
MAT067 University of California, Davis Winter 2007

LU-Factorization
Isaiah Lankham, Bruno Nachtergaele, Anne Schilling

(March 12, 2007)

1 Introduction

Given a system of linear equations, a complete reduction of the coefficient matrix to Reduced
Row Echelon (RRE) form is far from the most efficient algorithm if one is only interested
in finding a solution to the system. However, the Elementary Row Operations (EROs) that
constitute such a reduction are themselves at the heart of many frequently used numerical
(i.e., computer-calculated) applications of Linear Algebra. In the Sections that follow, we will
see how EROs can be used to produce a so-called LU-factorization of a matrix into a product
of two significantly simpler matrices. Unlike Diagonalization and the Polar Decomposition
for Matrices that we’ve already encountered in this course, these LU Decompositions can be
computed reasonably quickly for many matrices. LU-factorizations are also an important
tool for solving linear systems of equations.

You should note that the factorization of complicated objects into simpler components is
an extremely common problem solving technique in mathematics. E.g., we will often factor
a polynomial into several polynomials of lower degree, and one can similarly use the prime
factorization for an integer in order to simply certain numerical computations.

2 Upper and Lower Triangular Matrices

We begin by recalling the terminology for several special forms of matrices.
A square matrix A = (aij) ∈ F

n×n is called upper triangular if aij = 0 for each pair of
integers i, j ∈ {1, . . . , n} such that i > j. In other words, A has the form

A =




a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
. . .

...
0 0 0 · · · ann




.

Copyright c© 2006 by the authors. These lecture notes may be reproduced in their entirety for non-
commercial purposes.



2 UPPER AND LOWER TRIANGULAR MATRICES 2

Similarly, A = (aij) ∈ F
n×n is called lower triangular if aij = 0 for each pair of integers

i, j ∈ {1, . . . , n} such that i < j. In other words, A has the form

A =




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
. . .

...
an1 an2 an3 · · · ann




.

Finally, we call A = (aij) a diagonal matrix when aij = 0 for each i, j ∈ {1, . . . , n} such that
i �= j. In other words, A is both an upper triangular matrix and a lower triangular matrix
so that the only non-zero entries of A are along the diagonal (i.e., when i = j).

Before applying triangularity to the solving of linear systems, we first derive several useful
algebraic properties of triangular matrices.

Theorem 2.1. Let A, B ∈ F
n×n be square matrices and c ∈ R be any real scalar. Then

1. A is upper triangular if and only if AT is lower triangular.

2. if A and B are upper triangular,

(a) cA is upper triangular,

(b) A + B is upper triangular, and

(c) AB is upper triangular.

3. all properties of Part 2 hold when upper triangular is replaced by lower triangular.

Proof. The proof of Part 1 follows directly from the definitions of upper and lower triangu-
larity in addition to the definition of transpose. The proofs of Parts 2(a) and 2(b) are equally
straightforward. Moreover, the proof of Part 3 follows by combining Part 1 with Part 2 but
when A is replaced by AT and B by BT . Thus, we need only prove Part 2(c).

To prove Part 2(c), we start from the definition of the matrix product. Denoting A = (aij)
and B = (bij), note that AB = ((ab)ij) is an n × n matrix having “i-j entry” given by

(ab)ij =

n∑
k=1

aikbkj.

Since A and B are upper triangular, we have that aik = 0 when i > k and that bkj = 0
when k > j. Thus, to obtain a non-zero summand aikbkj �= 0, we must have both aik �= 0,
which implies that i ≤ k, and bkj �= 0, which implies that k ≤ j. In particular, these two
conditions are simultaneously satisfiable only when i ≤ j. Therefore, (ab)ij = 0 when i > j,
from which AB is upper triangular.



3 BACK AND FORWARD SUBSTITUTION 3

As a side remark, we mention that Parts 2(a) and 2(b) of Theorem 2.1 imply that the
set of all n × n upper triangular matrices forms a proper subspace of the vector space of all
n × n matrices. (One can furthermore see from Part 2(c) that the set of all n × n upper
triangular matrices actually forms a subalgebra of the algebra of all n × n matrices.)

3 Back and Forward Substitution

Consider an n × n linear system of the form

Ax = b

with A an upper triangular matrix. To solve such a linear system, it is not at all necessary to
first reduce it to Reduced Row Echelon (RRE) form. To see this, note that the last equation
in such a system can only involve the single unknown xn and that, moreover,

xn =
bn

ann

as long as ann �= 0. If ann = 0, then we must be careful to distinguish the two cases where
bn = 0 and bn �= 0. Thus, for concreteness, we assume that the diagonal elements of A are all
nonzero, and so we can next substitute the solution for xn into the second-to-last equation.
Since A is upper triangular, the resulting equation will involve only the single unknown xn−1,
and, moreover,

xn−1 =
bn−1 − an−1,nxn

an−1,n−1

.

One can then similarly substitute the solutions for xn and xn−1 into the ante penultimate
equation in order to solve for xn−2, and so on until the complete solution is found. We
call this process back substitution. Note that, as an intermediate step in our algorithm for
reduction to RRE form, we obtain an upper triangular matrix that is row equivalent to A.
Back substitution allows one to stop the reduction at that point and solve the linear system.

A similar procedure can be applied when A is lower triangular. In this case, the first
equation contains only x1, so

x1 =
b1

a11
,

where we are again assuming that the diagonal entries of A are all nonzero. Then, as above,
we can substitute the solution for x1 into the second equation to obtain

x2 =
b2 − a21x1

a22
.

Continuing this process, we obtain the forward substitution procedure. In particular,

xn =
bn − ∑n−1

k=1 ankxk

ann

.



4 LU FACTORIZATION 4

We next consider a more general linear system Ax = b, for which we assume that there
is a lower triangular matrix L and an upper triangular matrix U such that A = LU . Such a
system is more general since it clearly includes the special cases of A being either lower or
upper triangular. In order to solve such a system, we can again exploit triangularity in order
to produce a solution without applying a single Elementary Row Operation. To accomplish
this, we first set y = Ux, where x is the as yet unknown solution of Ax = b. Then note that
y must satisfy

Ly = b.

As L is lower triangular, we can solve for y via forward substitution (assuming that the
diagonal entries of L are all nonzero). Then, once we have y, we can apply back substitution
to solve for x in the system

Ux = y

since U is upper triangular. (As with L, we must also assume that every diagonal entry of
U is nonzero.)

In summary, we have given an algorithm for solving any linear system Ax = b in which
we can factor A = LU , where L is lower triangular, U is upper triangular, and both L and U
have all non-zero diagonal entries. Moreover, the solution is found entirely through simple
forward and back substitution, and one can easily verify that the solution obtained is unique.

We note in closing that the simple procedures of back and forward substitution can also
be regarded as a straightforward method for computing the inverses of lower and upper
triangular matrices. The only condition we imposed on our triangular matrices above was
that all diagonal entries were non-zero. It should be clear to you that this non-zero diagonal
restriction is a necessary and sufficient condition for a triangular matrix to be non-singular.
Moreover, once the inverses of L and U have been obtained, then we can immediately
calculate the inverse for A by noting that

A−1 = (LU)−1 = U−1L−1.

4 LU factorization

Based upon the discussion in the previous Section, it should be clear that one can find many
uses for the factorization of a matrix A = LU into the product of a lower triangular matrix
L and an upper triangular matrix U . This form of decomposition of a matrix is called an
LU-factorization (or sometimes LU-decomposition). One can prove that such a factorization,
with L and U satisfying the condition that all diagonal entries are non-zero, is equivalent to
either A or some permutation of A being non-singular. For simplicity, we will now explain
how such an LU -factorization of A may be obtained in the most common case that A can
be reduced to RRE form without requiring any row swapping operations. (Row-exchanges
can, however, be included in the discussion below with only a small additional effort.)



4 LU FACTORIZATION 5

Not surprisingly, the factorization procedure itself involves Elementary Row Operations
(EROs). Suppose that A = (aij) is an n × n matrix with a11 �= 0. The first step in our
algorithm for reducing A to RRE form is then the ERO that replaces the second row by the
second minus the first row after it has been multiplied (i.e., rescaled) by the factor a21/a11.
This produced the matrix

A1 =




a11 a12 a13 · · · a1n

0 a22 − a12a21/a11 a23 − a13a21/a11 · · · a2n − a1na21/a11

a31 a32 a33 · · · a3n
...

...
...

. . .
...


 .

The new trick comes now. The ERO we just performed on A can be viewed as the multipli-
cation of A from the left with the lower triangular matrix E12 defined by

E12 =




1 0 0 · · · 0
−a21/a11 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




.

In particular, you should verify that

A1 = E12A

The next ERO that we would perform replaces the third row by the third row minus an
appropriate rescaling of the first row, such that the left-most entry of the third row is made
to vanish. In other words, we want to left multiply A1 by the lower triangular matrix

E13 =




1 0 0 · · · 0
0 1 0 · · · 0

−a31/a11 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




.

to obtain A2 = E13A1. Proceeding in this fashion, is should be clear how to define lower
triangular matrices E1j such that

An−1 = E1nE1,n−1 · · ·E13E12A

is the result of the usual initial n − 1 EROs applied to A. Moreover, An−1 has all zeroes in
the first column except for the top element.



4 LU FACTORIZATION 6

Note that the next sequence of EROs at this point would cause the entries of the 2nd
column under the diagonal to vanish. This can be achieved by further left multiplication,
this time using lower triangular matrices of the form

E2j =




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 −aj2/a
(1)
22 0 · · · 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1




,

where a
(1)
22 denotes the “2-2 entry” of A1 and we again assume that a

(1)
22 �= 0.

Continuing in the fashion with EROs that zero out the entries in the third column under
the diagonal, then the fourth column, and so on, we will eventually obtain an upper triangular
matrix U that is row-equivalent to A. The above procedure thus results in

U = En−1,nEn−2,n−1En−2,n · · ·E23E1n · · ·E12A , (1)

where each Eij was specifically formed to be lower triangular.
The next step is to notice that the inverse of each Eij is again a lower triangular matrix

of the same form, which follows by changing the sign of the only non-vanishing off-diagonal
element. E.g.,

E−1
12 =




1 0 0 · · · 0
a21/a11 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




.

Thus, using these inverses for each Eij , one can solve for A in Equation (1) to obtain

A = LU

with
L = E−1

12 E−1
13 · · ·E−1

1n E−1
23 · · ·E−1

n−1,n .

Thus, appealing to Theorem 2.1 in Section 2 above, it follows that L is lower triangular since
it is a product of lower triangular matrices. We have therefore obtained an LU -factorization
for the matrix A.

When this procedure is implemented in a computer program, one does not actually
perform such a large number of matrix multiplications with matrices whose entries are mostly
zero. Instead, it is easy to implement this procedure so that it only modifies one row of the
matrix at a time. Then, by thinking about how the matrix product can be defined row by
row, this leads to an even more efficient method for computing LU -factorizations.


