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1 Definition of vector spaces

As we have seen in the introduction, a vector space is a set V with two operations: addition
of vectors and scalar multiplication. These operations satisfy certain properties, which we
are about to discuss in more detail. The scalars are taken from a field F, where for the
remainder of these notes F stands either for the real numbers R or the complex numbers C.
The real and complex numbers are examples of fields. The abstract definition of a field and
further examples are studied in algebra courses, such as the MAT 150 series.

Vector addition can be thought of as a map + : V ×V → V , mapping two vectors u, v ∈ V
to their sum u + v ∈ V . Scalar multiplication can be described as a map F× V → V , which
assigns to a scalar a ∈ F and a vector v ∈ V a new vector av.

Definition 1. A vector space over F is a set V together with the operations of addition
V × V → V and scalar multiplication F × V → V satisfying the following properties:

1. Commutativity: u + v = v + u for all u, v ∈ V ;

2. Associativity: (u + v) + w = u + (v + w) and (ab)v = a(bv) for all u, v, w ∈ V and
a, b ∈ F;

3. Additive identity: There exists an element 0 ∈ V such that 0 + v = v for all v ∈ V ;

4. Additive inverse: For every v ∈ V , there exists an element w ∈ V such that v+w = 0;

5. Multiplicative identity: 1v = v for all v ∈ V ;

6. Distributivity: a(u + v) = au + av and (a + b)u = au + bu for all u, v ∈ V and
a, b ∈ F.

Usually, a vector space over R is called a real vector space and a vector space over C is
called a complex vector space. The elemens v ∈ V of a vector space are called vectors.
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Vector spaces are very fundamental objects in mathematics. Definition 1 is an abstract
definition, but there are many examples of vector spaces. You will see many examples of
vector spaces throughout your mathematical life. Here are just a few:

Example 1. Consider the set Fn of all n-tuples with elements in F. This is a vector
space. Addition and scalar multiplication are defined componentwise. That is, for u =
(u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn and a ∈ F, we define

u + v = (u1 + v1, u2 + v2, . . . , un + vn),

au = (au1, au2, . . . , aun).

It is easy to check that all properties of Definition 1 are satisfied. In particular the additive
identity 0 = (0, 0, . . . , 0) and the additive inverse of u is −u = (−u1,−u2, . . . ,−un).

Special cases of Example 1 are Rn, in particular R2 and R3. We have already seen in the
introduction that there is a geometric interpretation for elements in R

2 and R
3 as points in

the plane and 3-space, respectively.

Example 2. Let F∞ be the set

F
∞ = {(u1, u2, . . .) | uj ∈ F for j = 1, 2, . . .}.

Addition and scalar multiplication are defined as expected

(u1, u2, . . .) + (v1, v2, . . .) = (u1 + v1, u2 + v2, . . .),

a(u1, u2, . . .) = (au1, au2, . . .).

You should verify that with these operations F∞ becomes a vector space.

Example 3. Verify that V = {0} is a vector space!

Example 4. Let P(F) be the set of all polynomials p : F → F with coefficients in F. More
precisely, p(z) is a polynomial if there exist a0, a1, . . . , an ∈ F such that

p(z) = anzn + an−1z
n−1 + · · ·+ a1z + a0. (1)

Addition and scalar multiplication are defined as

(p + q)(z) = p(z) + q(z),

(ap)(z) = ap(z),

where p, q ∈ P(F) and a ∈ F. For example, if p(z) = 5z + 1 and q(z) = 2z2 + z + 1,
then (p + q)(z) = 2z2 + 6z + 2 and (2p)(z) = 10z + 2. Again, it can be easily verified that
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P(F) forms a vector space over F. The additive identity in this case is the zero polynomial,
for which all coefficients are equal to zero. The additive inverse of p(z) in (1) is −p(z) =
−anzn − an−1z

n−1 − · · · − a1z − a0.

2 Elementary properties of vector spaces

We are going to prove several important, yet simple properties of vector spaces. From now
on V will denote a vector space over F.

Proposition 1. Every vector space has a unique additive identity.

Proof. Suppose there are two additive identities 0 and 0′. Then

0′ = 0 + 0′ = 0,

where the first equality holds since 0 is an identity and the second equality holds since 0′ is
an identity. Hence 0 = 0′ proving that the additive identity is unique.

Proposition 2. Every v ∈ V has a unique additive inverse.

Proof. Suppose w and w′ are additive inverses of v, so that v + w = 0 and v + w′ = 0. Then

w = w + 0 = w + (v + w′) = (w + v) + w′ = 0 + w′ = w′.

Hence w = w′ as desired.

Since the additive inverse of v is unique as just shown, it will from now on be denoted
by −v. We define w − v to mean w + (−v). We will in fact show in Proposition 5 that
−v = −1v.

Proposition 3. 0v = 0 for all v ∈ V .

Note that the 0 on the left hand side in Proposition 3 is a scalar, whereas the 0 on the
right hand side is a vector.

Proof. For v ∈ V we have
0v = (0 + 0)v = 0v + 0v,

using distributivity. Adding the additive inverse of 0v to both sides we obtain

0 = 0v − 0v = (0v + 0v) − 0v = 0v.

Proposition 4. a0 = 0 for every a ∈ F.
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Proof. Similarly to the proof of Proposition 3, we have for a ∈ F

a0 = a(0 + 0) = a0 + a0.

Adding the additive inverse of a0 to both sides we obtain 0 = a0 as desired.

Proposition 5. (−1)v = −v for every v ∈ V .

Proof. For v ∈ V we have

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0,

which shows that (−1)v is the additive inverse −v of v.

3 Subspaces

Definition 2. A subset U ⊂ V of a vector space V over F is a subspace of V if U itself is
a vector space over F.

To check that a subset U ⊂ V is a subspace, it suffices to check only a couple of the
conditions of a vector space.

Lemma 6. Let U ⊂ V be a subset of a vector space V over F. Then U is a subspace of V
if and only if

1. additive identity: 0 ∈ U ;

2. closure under addition: u, v ∈ U implies u + v ∈ U ;

3. closure under scalar multiplication: a ∈ F, u ∈ U implies that au ∈ U .

Proof. 1 implies that the additive identity exists. 2 implies that vector addition is well-
defined and 3 ensures that scalar multiplication is well-defined. All other conditions for a
vector space are inherited from V since addition and scalar multiplication for elements in U
are the same viewed as elements in U or V .

Example 5. In every vector space V , the subsets {0} and V are trivial subspaces.

Example 6. {(x1, 0) | x1 ∈ R} is a subspace of R2.

Example 7. U = {(x1, x2, x3) ∈ F3 | x1 + 2x2 = 0} is a subspace of F3. To see this we
need to check the three conditions of Lemma 6. The zero vector (0, 0, 0) ∈ F3 is in U since
it satisfies the condition x1 + 2x2 = 0. To show that U is closed under addition, take two
vectors v = (v1, v2, v3) and u = (u1, u2, u3). Then by the definition of U we have v1 +2v2 = 0
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Figure 1: The union U ∪ U ′ of two subspaces is not necessarily a subspace

and u1 + 2u2 = 0. Adding these two equations it is not hard to see that then the vector
v + u = (v1 + u1, v2 + u2, v3 + u3) satisfies (v1 + u1) + 2(v2 + u2) = 0. Hence v + u ∈ U .
Similarly, to show closure under scalar multiplication, take u = (u1, u2, u3) ∈ U and a ∈ F.
Then au = (au1, au2, au3) satisfies the equation au1 + 2au2 = a(u1 + 2u2) = 0, so that
au ∈ U .

Example 8. {p ∈ P(F) | p(3) = 0} is a subspace of P(F).

Example 9. The subspaces of R2 are {0}, all lines through the origin, and R2. The subspaces
of R3 are {0}, all lines through the origin, all planes through the origin, and R3. In fact,
these exhaust all subspaces of R2 and R3, respectively. To prove this we will need further
tools such as the notion of bases and dimensions to be discussed soon. In particular this
shows that lines or planes that do not pass through the origin are not subspaces (this is not
so hard to show!).

For all examples above, check that the conditions of Lemma 6 are satisfied.
Note that if U and U ′ are subspaces of V , then their intersection U ∩U ′ is also a subspace

(see Homework 2 and Figure 2). However, the union of two subspaces is not necessarily a
subspace. Think for example of the union of two lines in R2, see Figure 1.

4 Sums and direct sums

Throughout this section V is a vector space over F and U1, U2 ⊂ V denote subspaces.

Definition 3. Let U1, U2 ⊂ V be subspaces of V . Define the sum of U1 and U2 as

U1 + U2 = {u1 + u2 | u1 ∈ U1, u2 ∈ U2}.
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Figure 2: The intersection U ∩ U ′ of two subspaces is a subspace

Check as an exercise that U1 + U2 is a subspace of V . In fact, U1 + U2 is the smallest
subspace of V that contains both U1 and U2.

Example 10. Let

U1 = {(x, 0, 0) ∈ F
3 | x ∈ F},

U2 = {(0, y, 0) ∈ F
3 | y ∈ F}.

Then
U1 + U2 = {(x, y, 0) ∈ F

3 | x, y ∈ F}. (2)

If alternatively U2 = {(y, y, 0) ∈ F3 | y ∈ F} then (2) still holds.

If U = U1 +U2, then for any u ∈ U there exist u1 ∈ U1 and u2 ∈ U2 such that u = u1 +u2.
If it so happens that u can be uniquely written as u1 + u2, then U is the direct sum of U1

and U2.

Definition 4. Suppose every u ∈ U can be uniquely written as u = u1 + u2 for u1 ∈ U1 and
u2 ∈ U2. Then

U = U1 ⊕ U2

is the direct sum of U1 and U2.
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Example 11. Let

U1 = {(x, y, 0) ∈ R
3 | x, y ∈ R},

U2 = {(0, 0, z) ∈ R
3 | z ∈ R}.

Then R3 = U1 ⊕ U2. However, if instead

U2 = {(0, w, z) | w, z ∈ R},

then R3 = U1 + U2, but it is not the direct sum of U1 and U2.

Example 12. Let

U1 = {p ∈ P(F) | p(z) = a0 + a2z
2 + · · · + a2mz2m},

U2 = {p ∈ P(F) | p(z) = a1 + a3z
3 + · · · + a2m+1z

2m+1}.

Then P(F) = U1 ⊕ U2.

Proposition 7. Let U1, U2 ⊂ V be subspaces. Then V = U1 ⊕ U2 if and only if

1. V = U1 + U2;

2. If 0 = u1 + u2 with u1 ∈ U1 and u2 ∈ U2, then u1 = u2 = 0.

Proof.

”=⇒” Suppose V = U1 ⊕ U2. Then 1 holds by definition. Certainly 0 = 0 + 0 and since by
uniqueness this is the only way to write 0 ∈ V we have u1 = u2 = 0.

”⇐=” Suppose 1 and 2 hold. By 1 we have that for all v ∈ V there exist u1 ∈ U1 and u2 ∈ U2

such that v = u1 + u2. Suppose v = w1 + w2 with w1 ∈ U1 and w2 ∈ U2. Subtract the two
equations to obtain

0 = (u1 − w1) + (u2 − w2),

where u1 − w1 ∈ U1 and u2 − w2 ∈ U2. By 2 this implies u1 − w1 = 0 and u2 − w2 = 0, or
equivalently u1 = w1 and u2 = w2 as desired.

Proposition 8. Let U1, U2 ⊂ V be subspaces. Then V = U1 ⊕ U2 if and only if

1. V = U1 + U2;

2. U1 ∩ U2 = {0}.

Proof.
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”=⇒” Suppose V = U1 ⊕U2. Then 1 holds by definition. If u ∈ U1 ∩U2, then 0 = u + (−u)
with u ∈ U1 and −u ∈ U2 (why?). By Proposition 7 we have u = 0 and −u = 0, so that
U1 ∩ U2 = {0}.

”⇐=” Suppose 1 and 2 hold. To prove that V = U1 ⊕ U2 holds, suppose that

0 = u1 + u2 where u1 ∈ U1 and u2 ∈ U2. (3)

By Proposition 7 it suffices to show that u1 = u2 = 0. Equation (3) implies that u1 = −u2 ∈
U2. Hence u1 ∈ U1 ∩U2 which in turn implies that u1 = 0. Hence also u2 = 0 as desired.

Everything in this section can be generalized to m subspaces U1, U2, . . . Um, except Propo-
sition 8. To see this consider the following example:

Example 13. Let

U1 = {(x, y, 0) ∈ F
3 | x, y ∈ F},

U2 = {(0, 0, z) ∈ F
3 | z ∈ F},

U3 = {(0, y, y) ∈ F
3 | y ∈ F}.

Then certainly F3 = U1 + U2 + U3, but F3 6= U1 ⊕ U2 ⊕ U3 since for example (0, 0, 0) =
(0, 1, 0)+(0, 0, 1)+(0,−1,−1). But U1∩U2 = U1∩U3 = U2∩U3 = {0}, so that the analogon
of Proposition 8 does not hold.


