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Intuition probably tells you that the plane R2 is of dimension two and the space we live
in R

3 is of dimension three. You have probably also learned in physics that space-time has
dimension four, and that string theories are models that can live in ten dimensions. In these
lectures we will give a mathematical definition of what the dimension of a vector space is.
For this we will first need the notion of linear spans, linear independence and the basis of a
vector space.

1 Linear span

As before, let V denote a vector space over F. Given vectors v1, v2, . . . , vm ∈ V , a vector
v ∈ V is a linear combination of (v1, . . . , vm) if there exist scalars a1, . . . , am ∈ F such
that

v = a1v1 + a2v2 + · · ·+ amvm.

Definition 1. The linear span or simply span of (v1, . . . , vm) is defined as

span(v1, . . . , vm) := {a1v1 + · · · + amvm | a1, . . . , am ∈ F}.

Lemma 1. Let V be a vector space and v1, v2, . . . , vm ∈ V

1. vj ∈ span(v1, v2, . . . , vm).

2. span(v1, v2, . . . , vm) is a subspace of V .

3. If U ⊂ V is a subspace such that v1, v2, . . . vm ∈ U , then span(v1, v2, . . . , vm) ⊂ U .

Proof. 1 is obvious. For 2 note that 0 ∈ span(v1, v2, . . . , vm) and that span(v1, v2, . . . , vm) is
closed under addition and scalar multiplication. For 3 note that a subspace U of a vector
space V is closed under addition and scalar multiplication. Hence if v1, . . . , vm ∈ U , then
any linear combination a1v1 + · · ·+ amvm must also be in U .
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Lemma 1 implies that span(v1, v2, . . . , vm) is the smallest subspace of V containing all
v1, v2, . . . , vm.

Definition 2. If span(v1, . . . , vm) = V , we say that (v1, . . . , vm) spans V . The vector space
V is called finite-dimensional, if it is spanned by a finite list of vectors. A vector space V
that is not finite-dimensional is called infinite-dimensional.

Example 1. The vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) span
Fn. Hence Fn is finite-dimensional.

Example 2. If p(z) = amzm + am−1z
m−1 + · · · + a1z + a0 ∈ P(F) is a polynomial with

coefficients in F such that am 6= 0 we say that p(z) has degree m. By convention the degree
of p(z) = 0 is −∞. The degree of p(z) is denoted by deg p(z). Define

Pm(F) = set of all polynomials in P(F) of degree at most m.

Then Pm(F) ⊂ P(F) is a subspace since it contains the zero polynomial and is closed under
addition and scalar multiplication. In fact

Pm(F) = span(1, z, z2, . . . , zm).

Example 3. We showed that P(F) is a vector space. In fact, P(F) is infinite-dimensional.
To see this, assume the contrary, namely that

P(F) = span(p1(z), . . . , pk(z))

for a finite set of k polynomials p1(z), . . . , pk(z). Let m = max(deg p1(z), . . . , deg pk(z)).
Then zm+1 ∈ P(F), but zm+1 /∈ span(p1(z), . . . , pk(z)).

2 Linear independence

We are now going to define the notion of linear independence of a list of vectors. This
concept will be extremely important in the following, especially when we introduce bases
and the dimension of a vector space.

Definition 3. A list of vectors (v1, . . . , vm) is called linearly independent if the only
solution for a1, . . . , am ∈ F to the equation

a1v1 + · · ·+ amvm = 0

is a1 = · · · = am = 0. In other word the zero vector can only be trivially written as the
linear combination of (v1, . . . , vm).
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Definition 4. A list of vectors (v1, . . . , vm) is called linearly dependent if it is not linearly
independent. That is, there exist a1, . . . , am ∈ F not all being zero such that

a1v1 + · · · + amvm = 0.

Example 4. The vectors (e1, . . . , em) of Example 1 are linearly independent. The only
solution to

0 = a1e1 + · · ·+ amem = (a1, . . . , am)

is a1 = · · · = am = 0.

Example 5. The vectors (1, z, . . . , zm) in the vector space Pm(F) are linearly independent.
Requiring that

a01 + a1z + · · ·+ amzm = 0

means that the polynomial on the left should be zero for all z ∈ F. This is only possible for
a0 = a1 = · · · = am = 0.

An important consequence of the notion of linear independence is the fact that any vector
in the span of a given list of linearly independent vectors can be uniquely written as a linear
combination.

Lemma 2. The list of vectors (v1, . . . , vm) is linearly independent if and only if every v ∈
span(v1, . . . , vm) can be uniquely written as a linear combination of (v1, . . . , vm).

Proof.

”=⇒” Assume that (v1, . . . , vm) is a linearly independent list of vectors. Suppose there are
two ways of writing v ∈ span(v1, . . . , vm) as a linear combination of the vi:

v = a1v1 + · · ·amvm,

v = a′

1v1 + · · ·a′

mvm.

Subtracting the two equations yields 0 = (a1 − a′

1)v1 + · · ·+(am − a′

m)vm. Since (v1, . . . , vm)
are linearly independent the only solution to this equation is a1 − a′

1 = 0, . . . , am − a′

m = 0,
or equivalently a1 = a′

1, . . . , am = a′

m.

”⇐=” Now assume that for every v ∈ span(v1, . . . , vm) there are unique a1, . . . , am ∈ F such
that

v = a1v1 + · · · + amvm.

This implies in particular that the only way the zero vector v = 0 can be written as a linear
combination of v1, . . . , vm is with a1 = · · · = am = 0. This shows that (v1, . . . , vm) are
linearly independent.
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It is clear that if (v1, . . . , vm) is a list of linearly independent vectors then the list
(v1, . . . , vm−1) is also linearly independent.

For the next lemma we introduce the following notation. If we want to drop a vec-
tor vj from a given list (v1, . . . , vm) of vectors, we indicate the dropped vector by a hat
(v1, . . . , v̂j , . . . .vm).

Lemma 3 (Linear Dependence Lemma). If (v1, . . . , vm) is linearly dependent and v1 6= 0,
there exists an index j ∈ {2, . . . , m} such that:

1. vj ∈ span(v1, . . . , vj−1).

2. If vj is removed from (v1, . . . , vm) then span(v1, . . . , v̂j , . . . , vm) = span(v1, . . . , vm).

Proof. Since (v1, . . . , vm) is linearly dependent there exist a1, . . . , am ∈ F not all zero such
that a1v1 + · · · + amvm = 0. Since by assumption v1 6= 0, not all of a2, . . . , am can be zero.
Let j ∈ {2, . . . , m} be largest such that aj 6= 0. Then we have

vj = −
a1

aj

v1 − · · · −
aj−1

aj

vj−1, (1)

which implies part 1.
Let v ∈ span(v1, . . . , vm). By definition this means that there exist scalars b1, . . . , bm ∈ F

such that
v = b1v1 + · · · + bmvm.

The vector vj that we determined in part 1 can be replaced by (1), so that v is written as a
linear combination of (v1, . . . , v̂j, . . . , vm). Hence span(v1, . . . , v̂j, . . . , vm) = span(v1, . . . , vm).

Example 6. Take the list (v1, v2, v3) = ((1, 1), (1, 2), (1, 0)) of vectors in R
2. They span R

2.
To see this, take any vector v = (x, y) ∈ R2. We want to show that v can be written as a
linear combination of (1, 1), (1, 2), (1, 0)

v = a1(1, 1) + a2(1, 2) + a3(1, 0)

or equivalently
(x, y) = (a1 + a2 + a3, a1 + 2a2).

Taking a1 = y, a2 = 0, a3 = x − y is a solution for given x, y ∈ R. Hence indeed R2 =
span((1, 1), (1, 2), (1, 0)). Note that

2(1, 1) − (1, 2) − (1, 0) = (0, 0), (2)

which shows that the list ((1, 1), (1, 2), (1, 0)) is linearly dependent. The Linear Dependence
Lemma 3 states that one of the vectors can be dropped from ((1, 1), (1, 2), (1, 0)) and still
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span R2. Indeed by (2)

v3 = (1, 0) = 2(1, 1) − (1, 2) = 2v1 − v2,

so that span((1, 1), (1, 2), (1, 0)) = span((1, 1), (1, 2)).

The next results shows that linearly independent lists of vectors that span a finite-
dimensional vector space are the smallest possible spanning sets.

Theorem 4. Let V be a finite-dimensional vector space. Suppose that (v1, . . . , vm) is a

linearly independent list of vectors that spans V , and let (w1, . . . , wn) be any list that spans

V . Then m ≤ n.

Proof. The proof uses an iterative procedure. We start with an arbitrary list S0 = (w1, . . . , wn)
that spans V . At the k-th step of the procedure we construct a new list Sk by replacing a
wjk

by vk such that Sk still spans V . Repeating this for all vk finally produces a new list Sm

of length n that contains all v1, . . . , vm. This proves that indeed m ≤ n. Let us now discuss
each step in the procedure in detail:

Step 1. Since (w1, . . . , wn) spans V , adding a new vector to the list makes the new list
linearly dependent. Hence (v1, w1, . . . , wn) is linearly dependent. By Lemma 3 there exists
an index j1 such that

wj1 ∈ span(v1, w1, . . . , wj1−1).

Hence S1 = (v1, w1, . . . , ŵj1, . . . , wn) spans V . In this step we added the vector v1 and
removed the vector wj1 from S0.

Step k. Suppose that we already added v1, . . . , vk−1 to our spanning list and removed the
vectors wj1, . . . , wjk−1

in return. Call this list Sk−1 which spans V . Add the vector vk to
Sk−1. By the same arguments as before, adjoining the extra vector vk to the spanning list
Sk−1 yields a list of linearly dependent vectors. Hence by Lemma 3 there exists an index jk

such that Sk−1 with vk added and wjk
removed still spans V . The fact that (v1, . . . , vk) is

linearly independent ensures that the vector removed is indeed among the wj. Call the new
list Sk which spans V .

The final list Sm is S0 with all v1, . . . , vm added and wj1, . . . , wjm
removed. It has length

n and still spans V . Hence necessarily m ≤ n.

3 Bases

A basis of a finite-dimensional vector space is a spanning list that is also linearly independent.
We will see that all bases of finite-dimensional vector spaces have the same length. This
length will be the dimension of our vector space.
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Definition 5. A basis of a finite-dimensional vector space V is a list of vectors (v1, . . . , vm)
in V that is linearly independent and spans V .

If (v1, . . . , vm) forms a basis of V , then by Lemma 2 every vector v ∈ V can be uniquely
written as a linear combination of (v1, . . . , vm).

Example 7. (e1, . . . , en) is a basis of Fn. There are of course other bases. For example
((1, 2), (1, 1)) is a basis of F

2. The list ((1, 1)) is linearly independent, but does not span F
2

and hence is not a basis.

Example 8. (1, z, z2, . . . , zm) is a basis of Pm(F).

Theorem 5 (Basis Reduction Theorem). If V = span(v1, . . . , vm), then some vi can be

removed to obtain a basis of V .

Proof. Suppose V = span(v1, . . . , vm). We start with the list S = (v1, . . . , vm) and iteratively
run through all vectors vk for k = 1, 2, . . . , m to determine whether to keep or remove them
from S:

Step 1. If v1 = 0, remove v1 from S. Otherwise leave S unchanged.

Step k. If vk ∈ span(v1, . . . , vk−1), remove vk from S. Otherwise leave S unchanged.

The final list S still spans V since at each step a vector was only discarded if it was already
in the span of the previous vectors. The process also ensures that no vector is in the span of
the previous vectors. Hence by the Linear Dependence Lemma 3 the final list S is linearly
independent. Hence S is a basis of V .

Example 9. To see how Basis Reduction Theorem 5 works, consider the list of vectors

S = ((1,−1, 0), (2,−2, 0), (−1, 0, 1), (0,−1, 1), (0, 1, 0)).

This list does not form a basis for R3 as it is not linearly independent. However, it is clear
that R3 = span(S) since any arbitrary vector v = (x, y, z) ∈ R3 can be written as the
following linear combination over S:

v = (x + z)(1,−1, 0) + 0(2,−2, 0) + (z)(−1, 0, 1) + 0(0,−1, 1) + (x + y + z)(0, 1, 0).

In fact, since the coefficients of (2,−2, 0) and (0,−1, 1) in this linear combination are both
zero, it suggests that they add nothing to the span of the subset

B = ((1,−1, 0), (−1, 0, 1), (0, 1, 0))

of S. Moreover, one can show that B is a basis for R
3, and it is exactly the basis produced

by applying the process from the proof of Theorem 5 (as you should be able to verify).
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Corollary 6. Every finite-dimensional vector space has a basis.

Proof. By definition, a finite-dimensional vector space has a spanning list. By the Basis
Reduction Theorem 5 any spanning list can be reduced to a basis.

Theorem 7 (Basis Extension Theorem). Every linearly independent list of vectors in a

finite-dimensional vector space V can be extended to a basis of V .

Proof. Suppose V is finite-dimensional and (v1, . . . , vm) is linearly independent. Since V is
finite-dimensional, there exists a list (w1, . . . , wn) of vectors that spans V . We wish to adjoin
some of the wk to (v1, . . . , vm) to create a basis of V .

Step 1. If w1 ∈ span(v1, . . . , vm), let S = (v1, . . . , vm). Otherwise set S = (v1, . . . , vm, w1).

Step k. If wk ∈ span(S), leave S unchanged. Otherwise adjoin wk to S.

After each step the list S is still linearly independent since we only adjoined wk if wk was
not in the span of the previous vectors. After n steps wk ∈ span(S) for all k = 1, 2, . . . , n.
Since (w1, . . . , wn) was a spanning list, S spans V , so that S is indeed a basis of V .

4 Dimension

We now come to the important definition of the dimension of finite-dimensional vector spaces.
Intuitively we know that the plane R2 has dimension 2, R3 has dimension 3, or more generally
Rn has dimension n. This is precisely the length of the bases of these vector spaces, which
prompts the following definition.

Definition 6. We call the length of any basis of V (which is well-defined by Theorem 8),
the dimension of V , also denoted dim V .

Note that Definition 6 only makes sense, if in fact all bases of a given finite-dimensional
vector space have the same length. This is true by the next Theorem.

Theorem 8. Let V be a finite-dimensional vector space. Then any two bases of V have the

same length.

Proof. Let (v1, . . . , vm) and (w1, . . . , wn) be two bases of V . Both span V . By Theorem 4,
we have m ≤ n since (v1, . . . , vm) is linearly independent. By the same theorem we also have
n ≤ m since (w1, . . . , wn) is linearly independent. Hence n = m as asserted.

Example 10. dim Fn = n and dimPm(F) = m + 1. Note that dim Cn = n as a C vector
space, but dim Cn = 2n as an R vector space. This comes from the fact that we can view C

itself as an R vector space of dimension 2 with basis (1, i).

Theorem 9. Let V be a finite-dimensional vector space with dim V = n. Then:
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1. If U ⊂ V is a subspace of V , then dim U ≤ dim V .

2. If V = span(v1, . . . , vn), then (v1, . . . , vn) is a basis of V .

3. If (v1, . . . , vn) is linearly independent in V , then (v1, . . . , vn) is a basis of V .

Point 1 implies in particular, that every subspace of a finite-dimensional vector space is
finite-dimensional. Points 2 and 3 show that if the dimension of a vector space is known to
be n, then to check that a list of n vectors is a basis it is enough to check whether it spans
V (resp. is linearly independent).

Proof. To prove point 1, let (u1, . . . , um) be a basis of U . This list is linearly independent
both in U and V . By the Basis Extension Theorem 7 it can be extended to a basis of V ,
which is of length n since dim V = n. This implies that m ≤ n as desired.

To prove point 2 suppose that (v1, . . . , vn) spans V . Then by the Basis Reduction Theo-
rem 5 this list can be reduced to a basis. However, every basis of V has length n, hence no
vector needs to be removed from (v1, . . . , vn). Hence (v1, . . . , vn) is already a basis of V .

Point 3 is proved in a very similar fashion. Suppose (v1, . . . , vn) is linearly independent.
By the Basis Extension Theorem 7 this list can be extended to a basis. However, every basis
has length n, hence no vector needs to be added to (v1, . . . , vn). Hence (v1, . . . , vn) is already
a basis of V .

We conclude this chapter with some additional interesting results on bases and dimen-
sions. The first one combines concepts of bases and direct sums of vector spaces.

Theorem 10. Let U ⊂ V be a subspace of a finite-dimensional vector space V . Then there

exists a subspace W ⊂ V such that V = U ⊕ W .

Proof. Let (u1, . . . , um) be a basis of U . By point 1 of Theorem 9 we know that m ≤
dim V . Hence by the Basis Extension Theorem 7 (u1, . . . , um) can be extended to a basis
(u1, . . . , um, w1, . . . , wn) of V . Let W = span(w1, . . . , wn).

To show that V = U ⊕ W , we need to show that V = U + W and U ∩ W = {0}. Since
V = span(u1, . . . , um, w1, . . . , wn) and (u1, . . . , um) spans U and (w1, . . . , wn) spans W , it is
clear that V = U + W .

To show that U∩W = {0} let v ∈ U∩W . Then there exist scalars a1, . . . , am, b1, . . . , bn ∈
F such that

v = a1u1 + · · · + amum = b1w1 + · · ·+ bnwn

or equivalently
a1u1 + · · ·+ amum − b1w1 − · · · − bnwn = 0.

Since (u1, . . . , um, w1, . . . , wn) forms a basis of V and hence is linearly independent, the only
solution to this equation is a1 = · · · = am = b1 = · · · = bn = 0. Hence v = 0, proving that
indeed U ∩ W = {0}.
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Theorem 11. If U, W ⊂ V are subspaces of a finite-dimensional vector space, then

dim(U + W ) = dim U + dim W − dim(U ∩ W ).

Proof. Let (v1, . . . , vn) be a basis of U ∩ W . By the Basis Extension Theorem 7, there
exist (u1, . . . , uk) and (w1, . . . , wℓ) such that (v1, . . . , vn, u1, . . . , uk) is a basis of U and
(v1, . . . , vn, w1, . . . , wℓ) is a basis of W . It suffices to show that

B = (v1, . . . , vn, u1, . . . , uk, w1, . . . , wℓ)

is a basis of U + W , since then

dim(U + W ) = n + k + ℓ = (n + k) + (n + ℓ) − n = dim U + dim W − dim(U ∩ W ).

Clearly span(v1, . . . , vn, u1, . . . , uk, w1, . . . , wℓ) contains U and W and hence U +W . To show
that B is a basis it hence remains to show that B is linearly independent. Suppose

a1v1 + · · ·+ anvn + b1u1 + · · ·+ bkuk + c1w1 + · · · + cℓwℓ = 0. (3)

Let u = a1v1 + · · ·+anvn + b1u1 + · · ·+ bkuk ∈ U . Then by (3) also u = −c1w1 −· · ·− cℓwℓ ∈
W , which implies that u ∈ U ∩ W . Hence there exist scalars a′

1, . . . , a
′

n ∈ F such that
u = a′

1v1 + · · · + a′

nvn. Since there is only a unique linear combination of the linearly
independent vectors (v1, . . . , vn, u1, . . . , uk) that describes u, we must have b1 = · · · = bk = 0
and a1 = a′

1, . . . , an = a′

n. Since (v1, . . . , vn, w1, . . . , wℓ) is also linearly independent, it further
follows that a1 = · · · = an = c1 = · · · = cℓ = 0. Hence (3) only has the trivial solution which
implies that B is a basis.


