausted.

Figure 1 provides an example of a collectable set in the game. All three cards
have the same shape (diamonds), but have all different characteristics for color,
number, and fill.

2. Mathematical Introduction

While the game SetR© is a source of entertainment for many, it is also rich in
mathematical material. By relating the game to finite fields we can begin to answer
questions which are provoked by the game.

In this article we will assume familiarity with linear algebra over any finite field.
This means that we can talk about linear independence, dependence, vector spaces,
subsets, and bases over a finite field just like we would over the real numbers.

We can create a one-to-one and onto correspondence between the vector space
F4

3 and SetR© by letting each card be represented by a point in F4
3. While there

are multiple ways to construct this correspondence, we will be using the following
notation for each card: (color, number, shape, fill), where each entry is an element
of Z3. We will let 0, 1, and 2 represent the following for each card:

Color: Number: Shape: Fill:
0 =Red 0 = 1 symbol 0 =Oval 0 =No fill
1 =Purple 1 = 2 symbols 1 =Diamond 1 =Medium fill
2 =Green 2 = 3 symbols 2 =Squiggle 2 =Solid

Each card is now a point in F4
3. For example the card with one unfilled red oval

is given by the point (0, 0, 0, 0). And since there are 34 = 81 different entry com-
binations for a point in the field, and there are 81 unique cards in the deck, every
point corresponds to a unique card. While each card is represented as a point, we
also find that each collectable set in the game is actually a line in F4

3. Consider
three cards which form a collectable set. For each category each trait is either all
the same, that is the entries are all 0’s, 1’s, or 2’s, or all traits are different, there
is one entry of each 0, 1, and 2. Now taking the coordinates of each of the three
points in a collectable set we find that when adding them (as elements of Z3), they
all equal zero. This is true for each of the four entries of each point. Thus the cards
represented by the points x, y, z ∈ F4

3 will satisfy the equation x + y + z = 0 if and
only if the three cards are part of a collectable set. Later we will address that these
three points are in fact on a line in F4

3.
In addition to observing the game, we will look at the creation of magic squares.

A magic square is the collection of nine cards where each card is part of four
collectable sets in the square. If we consider our vector space, but only over two
dimensions, we are able to relate any magic square to F2

3, which is an affine plane
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of order three. Using the properties of affine planes, we can then determine what
is necessary to create multiple magic squares using the remainder of the cards in
the deck.

By using this correspondence between the cards in the game and the vector space
over F3 we will be able to address the following questions regarding the game:

(1) Given any two cards in the game, are there multiple cards which can com-
plete each collectable set?

(2) How many collectable sets exist in the game?
(3) Given a magic square using cards from the game, what is required to create

a second magic square that has only one card in common with the first?
(4) What is the maximum number of cards which can be laid down without

having a collectable set?

In the third section we will address the mathematical framework for the game.
This will be an overview of projective geometry and some of the properties of affine
planes. As stated earlier SetR© is isomorphic to the vector space F4

3 and is in fact
a four dimensional affine space of order three. Using properties addressed in this
section we will have a better understanding of the proofs in subsequent sections.

The rest of the paper will be devoted to finding the answers to our questions
involving the game. In the fourth section we will prove that for every pair of
two cards drawn from the deck, there is a unique third card that completes the
collectable set. In the fifth section we will count the total number of collectable
sets contained within the game SetR© using the relationship between F4

3 and the
game. In the sixth section we will continue to discuss the properties of magic
squares, and when given one magic square, what is required to create a second that
intersects the first at one point.

The following section will address finding a maximal d-cap, which is the greatest
number of points that can exist in Fd

3 without creating any lines. We will apply
this to the cases of d = 2, 3, 4, where the final proof will show that the maximal
4-cap, which is also the greatest number of cards we can have in the game without
having a collectable set, is in fact twenty.

The eighth and final section will discuss outcomes of the game using the Monte
Carlo method. We will address the probabilities of not having a collectable set
given twenty cards from the game, as well as the average number of collectable sets
that exist in a random set of twelve cards.

3. The Mathematical Framework

Before addressing the questions related to SetR©, we must translate the game into
a mathematical framework. In order to do so the topics of projective and affine
geometry will be discussed.

First, consider a finite field of prime order q, denoted Fq. Just like an n-
dimensional vector space over the real numbers, there exists an n-dimensional vector
space, Fn

q over this field. The vector spaces over a given field allow us to quantify
the number of subspaces of a given dimension. Given Fn

q , it is possible to determine
the total number of vectors in the vector space.

Proposition 1. The number of vectors in Fn
q is equal to qn [2].

Proof. In Fq there are q elements. Now suppose Fq is expanded to n-dimensions.
Consider a vector in Fn

q . The ith entry (i = 1, 2, . . . , n) of the vector has q possible
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choices. Since there are q possibilities in each of the n entries of the vector, there
are qn different combinations and thus the number of vectors in Fn

q is qn.

!

We now consider the following important idea.

Definition 1. A projective plane of order q consists of a set X of q2+q+1 elements
called points, and a set β of (q + 1)-element subsets of β called lines, having the
property that any two points lie on a unique line [2].

It is not necessarily clear whether any number q will allow for the construction
of a projective plane. The following proposition provides a method for exhibiting
a projective plane of order q, when q is prime.

Proposition 2. If q is a prime, then there is a projective plane of order q.

Proof. Consider the field Fq containing q elements, where q is a prime number.
We will define V = F3

q to be the three dimensional vector space over the field. Let
X be the set of one dimensional subspaces of V . Since there are q3 − 1 non-zero
vectors in V and there are q − 1 nonzero vectors which span any line in X , then
there are

q3 − 1

q − 1
= q2 + q + 1

elements in the set X , which we call points.
Now let T be a two-dimensional subspace of V , and we define LT to be the

following,

LT = {x ∈ X |x ⊆ T }.

And we let β = {LT |T is a 2-dimensional subspace of V }. Since T is a two-
dimensional subspace of V , it contains q2 elements, and each nonzero vector of T
spans the set. Since there are q2−1 nonzero vectors in T and q−1 of these vectors
in LT , then it follows that LT has

q2 − 1

q − 1
= q + 1

elements.
For the last part, consider the points x, y ∈ X where x $= y. Then for T = x+ y,

we have a two-dimensional subspace of V such that LT is the unique elements of β
containing x and y.

!

A simple example of a projective plane of order one is a triangle consisting of
three points. Since it has three points, we have q2 + q + 1 = 3, and then we find
q = 1. There are q + 1 = 2 points in every line. A triangle is a projective plane
with an order of 1, and in fact, it is the only such plane. The following provides
further properties of a projective plane of order q (see [2]).

Proposition 3. In a projective plane of order q, the following hold:

• any point lies on q + 1 lines
• two lines meet in a unique point
• there are q2 + q + 1 lines.
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Proof. Let p be a point in a projective plane of order q. Since there are
q2 + q + 1 points total, there are q(q + 1) points other than p. By Definition 1,
every line through p will contain q additional points. Dividing by q, we get that
there are q + 1 lines through p. Now consider two lines, L1 and L2. Suppose that
these two lines do not meet. Let p be a point on L1. Then there are q + 1 points
on L2, and by Definition 1 each must connect to p by a line other than L1. But
then there are q + 2 lines through p, which is a contradiction, so L1 must meet L2.
Let |β| be the number of lines in the projective plane. Since there are q + 1 points
per line, we have that the number of points in X is

|β| · (q + 1) = (q2 + q + 1)(q + 1).

So then |β| = q2 + q + 1. Therefore all three properties hold.

!

Here a representation of the projective plane of order 3:

0 1 2 3 4 5 6 7 8 9 T J Q
1 2 3 4 5 6 7 8 9 T J Q 0
5 6 7 8 9 T J Q 0 1 2 3 4
J Q 0 1 2 3 4 5 6 7 8 9 T

Each column is a line in the projective space. All of the properties of a projective
plane hold. There are thirteen points, thirteen lines, every point is contained on
four lines, and there are four points on each line. Also note that each line has one,
and only one point in common with each line, and therefore they all intersect.

A structure closely related to the projective plane is the affine plane. The fol-
lowing provides the definition of an affine plane of order q.

Definition 2. An affine plane of order q consists of a set X of q2 points, and a
set β of q-element subsets of X called lines, such that two points lie on a unique
line [2].

Similarly to projective planes of order q, the following gives a method for con-
structing an affine plane.

Proposition 4. If q is a prime, then there is a affine plane of order q.

Proof. Let q be a prime number, and let X = F2
q. Since X is a two dimensional

field of order q, it has q2 elements. Suppose v, z ∈ X , and let
β = {v + αz : α ∈ Fq}. Since there are q different values for α, there are q
different elements along each line in β. Now consider z = w − v, where w ∈ X . If
α = 0, we have v + αz = v + 0z = v, and if α = 1, we have
v + αz = v + z = v + (w − v) = w. We see that that the value z = v − w
determines the unique line that contains v and w. And following from Definition
2, we see that X is an affine plane of order q.

!

An example of an affine plane of order three is given in the following 3x3 grid of
integers.
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0 1 2
3 4 5
6 7 8

Here each row, column, diagonal, and off center diagonal represents a line in the
affine plane. Writing out all of the lines (the vertical, horizontal, and diagonals), it
becomes

0 1 2 0 3 6 0 1 2 2 1 0
3 4 5 1 4 7 5 3 4 3 5 4
6 7 8 2 5 8 7 8 6 7 6 8

where each column is a line. In regards to the definition, this is clearly an affine
plane in which q = 3. There are 32 = 9 points, 3 points make up a line, and each
pair of numbers lies on a unique line. The following provides further properties of
an affine plane.

Proposition 5. In an affine plane of order q,

• any point lies on q + 1 lines;
• there are q(q+1) lines altogether
• (Euclids parallel postulate) if p is a point and L is a line, there is a unique

line L′ through p parallel to L
• parallelism is an equivalence relation; each parallel class contains q lines

which partition the point set
[2].

A proof of this proposition will not be provided here, but can be found in
Cameron’s text. Returning to the affine plane of order three, note that each point
lies on 3 + 1 = 4 lines, and there are 3 · 4 = 12 lines in the plane. There are also
four parallel classes each containing three lines: the rows, the columns, the left to
right diagonals, and the right to left diagonals.

Now that the definition and an example of an affine plane have been provided,
the connection between projective space and affine space will be further explored.
Let’s return to the example of the projective plane of order three. By removing the
line {0, 1, 5, J}, an affine plane of order three can be created.

• • 2 3 4 • 6 7 8 9 T • Q
• 2 3 4 • 6 7 8 9 T • Q •
• 6 7 8 9 T • Q • • 2 3 4
• Q • • 2 3 4 • 6 7 8 9 T

After removing the first line, there is a plane consisting of nine points, twelve lines,
and three points on each line. This is consistent with the definition of an affine
plane where q = 3. By removing a line in the projective plane, an affine plane has
been created. Each line in the projective plane was represented as a 4-tuple. By
choosing the line {0, 1, 5, J} to be the hyperplane which is removed, the original
4-tuples in the projective plane now have a unique representation as 3-tuples in the
newly created affine space.
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4. Cards in a Collectable Set

Given any two cards in the game SetR©, is there only one card that can be added
to complete a collectable set? When playing the game, this seems to be the case.
If one picks two random cards, one can determine which are the four qualities in
the third card that correspond to a collectable set. But is this always the case? By
using the properties of F4

3, we are able to show this is true.
First we will define the term k-flat, which will come up frequently later on in

this paper. Let V be a vector space over F4
3, then a k-flat is a k-dimensional subset

of V . We will see that a collectable set corresponds to a 1-flat of the vector space
F4

3, and in the sixth section we will see that a magic square is in fact a 2-flat in F4
3.

The following lemma will help us to show that each collectable set is a 1-flat in
F4

3.

Lemma 1. Three points x, y, z ∈ F4
3 are on a line if and only if x + y + z = 0.

Proof. Let x, y, z ∈ F4
3 such that x, y, z are on a line. Because they are on a line

we can rewrite each in the form υo + αωo, where α = 0, 1, 2. Then let

x = υo

y = υo + ωo

z = υo + 2ωo.

Adding the three points we find x + y + z = 3υo + 3ωo = 0.
Now suppose x, y, z ∈ F4

3 such that x + y + z = 0. Let x = υo and y = x + ωo.
This implies that y = υo +ωo and υo +2ωo = x+2(y−x) = −x+2y = −x−y = z,
and we have

x = υo

y = υo + ωo

z = υo + 2ωo.

We conclude that x, y, z are on a line. This completes the proof.

!

Theorem 1. For any two cards drawn from the deck, there exists a unique third
card that, with the other two, creates a collectable set.

Proof. Let the cards in the game be points in F4
3. Let x, y ∈ F4

3. To show that
there exists a point which completes a line with x and y, consider the point
z = −x − y. By using the properties of vector spaces, we find

x + y + z = x + y − x − y = 0

which, by Lemma 1, implies that x, y, z are all on a line. Thus given any two points
in F4

3, there exists a third point which completes the line. To prove the uniqueness
of the third card, we will use contradiction. Assume that there exist two distinct
points z1, z2 ∈ F4

3 which both complete a line with x and y. Then we have

x + y + z1 = 0

x + y + z2 = 0

which implies
z1 = 0 − x − y

z2 = 0 − x − y
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and it follows that z1 = z2. Therefore there is only one point in F4
3 that completes

a line with the points x and y. Consequently, for any two cards in the game, there
exists a unique card that completes the collectable set.

!

5. Cards and Lines

To determine the total number of collectable sets of cards in the game, we will
first consider the total number of lines in F2

3, F3
3, and then look at F4

3.

5.1. Lines in F2
3. The vector space F2

3 is an affine plane of order three. From
Definition 2 we know there are nine points, and any two points lie on a unique line.
Then there are

(

9

2

)

different lines. However, this value over counts the number of lines (or rather the
number of triples) by a factor of three, thus it must be divided by three. For exam-
ple, given the collectable set (A, B, C), we can pick the three pairs {A, B}, {A, C}, {B, C},
which each determine the same line. Dividing by three, this gives

(

9

2

)

/3 = 12

as the total number of lines in F2
3, which is equivalent to the total number of

collectable sets in any magic square.

5.2. Lines in F3
3. Similarly we can determine the total number of lines in the vector

space F3
3. By Proposition 1, there are a total of 27 points. Using the same method

as above, we find that there are
(

27

2

)

/3 = 117

lines in F3
3.

5.3. Lines in F4
3. Finally to determine the total number of collectable sets in the

game we consider the number of lines in F4
3. Using Proposition 1, there are 34 = 81

points in F4
3 and there are

(

81

2

)

total ways to choose two points in the field. To
adjust for over counting, we divide by three and find that there are

(

81

2

)

/3 = 1080

lines in F4
3, and thus a total of 1080 collectable sets in the deck of 81 cards.

6. Magic Squares

Within the game of SetR©, we can construct what is called a magic square. A
magic square is formed by taking three cards, which we will denote by x, y, z ∈ F4

3,
and placing them according to the grid below.

y
x z
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We will call this grid P . Using the rules of SetR©, we can find the unique cards that
complete each collectable set with the pairs (x, y), (x, z), and (y, z). As mentioned
earlier, the cards required to complete each collectable set are those that, when
added to the other two, equal 0 (mod 3). To complete the 3x3 grid of cards, we fill
the spaces in accordingly,

−(y + z) −y + x + z −(x + y)
−x + y + z y x + y − z

x −(x + z) z

so that each row, column, and diagonal create a collectable set. We note that the
cards which complete P are dependent on the original three x, y, and z.

While the construction of each magic square seems to work with random cards,
we must actually avoid certain cards. For example, as stated in Section 2 the point
(0, 0, 0, 0) represents the single red unfilled oval. Then we can create the following
magic square,

S1 =
(2, 2, 0, 0) (1, 2, 0, 0) (0, 2, 0, 0)
(1, 1, 0, 0) (0,1,0,0) (2, 1, 0, 0)
(0, 0, 0, 0) (2, 0, 0, 0) (1,0,0,0)

where (0, 1, 0, 0) and (1, 0, 0, 0) are the two cards that were initially set down to
complete the square. But then can any two cards be placed on the grid? The
answer is no. For example, if the cards (1, 0, 0, 0) and (2, 0, 0, 0) are set down on
the grid, we have

(0, 0, 0, 0) (2, 0, 0, 0) (1, 0, 0, 0)
(0, 0, 0, 0) (2,0,0,0) (1, 0, 0, 0)
(0, 0, 0, 0) (2, 0, 0, 0) (1,0,0,0)

which violates the rules of the game; specifically, there are no duplicates. We
note that in F4

3, the points (1, 0, 0, 0) and (2, 0, 0, 0) are linearly dependent, while
(1, 0, 0, 0) and (0, 1, 0, 0) are independent. If we choose any two linearly dependent
cards, that is cards represented by linearly dependent, or equivalently, collinear
vectors in F4

3, we will not be able to create a magic square. To prove this, consider
the square with 0, x, and 2x. Because we are in F4

3, the following will occur

−(2x + x) 2x − x −(x + 0)
2x + x x −(2x + x + 2x)

0 −2x 2x

Which is equivalent to

0 x 2x
0 x 2x
0 x 2x
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So we can’t create a magic square with collinear initial vectors.

6.1. SetR© as an Affine Plane. The following will allow us to see SetR© is an affine
plane, and that we can partition the cards into ten magic squares that intersect
at one point. First, consider an abelian group G, of order n2, which has n + 1
subgroups, H0, · · · , Hn of order n, such that the intersection of the subgroups is
{0}. Then, if we let the elements of G be points, and the cosets of Hi for all
i = 0, 1, · · · , n be our lines, then we have an affine plane. To show that two points
are contained in a line, consider x, y ∈ G. Consider the subgroup Hk that contains
x − y. We know that both x and y must be in the coset Hk + y. So for the two
points, x and y there is a line Hk + y, and in fact unique line, that contains them.
If we continue with some more properties of affine planes, we note that there are
n+1 subgroups, and thus n+1 lines. If we remove {0}, we see that each subgroup
contains n2 − 1/(n + 1) = n − 1 elements, and therefore there are n elements
including {0} in each subgroup.

Next can show that SetR© is an affine plane of order nine. There are 92 cards that
can be represented as points in F4

3. We can deconstruct the cards into 10 subgroups
such that the only card they share is (0, 0, 0, 0), that is the single red unfilled oval.
Here we write the subgroups as given in [3],

H0 = {(0000), (1000), (2000), (0100), (0200), (1100), (2200), (2100), (1200)}
H1 = {(0000), (0010), (0020), (0001), (0002), (0011), (0022), (0021), (0012)}
H2 = {(0000), (1010), (2020), (0101), (0202), (1111), (2222), (2121), (1212)}
H3 = {(0000), (2010), (1020), (0201), (0102), (2211), (1122), (1221), (2112)}
H4 = {(0000), (0110), (0220), (2001), (1002), (2111), (1222), (2221), (1112)}
H5 = {(0000), (0210), (0120), (1001), (2002), (1211), (2122), (1121).(2212)}
H6 = {(0000), (1110), (2220), (2101), (1202), (0211), (0122), (1021), (2012)}
H7 = {(0000), (2210), (1120), (1201), (2102), (0111), (0222), (2021), (1012)}
H8 = {(0000), (2110), (1220), (2201), (1102), (1011), (2022), (0121), (0212)}
H9 = {(0000), (1210), (2120), (1101), (2202), (2011), (1022), (0221), (0112)}

Each subgroup Hi is closed under addition modular 3. If we go back to our magic
square, we see that each of these subgroups represents an individual magic square.
Here is a possible way to have ten magic squares that intersect at one card.

6.2. Creating Multiple Magic Squares. Now suppose that we have one magic
square, S1. What are the conditions that must be met in order to create a second
which intersects the first at a single value? That is given one magic square, S1,
containing the element x, can we find a second magic square S2 such that S1∩S2 =
{x}? Since our two vectors in S1 are linearly independent, S1 is 2-dimensional, and
it is also a subspace of F4

3, we can create the transformation1 φ : F4
3 → F4

3, defined

1Making the magic square into a subspace, and the creation of this transformation was con-
tributed by Professor Patrick Keef
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as the following,

φ(1, 0, 0, 0) = (1, 2, 1, 2)

φ(0, 1, 0, 0) = (0, 1, 1, 1)

φ(0, 0, 1, 0) = (0, 0, 1, 0)

φ(0, 0, 0, 1) = (0, 0, 0, 1)

Because our basis vectors map to a new set of linearly independent vectors, we will
have a magic square. Our transformation matrix is the following,

1 0 0 0
2 1 0 0
1 1 1 0
2 1 0 1

and by multiplying it with each element of S1 we can create a second square, S2.

S2 =
(2, 0, 1, 0) (1, 1, 0, 1) (0, 2, 2, 2)
(1, 0, 2, 0) (0,1,1,1) (2, 2, 0, 2)
(0, 0, 0, 0) (2, 1, 2, 1) (1,2,1,2)

Thus we can construct a second magic square from one magic square. From the
previous subsection, we discovered that the elements of F4

3 can be partitioned into
ten subgroups H0, H1, · · · , H9, such that there exists one element x such that for
i $= j, Hi ∩ Hj = {x}. Since these subgroups correspond to magic squares in the
game, we see that we can in fact partition the cards into ten magic squares that
have only one card in common.

7. Maximal d-caps

In “The Card Game Set” the authors define the term d-cap to be a subset of
Fd

3 which does not contain any lines. In terms of the card game SetR©, it is the
maximum number of cards that can be drawn without having a collectable set.
In the previous section we considered creating magic squares, which are in F2

3.
Consider the single red cards, then the maximal 2-cap will be the largest set of
single red cards that can be placed in a 3x3 grid without having a collectable set;
or in F2

3 it is the maximum number of points that can exist without forming a line.
Here we establish the value of the maximal 2-cap.

Proposition 6. There are four points in a maximal 2-cap.

Proof. To prove that the 2-cap is four, we must first show that there exists a
2-cap which contains four points, and that anymore than four points will create a
line. We can prove the first by example. The following grid has four points, and
no lines.

• •
• •
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Therefore there are at least four points without having a line. Now we must show
that for any set of five points, we will have a line. By contradiction, assume that we
can place five points onto the grid without creating a line. First, because we cannot
have three points next to each other, one row can only contain one point, and the
others can contain two. Without loss of generality, assume the first row contains
only 1 point, where the • represents our point, and 0 represents the absence of
points.

• 0 0

Here we note that each point is on four lines. Because the first row contains no
other points, there are three lines through our first point on which to place our
other four points. This leads to a pigeon hole argument. The first three points can
each be placed on a different line. Then we have two points on each line. But then
the fifth point can only go on one of these three lines, and therefore we will have
a line containing three points, and therefore a contradiction. Thus, there are four
points in a maximal 2-cap.

!

Before proving the values of the 3-cap and the 4-cap we will provide an important
result which allows us to count the number of hyperplanes containing a k-flat. The
term hyperplane is used frequently in the following propositions. If we let V be
an n-dimensional vector space, then a hyperplane H is an (n − 1)-flat of V . Next
we define the term N -marked plane. Let H be a hyperplane, and C be a d-cap in
Fd

3, then an N -marked plane is the ordered pair (H, M) where M is an N -element
subset of H ∩ C. We will only see the cases of 2 -marked and 3 -marked planes in
this section.

Proposition 7. [4] The number of hyperplanes containing a fixed k-flat in Fd
3 is

given by

3d−k − 1

2
.

Proof. Let K be a k-flat that contains the origin. We can create the following
bijection,

F
d
3 → F

d
3/K ∼= F

d−k
3

where we remove k dimensions, and are left with a (d−k)-dimensional vector space.
This maps a hyperplane containing K to a hyperplane in F

d−k
3 , which contains the

origin.
Because the mapping is a bijection, the number of hyperplanes in Fd

3 that contain
K is equivalent to the number of hyperplanes in F

d−k
3 that contain the origin. Since

each plane is determined by a nonzero normal vector and there are two nonzero
normal vectors for every hyperplane, there are half as many hyperplanes as nonzero
vectors in F

d−k
3 . It follows that the number of hyperplanes containing the origin is

3d−k − 1

2
.

!
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Next, we can show that a maximal 3-cap contains nine points. First we provide
an example of a 3-cap containing nine points.

• •

• •
•

•
• •

•

Proposition 8. A maximal 3-cap has nine points [4].

Proof. We have seen an example of a 3-cap containing nine points. Now we must
show that any set of more than nine points contains a line in F3

3. By
contradiction, assume that there does exist a 3-cap containing ten points. The
space F3

3 can be divided into three parallel planes, which, by Proposition 6,
contain at most four points each. If we have a set C of ten points in F3

3, then the
plane with the least number of points has either two or three points. Let H be the
plane with the least number of points, and let a and b be the two points in H .
Here we see H is a 2 -marked plane. Then there are seven other points,
x1, x2, x3, x4, x5, x6, and x7 in F3

3 which are not in H . Since a and b are in H , by
Proposition 7 there are 3 other planes, let’s call them M1, M2, and M3 which
contain both a and b as well. Then the points x1, x2, x3, x4, x5, x6, and x7 lie in
the three planes, and by the pigeon hole principle, three of these points must lie in
one Mi. But Mi contains a and b as well and thus has 5 points, which contradicts
Proposition 6. Therefore there are at most nine points in a 3-cap.

!

In order to prove the value of the maximal 4-cap, we need a stronger method,
which we will use to again prove that a maximal 3-cap has nine points.

Proposition 9. A maximal 3-cap has nine points [4].

Proof. From our previous example, we know there are at least nine points in a
maximal 3-cap. Suppose there exists a 3-cap with ten points. Let C be our 3-cap.
Then let F3

3 be the union of three parallel planes, H1, H2, and H3. Then we can
create an unordered hyperplane triple {|C ∩ H1|, |C ∩ H2|, |C ∩ H3|}, where each
|C ∩ Hi| is the number of points in each plane contained in C. Since each plane
has a maximal 2-cap of four, the possible triples are of the form {4, 4, 2} and
{4, 3, 3}. Let a and b be as follows:

a = the number of hyperplane triples of the form {4, 4, 2}
b = the number of hyperplane triples of the form {4, 3, 3}

Where a and b must both be non-negative. Then there are a + b different ways to
decompose F3

3 as the union of three hyperplanes. To find a + b we can consider the
number of lines through the origin. For each family of three parallel hyperplanes
there is a unique line through the origin and perpendicular to the hyperplanes.
Here we note the origin is a 0-flat, and by Proposition 7 when k = 0 there are
thirteen hyperplane triples which contain the origin. Thus there are thirteen ways
to decompose the union of three hyperplanes, and we get a + b = 13.

Next we look at the 2 -marked planes, that is planes with at least two points which
are contained in C. Since there are four planes that contain any pair of points (as
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in the proof of Proposition 8) and ten choose two different pairs of points, there are
4
(

10

2

)

= 180 2 -marked planes.

For each hyperplane triple of the form {4, 4, 2}, there are
(

4

2

)

+
(

4

2

)

+
(

2

2

)

=
13 2 -marked planes. For each hyperplane triple of the form {4, 3, 3} there are
(

4

2

)

+
(

3

2

)

+
(

3

2

)

= 12 2 -marked planes. So then we have

13a + 12b = 180.

Using a + b = 13, we find that b = −11 and a = 24. But this is a contradiction
because a and b cannot be negative. Therefore there are at most nine points in a
maximal 3-cap.

!

Now we turn to the computation of a maximal 4-cap. Here is an example of a
4-cap containing 20 points [4]:

× ×

× ×
×

×
× ×

×

× ×

×
× ×

×
×

× ×

× ×

Here we see that there are no lines. However, if we add another point anywhere in
the grid, we will have a line. This leads us to the following proposition.

Proposition 10. A maximal 4-cap has twenty points [4].

Proof. By contradiction, assume we have a 4-cap C4 of twenty-one points. Now
let xijk be the number of three-dimensional hyperplane triples of the form
{i, j, k}, where i, j, k represent the number of points in the corresponding parallel
hyperplanes (note i + j + k = 21). Since the maximal 3-cap is nine points, there
are seven different hyperplane triples:

{9, 9, 3}, {9, 8, 4}, {9, 7, 5}, {9, 6, 6}, {8, 8, 5}, {8, 7, 6}, {7, 7, 7}

By Proposition 7, the number of groups of three parallel hyperplanes in F4
3 is equal

to the number of lines that go through the origin, given by (34 − 1)/2 = 40. It
follows that the sum of our different hyperplane forms is forty, and we have,

(1) x993 + x984 + x975 + x966 + x885 + x876 + x777 = 40.

Next we consider the 2 -marked planes, the planes where at least two points are
contained in C4. Since two points are contained in a 1-flat, by Proposition 7,
there are (33 − 1)/2 = 13 2 -marked planes. The following argument is similar to
Proposition 9. Since there are thirteen hyperplanes with distinct pairs of points,
there are 13

(

21

2

)

= 2730 2 -marked planes. For a hyperplane triple of the form

{i, j, k} there are
(

i
2

)

+
(

j
2

)

+
(

k
2

)

2 -marked planes. We can formulate a second
equation based off of the these values.
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[(

9

2

)

+

(

9

2

)

+

(

3

2

)]

x993 +

[(

9

2

)

+

(

8

2

)

+

(

4

2

)]

x984 +

[(

9

2

)

+

(

7

2

)

+

(

5

2

)]

x975+

[(

9

2

)

+

(

6

2

)

+

(

6

2

)]

x966 +

[(

8

2

)

+

(

8

2

)

+

(

5

2

)]

x885 +

[(

8

2

)

+

(

7

2

)

+

(

6

2

)]

x876+

[(

7

2

)

+

(

7

2

)

+

(

7

2

)]

x777 = 2730.

This simplifies to

(2) 75x993 + 70x984 + 67x975 + 66x966 + 66x885 + 64x876 + 63x777 = 2730.

Next, we consider the 3 -marked planes, which are the hyperplanes containing
three distinct points of C4. Since three noncollinear points make up a 2-flat, by
Proposition 7, there are (32 − 1)/2 = 4 hyperplanes with three distinct points from
the cap. Since there are twenty-one choose three different ways to select three
distinct points, there are 4

(

21

3

)

= 5320 3 -marked planes. This gives the equation,

[(

9

3

)

+

(

9

3

)

+

(

3

3

)]

x993 +

[(

9

3

)

+

(

8

3

)

+

(

4

3

)]

x984 +

[(

9

3

)

+

(

7

3

)

+

(

5

3

)]

x975+

[(

9

3

)

+

(

6

3

)

+

(

6

3

)]

x966 +

[(

8

3

)

+

(

8

3

)

+

(

5

3

)]

x885 +

[(

8

3

)

+

(

7

3

)

+

(

6

3

)]

x876+

[(

7

3

)

+

(

7

3

)

+

(

7

3

)]

x777 = 5320

which simplifies to

(3) 169x993 + 144x984 + 129x975 + 124x966 + 122x885 + 111x876 + 105x777 = 5320.

Next we want to solve for our xijk values. By taking 693 times Equation (1) plus
3 times Equation (3), then subtracting 16 times Equation (2), we get

(693 + 507 − 1200)x993 + (693 + 432 − 1120)x984 + (693 + 387 − 1072)x975+

(693 + 372 − 1056)x966 + (693 + 366 − 1056)x885 + (693 + 333 − 1024)x876+

(693 + 315 − 1008)x777 = 27720 + 15960− 43680

which is equivalent to

5x984 + 8x975 + 9x966 + 3x885 + 2x876 = 0.

Since the values of xijk must be non-negative, then x984 = x975 = x966 = x885 =
x876 = 0 is the only solution. Then if we also consider 2 times Equation (2) minus
63 times Equation (1), we get

12x993 + 7x984 + 4x975 + 3x966 + 3x885 + x876 = 210.

Substituting our zero values, we get x993 = 35/2, but then x993 cannot be an
integer, which is a contradiction because we can only have integral values for the
number of hyperplanes. Thus, we cannot have twenty-one points in a 4-cap, and
therefore there are twenty points in a maximal 4-cap.

!
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8. Monte Carlo Method

Another way to address some questions related to the game is to simulate SetR©

using the Monte Carlo method. The following table provides the average number,
out of 10, 000 trials, of collectable sets contained in a random set of drawn cards,
as well as the probability that the set of cards will contain a collectable set.

Cards Probability of having Average number of
drawn a collectable set collectable sets

3 0.0134 0.0134
4 0.0536 0.0536
5 0.1218 0.1238
6 0.2306 0.2472
7 0.3887 0.4525
8 0.5462 0.7128
9 0.7024 1.0559
10 0.8332 1.4945
11 0.9183 2.0915
12 0.9665 2.7958
15 0.9993 5.7485
18 1 10.3281
21 1 16.8553

Looking at this data in the table above, we see that although we are not guar-
anteed to have a collectable set until 21 cards are drawn, we get 100% chance of
having a collectable set with 18 cards. Clearly, the simulation will not provide us
with the exact percent of having a collectable set, but it can give us an estimate.
Considering the game SetR©, twelve cards are placed in the center, and about 96.65%
of the time there will be a collectable set. So roughly 3.35% of the time the dealer
will have to place an additional three cards down.

We can draw several other conclusions from these results. In order to have
about 50% chance of getting a collectable set one needs to draw eight cards from
the deck. It is not until nine cards are drawn that we have at least one collectable
set on average. Although the game doesn’t begin until there are twelve cards laying
face up, the existence of a set impacts the dealer, for he or she does not have the
ability to closely analyze the cards while continuing to deal. Again from Proposition
10 we know that there is at least one collectable set given any 21 cards from the
deck. However, from this data we see that there are roughly 16 collectable sets on
average.

Using probability we know that given three cards, there is a 1/79, or 0.0127,
chance of having a collectable set. This is because for any two cards, there is only
one other card out of 79 that will complete a collectable set. Now compare this
to the simulated probability. The program calculated that there would be 0.0134
chance of having a set, which only differs by 0.0007.

9. Conclusion and Suggestions for Further Research

In this paper we have shown how we can use the isomorphism between the game
SetR© and the vector spaces over F3 to show that collectable sets correspond to lines



THE GAME SETR© AS F
4

3
17

(1-flats) and magic squares correspond to planes (2-flats) in F4
3. This isomorphism

also allows us to connect the game to the study of projective and affine planes.
Furthermore, we are able to determine the maximal 2-cap, 3-cap, and 4-cap values.
Relating this to the game, we are able to conclude that once 21 cards are drawn
from the deck, the existence of a collectable set is guaranteed.

While we have strictly discussed Fd
3, for the values d = 2, 3, 4, further exploration

could be continued for values d ≥ 5. In terms of the game, it would be as though
the cards had at least one additional category. For instance, the cards could have
a background color category, a texture category, or maybe even a scent category
(though the last might be the least practical). A question we might ask is what is
the maximal 5-cap? Is it possible to determine using the methods in the proof of
Proposition 10? Using Fourier analysis, Davis and Maclagan show in their paper
that the maximal 5-cap is in fact 45 [4].

Another area of interest is considering what happens when we change the order
of our field. What if each category of the game had five possible traits instead of
three? Since five is prime, we know there exists the field of order five. Then we could
find a correspondence between the new cards and points in F4

5. Since each entry
has five possible values, the game would be composed of 625 cards. Mathematically
this would be an interesting idea to consider; however, in terms of the game, 625
might be too many cards with which to play.
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