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In this section we come back to the question when an operator on an inner product space
V is diagonalizable. We first introduce the notion of the adjoint or hermitian conjugate of an
operator and use this to define normal operators, which are those for which the operator and
its adjoint commute with each other. The main result of this section is the Spectral Theorem
which states that normal operators are diagonal with respect to an orthonormal basis. We
use this to show that normal operators are ”unitarily diagonalizable” and generalize this
notion to find the singular-value decomposition of an operator.

1 Self-adjoint or hermitian operators

Let V be a finite-dimensional inner product space over C with inner product 〈·, ·〉. A linear
operator T ∈ L(V ) is uniquely determined by the values of

〈Tv, w〉 for all v, w ∈ V .

This means in particular that if T, S ∈ L(V ) and

〈Tv, w〉 = 〈Sv, w〉 for all v, w ∈ V ,

then T = S. To see this take w for example to be the elements of an orthonormal basis of
V .

Definition 1. Given T ∈ L(V ), the adjoint (sometimes hermitian conjugate) of T is the
operator T ∗ ∈ L(V ) such that

〈Tv, w〉 = 〈v, T ∗w〉 for all v, w ∈ V

Moreover, we call T self-adjoint or hermitian if T = T ∗.

The uniqueness of T ∗ is clear by the previous observation.
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Example 1. Let V = C3 and let T ∈ L(C3) be defined as T (z1, z2, z3) = (2z2 + iz3, iz1, z2).
Then

〈(y1, y2, y3), T
∗(z1, z2, z3)〉 = 〈T (y1, y2, y3), (z1, z2, z3)〉

= 〈(2y2 + iy3, iy1, y2), (z1, z2, z3)〉
= 2y2z1 + iy3z1 + iy1z2 + y2z3

= 〈(y1, y2, y3), (−iz2, 2z1 + z3,−iz1)〉,

so that T ∗(z1, z2, z3) = (−iz2, 2z1 + z3,−iz1). Writing the matrix for T in terms of the
canonical basis we see that

M(T ) =


0 2 i

i 0 0
0 1 0


 and M(T ∗) =


 0 −i 0

2 0 1
−i 0 0


 .

Note that M(T ∗) can be obtained from M(T ) by taking the complex conjugate of each
element and transposing.

Elementary properties that you should prove as exercises are that for all S, T ∈ L(V )
and a ∈ F we have

(S + T )∗ = S∗ + T ∗

(aT )∗ = aT ∗

(T ∗)∗ = T

I∗ = I

(ST )∗ = T ∗S∗

M(T ∗) = M(T )∗

where A∗ = (aji)
n
i,j=1 if A = (aij)

n
i,j=1. The matrix A∗ is the conjugate transpose of A.

For n = 1 the conjugate transpose of the 1× 1 matrix A is just the complex conjugate of
its element. Hence requiring A to be self-adjoint (A = A∗) amounts to saying that the entry
of A is real. Because of the transpose, reality is not the same as self-adjointness, but the
analogy does carry over to the eigenvalues of self-adjoint operators as the next Proposition
shows.

Proposition 1. Every eigenvalue of a self-adjoint operator is real.

Proof. Suppose λ ∈ C is an eigenvalue of T and 0 �= v ∈ V the corresponding eigenvector
such that Tv = λv. Then

λ‖v‖2 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉
= 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉 = λ‖v‖2.
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This implies that λ = λ.

Example 2. The operator T ∈ L(V ) be defined by T (v) =

[
2 1 + i

1 − i 3

]
v is self-adjoint

(or hermitian) and it can be checked that the eigenvalues are λ = 1, 4 by determining the
zeroes of the polynomial p(λ) = (2 − λ)(3 − λ) − (1 + i)(1 − i) = λ2 − 5λ + 4.

2 Normal operators

Normal operator are those which commute with their adjoint.

Definition 2. We call T ∈ L(V ) normal if TT ∗ = T ∗T .

In general TT ∗ �= T ∗T . Note that TT ∗ and T ∗T are both self-adjoint for all T ∈ L(V ).
Also, any self-adjoint operator T is normal. We now give a different characterization for
normal operators in terms of norms. In order to prove this results, we first discuss the next
proposition.

Proposition 2. Let V be a complex inner product space and T ∈ L(V ) such that

〈Tv, v〉 = 0 for all v ∈ V .

Then T = 0.

Proof. Verify that

〈Tu, w〉 =
1

4
{〈T (u + w), u + w〉 − 〈T (u − w), u − w〉
+i〈T (u + iw), u + iw〉 − i〈T (u − iw), u − iw〉} .

Since each term on the right is of the form 〈Tv, v〉, we obtain 0 for all u, w ∈ V . Hence
T = 0.

Proposition 3. Let T ∈ L(V ). Then T is normal if and only if

‖Tv‖ = ‖T ∗v‖ for all v ∈ V .

Proof. Note that

T is normal ⇐⇒ T ∗T − TT ∗ = 0

⇐⇒ 〈(T ∗T − TT ∗)v, v〉 = 0 for all v ∈ V

⇐⇒ 〈TT ∗v, v〉 = 〈T ∗Tv, v〉 for all v ∈ V

⇐⇒ ‖Tv‖2 = ‖T ∗v‖2 for all v ∈ V .
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Corollary 4. Let T ∈ L(V ) be a normal operator. Then

1. null T = null T ∗.

2. If λ ∈ C is an eigenvalue of T , then λ is an eigenvalue of T ∗ with the same eigenvector.

3. If λ, µ ∈ C are distinct eigenvalues of T with associated eigenvectors v, w ∈ V respec-
tively, then 〈v, w〉 = 0.

Proof. Note that 1 follows from Proposition 3 and the positive definiteness of the norm.
To prove 2, first verify that if T is normal, then T − λI is also normal and (T − λI)∗ =

T ∗ − λI. Therefore by Proposition 3 we have

0 = ‖(T − λI)v‖ = ‖(T − λI)∗v‖ = ‖(T ∗ − λI)v‖,

so that v is an eigenvector of T ∗ with eigenvalue λ.
Using part 2, note that

(λ − µ)〈v, w〉 = 〈λv, w〉 − 〈v, µw〉 = 〈Tv, w〉 − 〈v, T ∗w〉 = 0.

Since λ − µ �= 0 it follows that 〈v, w〉 = 0, proving part 3.

3 Normal operators and the spectral decomposition

Recall that an operator is diagonalizable if there exists a basis of V consisting of eigenvec-
tors of V . The nicest operators on V are those that are diagonalizable with respect to an
orthonormal basis of V . These are the operators such that there is an orthonormal basis
consisting of eigenvectors of V . The spectral theorem for complex inner product spaces
shows that these are precisely the normal operators.

Theorem 5 (Spectral Theorem). Let V be a finite-dimensional inner product space over C

and T ∈ L(V ). Then T is normal if and only if there exists an orthonormal basis for V
consisting of eigenvectors for T .

Proof.
”=⇒” Suppose that T is normal. We proved before that for any operator T on a complex
inner product space V of dimension n, there exists an orthonormal basis e = (e1, . . . , en) for
which the matrix M(T ) is upper-triangular

M(T ) =




a11 · · · a1n

. . .
...

0 ann


 .
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We will show that M(T ) is in fact diagonal, which implies that e1, . . . , en are eigenvectors
of T . Since M(T ) = (aij)

n
i,j=1 with aij = 0 for i > j, we have Te1 = a11e1 and T ∗e1 =∑n

k=1 a1kek. Thus, by the Pythagorean Theorem and Proposition 3

|a11|2 = ‖a11e1‖2 = ‖Te1‖2 = ‖T ∗e1‖2 = ‖
n∑

k=1

a1kek‖2 =

n∑
k=1

|a1k|2

from which follows that |a12| = · · · = |a1n| = 0. One can repeat this argument, calculating
‖Tej‖2 = |ajj|2 and ‖T ∗ej‖2 =

∑n
k=j |ajk|2 to find aij = 0 for all 2 ≤ i < j ≤ n. Hence T is

diagonal with respect to the basis e and e1, . . . , en are eigenvectors of T .
”⇐=” Suppose there exists an orthonormal basis (e1, . . . , en) of V consisting of eigenvectors
for T . Then the matrix M(T ) with respect to this basis is diagonal. Moreover, M(T ∗) =
M(T )∗ with respect to this basis must also be a diagonal matrix. Any two diagonal matrices
commute. It follows that TT ∗ = T ∗T since their corresponding matrices commute

M(TT ∗) = M(T )M(T ∗) = M(T ∗)M(T ) = M(T ∗T ).

The next corollary is the best possible decomposition of the complex vector space V into
subspaces invariant under a normal operator T . On each subspace null (T −λiI) the operator
T just acts by multiplication by λi.

Corollary 6. Let T ∈ L(V ) be a normal operator. Then

1. Denoting λ1, . . . , λm the distinct eigenvalues for T ,

V = null (T − λ1I) ⊕ · · · ⊕ null (T − λmI).

2. If i �= j, then null (T − λiI)⊥null (T − λjI).

As we will see next, the canonical matrix for T admits a ”unitary diagonalization”.

4 Applications of the spectral theorem: Diagonaliza-

tion

We already discussed that if e = (e1, . . . , en) is a basis of a vector space V of dimension n
and T ∈ L(V ), then we can associate a matrix M(T ) to T . To remember the dependency
on the basis e let us now denote this matrix by [T ]e. That is

[Tv]e = [T ]e[v]e for all v ∈ V
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where

[v]e =




v1
...

vn




is the coordinate vector for v = v1e1 + · · ·+ vnen with vi ∈ F.
The operator T is diagonalizable if there exists a basis e such that [T ]e is diagonal, that

is, there exist λ1, . . . , λn ∈ F such that

[T ]e =



λ1 0

. . .

0 λn


 .

The scalars λ1, . . . , λn are necessarily eigenvalues of T and e1, . . . , en are the corresponding
eigenvectors. Therefore:

Proposition 7. T ∈ L(V ) is diagonalizable if and only if there exists a basis (e1, . . . , en)
consisting entirely of eigenvectors of T .

We can reformulate this proposition as follows using the change of basis transformations.
Suppose that e and f are bases of V such that [T ]e is diagonal and let S be the change of
basis transformation such that [v]e = S[v]f . Then S[T ]fS

−1 = [T ]e is diagonal.

Proposition 8. T ∈ L(V ) is diagonalizable if and only if there exists a invertible matrix
S ∈ Fn×n such that

S[T ]fS
−1 =



λ1 0

. . .

0 λn




where [T ]f is the matrix of T with respect to a given arbitrary basis f = (f1, . . . , fn).

On the other hand, the spectral theorem tells us that T is diagonalizable with respect to
an orthonormal basis if and only if T is normal. Recall that

[T ∗]f = [T ]∗f

for any orthonormal basis f of V . Here

A∗ = (aji)
n
ij=1 for A = (aij)

n
i,j=1

is the complex conjugate transpose of the matrix A. When F = R then A∗ = At is just the
transpose of the matrix, where At = (aji)

n
i,j=1.

The change of basis transformation between two orthonormal bases is called unitary in
the complex case or orthogonal in the real case. Let e = (e1, . . . , en) and f = (f1, . . . , fn)
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be two orthonormal bases of V and U the change of basis matrix [v]f = U [v]e for all v ∈ V .
Then

〈ei, ej〉 = δij = 〈fi, fj〉 = 〈Uei, Uej〉.
Since this is true on the basis e we in fact have that U is unitary if and only if

〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ V . (1)

This means that unitary matrices preserve the inner product. Operators which preserve the
inner product are also called isometries. Similar conditions hold for orthogonal matrices.

Since by the definition of the adjoint 〈Uv, Uw〉 = 〈v, U∗Uw〉, equation 1 also shows that
unitary matrices are characterized by the property

U∗U = I for the unitary case

OtO = I for the orthogonal case.

The equation U∗U = I implies that U−1 = U∗. For finite-dimensional inner product spaces
V the left inverse of an operator is also the right inverse, so that

UU∗ = I if and only if U∗U = I

OOt = I if and only if OtO = I.
(2)

It is easy to see that the columns of a unitary matrix are the coefficients of the elements of
an orthonormal basis with respect to another orthonormal basis. Therefore the columns are
orthonormal vectors in Cn (or in Rn in the real case). By (2) this is also true for the rows
of the matrix.

The spectral theorem shows that T is normal if and only if [T ]e is diagonal with respect
to an orthonormal basis e, that is, there exists a unitary matrix U such that

UTU∗ =



λ1 0

. . .

0 λn




Conversely, if a unitary matrix U exists such that UTU∗ = D is diagonal, then

TT ∗ − T ∗T = U∗(DD − DD)U = 0

since diagonal matrices commute, and hence T is normal.
Let us summarize all definitions so far.



4 APPLICATIONS OF THE SPECTRAL THEOREM: DIAGONALIZATION 8

Definition 3.

A is hermitian if A∗ = A.

A is symmetric if At = A.

U is unitary if UU∗ = I.

O is orthogonal if OOt = I.

Note that all cases of Definition 3 are examples of normal operators. An example of a
normal operator N that is none of the above is

N = i

[−1 −1
−1 1

]
.

You can easily verify that NN∗ = N∗N . Note that iN is symmetric.

Example 3. Take the matrix

A =

[
2 1 + i

1 − i 3

]
of Example 2. To unitarily diagonalize A, we need to find a unitary matrix U and a diagonal
matrix D such that A = UDU−1. To do this, we want to change basis to one composed of
orthonormal eigenvectors for T ∈ L(C2) defined by Tv = Av for all v ∈ C2.

To find such an orthonormal basis, we start by finding the eigenspaces of T . We already

determined that the eigenvalues of T are λ1 = 1 and λ2 = 4, so that D =

[
1 0
0 4

]
. Hence

C
2 = null (T − I) ⊕ null (T − 4I)

= span((−1 − i, 1)) ⊕ span((1 + i, 2)).

Now apply the Gram-Schmidt procedure to each eigenspace to obtain the columns of U .
Here

A = UDU−1 =

[−1−i√
3

1+i√
6

1√
3

2√
6

][
1 0
0 4

][−1−i√
3

1+i√
6

1√
3

2√
6

]−1

=

[−1−i√
3

1+i√
6

1√
3

2√
6

][
1 0
0 4

][−1+i√
3

1√
3

1−i√
6

2√
6

]
.

Note that the diagonal decomposition allows us to compute powers and the exponential
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of matrices. Namely if A = UDU−1 where D is diagonal, we have

An = (UDU−1)n = UDnU−1

exp(A) =
∞∑

k=0

1

k!
Ak = U

( ∞∑
k=0

1

k!
Dk

)
U−1 = U exp(D)U−1.

Example 4. Continuing the previous Example

A2 = (UDU−1)2 = UD2U−1 = U

[
1 0
0 16

]
U∗ =

[
6 5 + 5i

5 − 5i 11

]

An = (UDU−1)n = UDnU−1 = U

[
1 0
0 22n

]
U∗ =

[
2
3
(1 + 2n−1) 1+i

3
(−1 + 22n)

1−i
3

(−1 + 22n) 1
3
(1 + 22n+1)

]

exp(A) = U exp(D)U−1 = U

[
e 0
0 e4

]
U−1 =

1

3

[
2e + e4 e4 − e + i(e4 − e)

e4 − e + i(e − e4) e + 2e4

]
.

5 Positive operators

Recall that self-adjoint operators are the operator analogue of real numbers. Let us now
define the operator analogue of positive (or more precisely nonnegative) real numbers.

Definition 4. An operator T ∈ L(V ) is called positive (in symbols T ≥ 0) if T = T ∗ and
〈Tv, v〉 ≥ 0 for all v ∈ V .

(If V is a complex vector space the condition of self-adjointness follows from the condition
〈Tv, v〉 ≥ 0 and can hence be dropped).

Example 5. Note that for all T ∈ L(V ) we have T ∗T ≥ 0 since T ∗T is self-adjoint and
〈T ∗Tv, v〉 = 〈Tv, Tv〉 ≥ 0.

Example 6. Let U ⊂ V be a subspace of V and PU the orthogonal projection onto U . Then
PU ≥ 0. To see this write V = U ⊕U⊥ and v = uv +u⊥

v for all v ∈ V where uv ∈ U and u⊥
v ∈

U⊥. Then 〈PUv, w〉 = 〈uv, uw +u⊥
w〉 = 〈uv, uw〉 = 〈uv +u⊥

v , uw〉 = 〈v, PUw〉, so that P ∗
U = PU .

Also, setting v = w in the above string of equations we obtain 〈PUv, v〉 = 〈uv, uv〉 ≥ 0 for all
v ∈ V . Hence PU ≥ 0.

If λ is an eigenvalue of a positive operator T and v ∈ V is the associated eigenvector,
then 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉 ≥ 0. Since 〈v, v〉 ≥ 0 for all vectors v ∈ V , it follows that
λ ≥ 0. This fact can be used to define

√
T by setting

√
Tei =

√
λiei,
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where λi are the eigenvalues of T with respect to the orthonormal basis e = (e1, . . . , en). We
know that these exist by the spectral theorem.

6 Polar decomposition

Continuing the analogy between C and L(V ), recall the polar form of a complex number
z = |z|eiθ, where |z| is the absolute value or length of z and eiθ is an element on the unit
circle. In terms of an operator T ∈ L(V ) where V is a complex inner product space, a
unitary operator U takes the role of eiθ and |T | takes the role of the length. As we discussed
above T ∗T ≥ 0 so that |T | :=

√
T ∗T exists and |T | ≥ 0 as well.

Theorem 9. For all T ∈ L(V ) there exists a unitary U such that

T = U |T |.

This is called the polar decomposition of T .

Sketch of proof. We start by noting that

‖Tv‖2 = ‖|T |v‖2,

since 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈√T ∗Tv,
√

T ∗Tv〉. This implies that null T = null |T |. Be-
cause of the dimension formula dim null T + dim rangeT = dim V , this also means that
dim rangeT = dim range |T |. Moreover, we can hence define an isometry S : range |T | →
range T by setting

S(|T |v) = Tv.

The trick is now to define a unitary operator U on all of V such that the restriction of U
onto the range of |T | is S

U |range |T | = S.

Note that null |T |⊥range |T | because for v ∈ null |T | and w = |T |u ∈ range |T |

〈w, v〉 = 〈|T |u, v〉 = 〈u, |T |v〉 = 〈u, 0〉 = 0

since |T | is self-adjoint.
Pick an orthonormal basis e = (e1, . . . , em) of null |T | and an orthonormal basis f =

(f1, . . . , fm) of (range T )⊥. Set S̃ei = fi and extend S̃ on null |T | by linearity. Any v ∈
V can be uniquely written as v = v1 + v2 where v1 ∈ null |T | and v2 ∈ range |T | since
null |T |⊥range |T |. Then define U : V → V by Uv = S̃v1 + Sv2. Now U is an isometry and
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hence unitary as shown by the following calculation using the Pythagorean theorem

‖Uv‖2 = ‖S̃v1 + Sv2‖2 = ‖S̃v1‖2 + ‖Sv2‖2

= ‖v1‖2 + ‖v2‖2 = ‖v‖2.

Also by construction U |T | = T since U |null |T | does not matter.

7 Singular-value decomposition

The singular-value decomposition generalizes the notion of diagonalization. To unitarily
diagonalize T ∈ L(V ) means to find an orthonormal basis e such that T is diagonal with
respect to this basis

M(T ; e, e) = [T ]e =



λ1 0

. . .

0 λn




where the notation M(T ; e, e) indicates that the basis e is used both for the domain and
codomain of T . The spectral theorem tells us that unitary diagonalization can only be done
for normal operators. In general, we can find two orthonormal bases e and f such that

M(T ; e, f) =




s1 0
. . .

0 sn




which means that Tei = sifi. The scalars si are called singular values of T . If T is
diagonalizable they are the absolute values of the eigenvalues.

Theorem 10. All T ∈ L(V ) have a singular-value decomposition. That is, there exist
orthonormal bases e = (e1, . . . , en) and f = (f1, . . . , fn) such that

Tv = s1〈v, e1〉f1 + · · · + sn〈v, en〉fn,

where si are the singular values of T .

Proof. Since |T | ≥ 0 and hence also self-adjoint, there is an orthonormal basis e = (e1, . . . , en)
by the spectral theorem so that |T |ei = siei. Let U be the unitary matrix in the polar
decomposition, so that T = U |T |. Since e is orthonormal, we can write any vector v ∈ V as

v = 〈v, e1〉e1 + · · · + 〈v, en〉en

and hence
Tv = U |T |v = s1〈v, e1〉Ue1 + · · ·+ sn〈v, en〉Uen.
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Now set fi = Uei for all 1 ≤ i ≤ n. Since U is unitary, (f1, . . . , fn) is also an orthonormal
basis, proving the theorem.


