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These notes supplement [2, Appendix C].

1. PROOF OF [δ, δ̃] = 0

One may easily verify that (see also [1, Eq. (3.10)])
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The proof of [δ, δ̃] = 0 is given here by Lemmas 1.1 and 1.2 below. We rely here heavily
on [1, Appendix A].

Let (ν, J) ∈ RC(λ,B) where B = (B1,1)⊗2 ⊗B′. The following notation is used:

δ(ν, J) = (ν̇, J̇)

δ̃(ν, J) = (ν̃, J̃)

δ̃ ◦ δ(ν, J) = (˜̇ν, ˜̇J)

δ ◦ δ̃(ν, J) = ( ˙̃ν, ˙̃J).

Furthermore, let { ˙̀(k), ṡ(k)}, {˜̀(k), s̃(k)}, { ˜̀̇(k), ˜̇s(k)} and { ˙̀̃(k), ˙̃s(k)} be the lengths of
the strings that are shortened in the transformations (ν, J) 7→ (ν̇, J̇), (ν, J) 7→ (ν̃, J̃),

(ν̇, J̇) 7→ (˜̇ν, ˜̇J) and (ν̃, J̃) 7→ ( ˙̃ν, ˙̃J), respectively. We call the strings, whose lengths are
labeled by an `, `-strings and those labeled by an s, s-strings.

Lemma 1.1. The following cases occur at (ν, J)(k):

I. Nontwisted case. In this case the `-string selected by δ (resp. δ̃) in (ν, J)(k) is
different from the s-string selected by δ̃ (resp. δ) in (ν, J)(k). For the `-strings one
of the following must hold:
(`a) Generic case. If δ and δ̃ do not select the same `-string, then ˙̀̃(k) = ˙̀(k) and

˜̀̇(k) = ˜̀(k).
(`b) Doubly singular case. In this case δ and δ̃ select the same `-string, so that

˙̀(k) = ˜̀(k) =: `. Then
(1) If ˜̀̇(k) < ` (or ˙̀̃(k) < `) then ˜̀̇(k) = ˙̀̃(k) = `− 1 and m(k+1)

`−1 = 0 for

k < n − 2, m(n−1)
`−1 = m

(n)
`−1 = 0 for k = n − 2 and m(n−2)

`−1 = 0 for
k = n− 1, n.

(2) If ˜̀̇(k) = ` (or ˙̀̃(k) = `) then case I.(`s)(1’) (or I.(`s)(1)) holds or
˜̀̇(k) = ˙̀̃(k) = `.
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(3) If ˜̀̇(k) > ` (or ˙̀̃(k) > `) then case I.(`s)(1’,2) (or I.(`s)(1,2)) holds or
˜̀̇(k) = ˙̀̃(k) and ˜̀̇(k) ≤ ˜̀(k+1), ˙̀̃(k) ≤ ˙̀(k+1) for k < n − 2, ˜̀̇(n−2) ≤
min{˜̀(n−1), ˜̀(n)}, ˙̀̃(n−2) ≤ min{ ˙̀(n−1), ˙̀(n)} for k = n − 2, and
˜̀̇(k) ≤ s̃(n−2), ˙̀̃(k) ≤ ṡ(n−2) for k = n− 1, n.

For the s-strings, case I.(`s) holds or one the following must hold:
(sa) Generic case. If δ and δ̃ do not select the same s-string, then ˙̃s(k) = ṡ(k) and

˜̇s(k) = s̃(k).
(sb) Doubly singular case. In this case δ and δ̃ select the same s-string, so that

ṡ(k) = s̃(k) =: s. Then
(1) If ˜̇s(k) < s (or ˙̃s(k) < s) then ˜̇s(k) = ˙̃s(k) = s− 1 and m(k−1)

s−1 = 0.
(2) If ˜̇s(k) = s (or ˙̃s(k) = s) then ˜̇s(k) = ˙̃s(k) = s.
(3) If ˜̇s(k) > s (or ˙̃s(k) > s) then ˜̇s(k) = ˙̃s(k), ˜̇s(k) ≤ s̃(k−1) and ˙̃s(k) ≤

ṡ(k−1).
(`s) Mixed case. One of the following holds:

(1) ˙̀(k) = ˜̀(k) =: `, ˙̀̃(k) = ṡ(k) = ˙̀(k+1) =: `′, ˜̀̇(k) = ˙̃s(k) =: `′′,
s̃(k) = ˜̇s(k) or possibly the same conditions for ` and `′, ˜̀̇(k) = s̃(k) =
s̃(k+1) = `′′, ˙̃s(k) = ˜̇s(k) = `′′′, m(k−1)

`′′ = 0, m(k)
`′′ = 1, m(k+1)

`′′ = 2 if

case I.(`s)(1) does not hold at k−1. Furthermore, either ˜̀̇(k) ≤ ˜̀(k+1)

or case I.(`s)(1) holds at k + 1 with the same values of `′ and `′′.
Similarly, either ˙̃s(k) ≤ ṡ(k−1) or case I.(`s)(1) holds at k− 1 with the
same values of `′ and `′′.

(1’) ˙̀(k) = ˜̀(k) =: `, ˜̀̇(k) = s̃(k) = ˜̀(k+1) =: `′, ˙̀̃(k) = ˜̇s(k) =: `′′,
ṡ(k) = ˙̃s(k) or possibly the same conditions for ` and `′, ˙̀̃(k) = ṡ(k) =
ṡ(k+1) = `′′, ˜̇s(k) = ˙̃s(k) = `′′′, m(k−1)

`′′ = 0, m(k)
`′′ = 1, m(k+1)

`′′ = 2 if

case I.(`s)(1’) does not hold at k−1. Furthermore, either ˙̀̃(k) ≤ ˙̀(k+1)

or case I.(`s)(1’) holds at k + 1 with the same values of `′ and `′′.
Similarly, either ˜̇s(k) ≤ s̃(k−1) or case I.(`s)(1’) holds at k − 1 with
the same values of `′ and `′′.

(2) For k < n − 2 (resp. k = n − 2) ˙̀(k) = ˜̀(k) =: `, ṡ(k) = s̃(k) =
ṡ(k+1) = s̃(k+1) =: `′ (resp. ṡ(k) = s̃(k) = ˙̀(n−1) = ˙̀(n) = ˜̀(n−1) =
˜̀(n) = `′), ˙̀̃(k) = ˜̀̇(k) = `′′, ˙̃s(k) = ˜̇s(k) := `′′′ and case I.(`s)(2)
holds at k + 1 (resp. n − 1 and n) with the same values of `′ and `′′

and ` = `′, `′′′ = `′′. Also, either ˜̇s(k) ≤ s̃(k−1) and ˙̃s(k) ≤ ṡ(k−1) or
case I.(`s)(2) holds at k− 1 with the same values of `′ and `′′. For k =
n − 1, n, ˙̀(k) = ˜̀(k) = ṡ(n−2) = s̃(n−2) = `′ and ˜̀̇(k) = ˙̀̃(k) = `′′.
In addition case I.(`s)(2) holds at n− 2 with the same values of `′ and
`′′.

II. Twisted case. In this case the `-string in (ν, J)(k) selected by δ is the same as
the s-string selected by δ̃ or vice versa. In the first case ˙̀(k) = s̃(k) =: `. Then
˜̀(k) = ˜̀̇(k) and one of the following holds:
(1) If ˙̀̃(k) < `, then ˙̀̃(k) = ˜̇s(k) = ` − 1, m(k+1)

`−1 = 0 or m(k+1)
`−1 (ν̃) = 0, and

m
(k−1)
`−1 = 0 or m(k−1)

`−1 (ν̇) = 0. Furthermore ṡ(k) = ˙̃s(k).

(2) If ˙̀̃(k) = `, then ˙̀̃(k) = ˜̇s(k) = ` and ṡ(k) = ˙̃s(k).
(3) If ˙̀̃(k) > `, then
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(i) ˙̀̃(k) = ˜̇s(k) and ṡ(k) = ˙̃s(k), or
(ii) ˙̀̃(k) = ṡ(k) and ˜̇s(k) = ˙̃s(k) ≤ ṡ(k−1).

Furthermore, either ˙̀̃(k) ≤ ˙̀(k+1) or ˙̀(k) = ˙̀(k+1), ˙̀̃(k) = ˙̀̃(k+1),m(k+1)
` =

1 and Case II.(3)(i) holds at k + 1. Similarly, either ˜̇s(k) ≤ s̃(k−1) or ˙̀(k) =
˙̀(k−1), ˙̀̃(k) = ˙̀̃(k−1), m(k−1)

` = 1 and Case II.(3) holds at k − 1.
If the `-string in (ν, J)(k) selected by δ̃ is the same as the s-string selected by δ,

then ˜̀(k) = ṡ(k) =: `. In this case ˙̀(k) = ˙̀̃(k) and one of the following holds:
(1’) If ˜̀̇(k) < `, then ˜̀̇(k) = ˙̃s(k) = ` − 1, m(k+1)

`−1 = 0 or m(k+1)
`−1 (ν̇) = 0, and

m
(k−1)
`−1 = 0 or m(k−1)

`−1 (ν̃) = 0. Furthermore s̃(k) = ˜̇s(k).

(2’) If ˜̀̇(k) = `, then ˜̀̇(k) = ˙̃s(k) = ` and s̃(k) = ˜̇s(k).
(3’) If ˜̀̇(k) > `, then

(i) ˜̀̇(k) = ˙̃s(k) and s̃(k) = ˜̇s(k), or
(ii) ˜̀̇(k) = s̃(k) and ˙̃s(k) = ˜̇s(k) ≤ ˜̀(k−1).

Furthermore, either ˜̀̇(k) ≤ ˜̀(k+1) or ˜̀(k) = ˜̀(k+1), ˜̀̇(k) = ˜̀̇(k+1),m(k+1)
` =

1 and Case II.(3’)(i) holds at k+ 1. Similarly, either ˙̃s(k) ≤ ṡ(k−1) or ˜̀(k) =
˜̀(k−1), ˜̀̇(k) = ˜̀̇(k−1), m(k−1)

` = 1 and Case II.(3’) holds at k − 1.

Lemma 1.2. ˜̇J = ˙̃J .

Proof of Lemma 1.1. The proof proceeds by induction on k in the following way. For k =
0, 1, 2, . . . , n the statements about the `-strings are proved assuming that the statements
about the `-strings hold for i = 1, 2, . . . , k − 1. The statements about the s-strings are
proved by induction on k = n − 2, n − 3, . . . , 1 assuming that the statements for all `-
strings and the s-strings for i = n− 2, n− 3, . . . , k + 1 hold.

For the base case k = 0 we have ˙̀(0) = ˜̀(0) = ˜̀̇(0) = ˙̀̃(0) = 1.
Note that

(1.2)
˜̀̇(k) ≤ ˜̀(k+1)

˙̀̃(k) ≤ ˙̀(k+1)
for 1 ≤ k < n− 2,

˜̀̇(n−2) ≤ min{˜̀(n−1), ˜̀(n)}
˙̀̃(n−2) ≤ min{ ˙̀(n−1), ˙̀(n)}

unless case I.(`s)(1),(1’),(2) or II.(3),(3’) holds at k and k + 1. Similarly,

(1.3)
˜̇s(k) ≤ s̃(k−1)

˙̃s(k) ≤ ṡ(k−1) for 1 < k ≤ n− 2,
max{ ˜̀̇(n−1),

˜̀̇(n)} ≤ s̃(n−2)

max{ ˙̀̃(n−1),
˙̀̃(n)} ≤ ṡ(n−2)

unless case I.(`s)(1),(1’),(2) or II.(3),(3’) holds at k and k − 1.
I. Nontwisted case. For this case many arguments go through as in the proof for type A as
in [1, Appendix A]. Here we mainly point out the differences.
Case (`a). The proof of the generic case is very similar to the proof of the generic case for
type A [1, Appendix A]. We focus here on k ≤ n− 2. Observe that ˜̀(k) = ˜̀̇(k) is obtained
from ˙̀(k) = ˙̀̃(k) by the involution θ. Hence we only prove the latter. The singular string
in (ν, J)(k) of length ˙̀(k) remains singular in passing to (ν̃, J̃)(k). Since ˙̀̃(k−1) ≤ ˙̀(k) by

(1.2), it follows that ˙̀̃(k) ≤ ˙̀(k).
If ˙̀̃(k) = ˙̀(k) we are done. By induction hypothesis, ˙̀̃(k) ≥ ˙̀̃(k−1) ≥ ˙̀(k−1) − 1. If

˙̀(k−1) ≤ ˙̀̃(k) < ˙̀(k), this is only possible if the string selected by δ acting on (ν̃, J̃)(k) is a
3



string shortened by δ̃ acting on (ν, J)(k). This string in (ν̃, J̃)(k) has length either ˜̀(k) − 1
or s̃(k) − 1 and label 0. We show that this cannot occur. For this it suffices to show that

p
(k)
˜̀(k)−1

(ν̃) > 0 if ˙̀(k−1) < ˜̀(k) ≤ ˙̀(k) and ˙̀̃(k−1) < ˜̀(k)(1.4)

p
(k)

s̃(k)−1
(ν̃) > 0 if ˙̀(k−1) < s̃(k) ≤ ˙̀(k) and ˙̀̃(k−1) < s̃(k).(1.5)

If ˙̀(k−1) − 1 = ˙̀̃(k) < ˙̀(k), case I.(`b)(1) or II.(1) occurs at k − 1, so that m(k)
˙̀(k−1)−1

= 0

or m(k)
˙̀(k−1)−1

(ν̃) = 0. Hence ˙̀̃(k) = ˙̀(k−1) − 1 can only occur if ˜̀(k) = ˜̀(k−1) = ˙̀(k−1)

if case I.(`b)(1) holds at k − 1 or s̃(k) = s̃(k−1) = ˙̀(k−1) if case II.(1) holds at k − 1. To
prove that this cannot happen it suffices to show that

p
(k)
˜̀(k)−1

(ν̃) > 0 if m(k)
˜̀(k−1)−1

= 0 and ˙̀(k−1) = ˜̀(k−1) = ˜̀(k) ≤ ˙̀(k)(1.6)

p
(k)

s̃(k)−1
(ν̃) > 0 if m(k)

s̃(k−1)−1
= 0 and ˙̀(k−1) = s̃(k−1) = s̃(k) ≤ ˙̀(k).(1.7)

Up to minor modifications, the proofs of (1.4)-(1.7) go through as the proofs of [1, (A.2)
and (A.3)].

The cases k = n− 1 and k = n can be proven in a similar fashion.
Case (`b)(1). The proof follows very closely the doubly singular case (1) in [1, Appendix
A]. Again we assume that k ≤ n − 2. The cases k = n − 1, n go through up to minor
modifications. By assumption ˜̀̇(k) < `. By the same arguments as in [1, Appendix A] it
follows that ˜̀̇(k) = `− 1 and p(k)

`−1(ν̇) = 0.
First we show that the cases I.(`s)(1),(1’),(2), II.(1’-3’) cannot occur at k−1. If II.(1’-3’)

holds at k−1 and the conditions of I.(`b)(1) at k, then ˜̀(k−1) = ṡ(k−1) = ˜̀(k) = ˙̀(k) = `.
For case II.(1’) at k − 1, we have ˜̀̇(k−1) = ` − 1 so that p(k−1)

`−1 (ν̇) = 0. Otherwise this

yields a contradiction to the fact that ˜̀(k−1) = `. But p(k−1)
`−1 (ν̇) = p

(k−1)
`−1 + χ( ˙̀(k−1) ≤

` − 1 < ˙̀(k)) = p
(k−1)
`−1 + 1 ≥ 1. On the other hand for case II.(2’-3’) ˜̀̇(k) ≥ ˜̀̇(k−1) ≥

˜̀(k−1) = ` which contradicts our assumptions that ˜̀̇(k) < `. Case I.(`s)(2) at k − 1
requires case I.(`s)(2) at k which contradicts our assumption. If I.(`s)(1) holds at k − 1,
then ˜̀(k−1) = ˙̀(k−1) ≤ ` and ˜̀̇(k−1) ≥ ` which contradicts our assumption that ˜̀̇(k) < `

since ˜̀̇(k−1) ≤ ˜̀̇(k). Similarly, for I.(`s)(1’) ˜̀̇(k−1) = ` which contradicts ˜̀̇(k) < `.
The goal is to show that ˙̀̃(k) = ` − 1. Since ˜̀(k) = `, it follows that m(k)

`−1(ν̃) ≥ 1. It

suffices to show that ˙̀̃(k−1) ≤ ` − 1 and p(k)
`−1(ν̃) = 0. By the same arguments as in [1,

Appendix A] this implies that ˙̀̃(k) = `− 1. Note that, since p(k)
`−1(ν̇) = 0,

(1.8) p
(k)
`−1 = p

(k)
`−1(ν̃) + χ(˜̀(k−1) < `) = χ( ˙̀(k−1) < `).

Suppose that ˙̀̃(k−1) ≥ `. Now ˜̀̇(k−1) ≤ ˜̀̇(k) = `−1 so ˜̀̇(k−1) 6= ˙̀̃(k−1). By induction case
I.(`a) or II.(1-3) has to hold at k − 1 (since we showed before that cases I.(`s)(1),(1’),(2)
and II.(1’-3’) cannot occur). In case I.(`a) this yields a contradiction by the same reasoning
as in [1, Appendix A]. In case II.(1-3) we have ˙̀(k−1) = ˙̀(k) = ˜̀(k) = s̃(k−1) = `

and ˜̀̇(k−1) = ˜̀(k−1) < ` which yields a contradiction in the evaluation of (1.8). Hence
˙̀̃(k−1) < `.
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Next suppose that p(k)
`−1(ν̃) ≥ 1. Then by (1.8), ˜̀(k−1) ≥ ` and ˙̀(k−1) ≤ ` − 1. Since

˜̀(k−1) 6= ˙̀(k−1), by induction case I.(`a) or II.(1-3) holds at k − 1. As before, cases II.(1-
3) yield a contradiction in evaluating (1.8). For cases I.(`a) one obtains a contradiction as
in [1, Appendix A]. Hence ˙̀̃(k−1) < ` and p(k)

`−1(ν̃) = 0 which implies ˙̀̃(k) = ˜̀̇(k) = `−1.

The proof that m(k+1)
`−1 = 0 is the same as in [1, Appendix A].

The case ˙̀̃(k) < ` is obtained by the application by θ.
Case (`b)(2). By assumption ˜̀̇(k) = `, so that by case I.(`b)(1) ˙̀̃(k) ≥ `. In addition
m

(k)
` ≥ 2 and p(k)

` = 0. By (1.2) ˙̀̃(k−1) ≤ ` unless case I.(`s)(1’) holds at k − 1 and k.

Sincem(k)
` ≥ 2 and p(k)

` = 0, we have ˙̀̃(k) = ` so that case I.(`b)(2) holds, unless s̃(k) = `

and m(k)
` = 2.

Hence let us from now on assume that s̃(k) = ` and m(k)
` = 2. Note that in this case

k ≤ n − 2. We will show that case I.(`s)(1’) holds with ` = `′. Note that ṡ(k) > `, since
by assumption ˜̀̇(k) = `. Note that m(k+1)

` ≥ 2 since ˜̀(k+1) = s̃(k+1) = `, and by (1.1)

p
(k)
`−1 + p

(k)
`+1 +m

(k−1)
` + (m(k+1)

` − 2) ≤ 2 for k < n− 2

p
(n−2)
`−1 + p

(n−2)
`+1 +m

(n−3)
` + (m(n−1)

` +m
(n)
` − 2) ≤ 2.

By similar arguments as in the proof [1, Appendix A case (3)] of type A it follows that

p
(k)
`+1 = 0

p
(k)
`−1 = 2−m(k−1)

`

m
(k+1)
` = 2 for k < n− 2 or m

(n−1)
` = m

(n)
` = 1 for k = n− 2.

(1.9)

Let `′′ > ` be minimal such that m(k)
`′′ > 0. If no such `′′ exists, set `′′ = ∞. By (1.1) it

follows that p(k)
i = 0 for ` ≤ i ≤ `′′ and m(k−1)

i = m
(k+1)
i = 0 for ` < i < `′′. Hence

˙̀̃(k) = `′′.
First assume that ˙̀(k+1) > `. We write down the arguments for k < n − 2. The case

k = n − 2 is analogous. Note that then case I.(`a) and I.(sa) holds at k + 1 so that by
induction ˜̇s(k+1) ≤ s̃(k) = `. Since on the other hand ` = ˜̀̇(k) ≤ ˜̇s(k+1), it follows that
˜̀̇(k+1) = ˜̇s(k+1) = `. Since ˜̇s(k+1) = ` and ˙̀(k) = ˜̀̇(k) = ` and m(k)

` = 2, it follows
that ˜̇s(k) > `. Since m(k)

i = 0 for ` < i < `′′ and p(k)
`′′ = 0, we have ˜̇s(k) = `′′ unless

ṡ(k) = `′′ and m(k)
`′′ = 1. We deal with this case later. In addition, since m(k+1)

i = 0 for

` < i < `′′, it follows that ˙̀̃(k) = `′′ ≤ ˙̀(k+1).
If ˙̀(k+1) = `, then ˜̀̇(k+1) = `. (Note that in this case k < n − 2, since for k = n − 2

we have ˙̀(n−1) = ˙̀(n) = `, which would imply that ṡ(n−2) = `. However this contradicts
˜̀̇(n−2) = ` since m(n−2)

` = 2). Furthermore by (1.1), m(k)
i = m

(k+1)
i = 0 for ` < i < `′′

and m(k)
`′′ ,m

(k+1)
`′′ > 0. By the same arguments as above p(k+1)

i = 0 for ` ≤ i ≤ `′′, so

that ˙̀̃(k+1) = `′′. Hence case I.(`s)(1’) holds at k + 1 with the same values for ` = `′ and
`′′. By induction ˜̇s(k+1) = `′′, so that ˜̇s(k) = `′′ as claimed unless again ṡ(k) = `′′ and
m

(k)
`′′ = 1.
By (1.3) we have ˙̃s(k+1) ≤ ṡ(k) unless possibly case I.(`s)(1’) holds at k and k + 1.

However, if case I.(`s)(1’) holds at k + 1 by induction ˙̃s(k+1) = ṡ(k+1) ≤ ṡ(k). Hence by
the definition of δ also ˙̃s(k) = ṡ(k) unless ṡ(k) = `′′ and m(k)

`′′ = 1.
5



Suppose ṡ(k) = `′′ and m(k)
`′′ = 1. Then ˙̀̃(k) = ṡ(k) = `′′ and ˜̀̇(k) > `′′. Let `′′′ > `′′

be minimal such that m(k)
`′′′ > 0. By (1.1) with p(k)

`′′−1 = p
(k)
`′′ = 0

(1.10) m
(k−1)
`′′ + (m(k+1)

`′′ − 2) + p
(k)
`′′+1 ≤ 2.

Note that m(k+1)
`′′ ≥ 2. Assume that m(k+1)

`′′ = 1 (since ṡ(k) = `′′ we must have m(k+1)
`′′ ≥

1). Then by (1.1) m(a)
`′′ = 1 for all k ≤ a ≤ n − 2. However this is a contradiction to the

fact that ˙̀(a) = ṡ(a) = `′′ for some a ≥ k. This proves in particular that case I.(`s)(1’)
cannot hold at k − 1. Furthermore, by (1.10) m(k−1

`′′ = 0, m(k+1)
`′′ = 2 and p(k)

`′′+1 = 0.

Using (1.1) once again this implies p(k)
i = 0 for `′′ ≤ i ≤ `′′′, so that ˜̇s(k) = ˙̃s(k) = `′′′.

Note that m(k−1)
i = 0 for `′ < i < `′′′ in this case.

It remains to show that ˜̇s(k) ≤ s̃(k−1) or case I.(`s)(1’) holds at k − 1 with the same
values of ` = `′ and `′′. Since m(k−1)

i = 0 for ` < i < `′′ (resp. for ` < i < `′′′ in
the special case that ṡ(k) = `′′ and m(k)

`′′ = 1), it follows that s̃(k−1) ≥ `′′ = ˜̇s(k) (resp.
s̃(k−1) ≥ `′′′ = ˜̇s(k)) if s̃(k−1) > `. Hence assume that s̃(k−1) = `.

If ˜̀(k−1) = `, then m(k−1)
` ≥ 2 and by (1.9) m(k−1)

` = 2 and p(k)
`−1 = 0. Let v < ` be

maximal such that m(k)
v > 0. Then by (1.1) m(k−1)

i = m
(k+1)
i = 0 for v < i < ` and

p
(k)
i = 0 for v ≤ i ≤ `. Hence, if ˙̀(k−1) < `, then ˙̀(k−1) ≤ v and ˙̀(k) = v < ` since
p
(k)
v = 0 which is a contradiction to our definition ˙̀(k) = `. Hence ˙̀(k−1) = ` and case

I.(`s)(1’) holds at k − 1 with the same value for ` = `′. Also `′′ is the same by (1.1).
Next assume ˜̀(k−1) < `. Then m(k−1)

` ≥ 1 and 0 ≤ p
(k)
`−1 ≤ 1 by (1.9). Note that

p
(k)
`−1(ν̇) = p

(k)
`−1−χ( ˙̀(k−1) < `). If ˙̀(k−1) < `, this implies that p(k)

`−1 = 1 and p(k)
`−1(ν̇) =

0. By induction case I. must hold at k−1 and ˜̀̇(k−1) ≤ ˜̀(k) = `. If ˜̀̇(k−1) < ` this implies
that ˜̀̇(k) ≤ `−1 which contradicts our assumption that ˜̀̇(k) = `. The condition ˜̀̇(k−1) = `

can only occur for case I.(`b)(3) at k − 1. However, then ˙̀̃(k−1) = ˜̀̇(k−1) = ` which
contradicts m(k−1)

` = 1. Hence ˙̀(k−1) = `. The case p(k)
`−1 = 0 yields a contradiction as

before. Therefore p(k)
`−1 = 1 and m(k−1)

` = 1 by (1.9), so that case II.(1-3) must hold at

k−1. Note that p(k)
`−1(ν̃) = p

(k)
`−1−1 = 0. Hence if case II.(1) holds at k−1, ˙̀̃(k−1) = `−1

so that ˙̀̃(k) = ` − 1 which contradicts our assumptions. For case II.(2) at k − 1 we must
have ˙̀̃(k−1) = ` which however contradicts m(k−1)

` = 1 and s̃(k−1) = `. In case II.(3) we

have ˙̀̃(k−1) > ˙̀(k−1) = ` which contradicts ˙̀̃(k−1) ≤ ˙̀̃(k) = `.
The case ˙̀̃(k) = ` follows from the above by the application of θ.

Case (`b)(3). By (1.2) either ˜̀̇(k−1) ≤ ˜̀(k) and ˙̀̃(k−1) ≤ ˙̀(k) or case I.(`s) holds at k − 1
and k. The latter case will be dealt with in the proof of case I.(`s), hence we assume that
˜̀̇(k−1) ≤ ˜̀(k) and ˙̀̃(k−1) ≤ ˙̀(k). We follow the proof for typeA(1)

n in [1, Appendix A]. By
the same arguments as for type A the assumption m(k)

` > 1 leads to a contradiction unless
m

(k)
` = 2 and ˙̀(k) = ˜̀(k) = ṡ(k) = s̃(k) = `. Hence either

m
(k)
` = 1 for k ≤ n or(1.11)

m
(k)
` = 2 and ˙̀(k) = ˜̀(k) = ṡ(k) = s̃(k) = ` for k ≤ n− 2.(1.12)
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If (1.11) holds, up to small modifications the arguments for type A yield:

p
(k)
`+1 = 0 for k ≤ n(1.13)

p
(k)
`−1 = 2−m(k−1)

` for k ≤ n− 1, p
(n)
`−1 = 2−m(n−2)

` for k = n(1.14)

m
(k+1)
` = 0 for k < n− 2 m

(n−1)
` = m

(n)
` = 0 for k = n− 2.(1.15)

If (1.12) holds, then by (1.1) we have

p
(k)
`−1 + p

(k)
`+1 +m

(k−1)
` + (m(k+1)

` − 2) ≤ 2 for k < n− 2

p
(n−2)
`−1 + p

(n−2)
`+1 +m

(n−3)
` + (m(n−1)

` +m
(n)
` − 2) ≤ 2 for k = n− 2

since p(k)
` = 0. Up to small modifications, the type A proof yields that in this case

p
(k)
`+1 = 0(1.16)

p
(k)
`−1 = 2−m(k−1)

`(1.17)

m
(k+1)
` = 2 for k < n− 2, m

(n−1)
` = m

(n)
` = 1 for k = n− 2.(1.18)

Let `′ be minimal such that `′ > ` and m(k)
`′ > 0. If no such `′ exists, set `′ = ∞. By

(1.13) (resp. (1.16)) p(k)
` = p

(k)
`+1 = 0 so that as a consequence of (1.1)

m
(k)
i = 0 for ` < i < `′(1.19)

p
(k)
i = 0 for ` ≤ i ≤ `′(1.20)

m
(k−1)
i = m

(k+1)
i = 0 for ` < i < `′(1.21)

and m(n)
i = 0 for ` < i < `′ and k = n− 2.

If `′ = ∞, then ˜̀̇(k) = ˙̀̃(k) = ∞ and, by (1.1) and (1.15) m(k+1)
i = 0 for i ≥ `, also

˙̀(k+1) = ˜̀(k+1) =∞ so that Case I.(`b)(3) holds.
Hence assume `′ < ∞. Assume that (1.11) holds. Since m(k)

` = 1 and m(k)
i = 0 for

` < i < `′ certainly ṡ(k) ≥ `′ and s̃(k) ≥ `′. First assume that ṡ(k) > `′ and s̃(k) > `′

or m(k)
`′ > 1. By the same arguments as in type A it follows that ˜̀̇(k) = ˙̀̃(k) = `′ ≤

˙̀(k+1), ˜̀(k+1) so that Case I.(`b)(3) holds. Up to small modifications these arguments also
go through for k = n− 1, n and yield ˜̀̇(k) = ˙̀̃(k) ≤ ṡ(n−2), s̃(n−2).

Next consider the case s̃(k) = `′, ṡ(k) > `′ and m(k)
`′ = 1. This can only occur for

k ≤ n − 2. We focus here on k < n − 2. The case k = n − 2 is obtained by minor
notational changes. By induction we have ˜̀̇(k−1) ≤ ˜̀(k) = `. Since ˜̀̇(k) > `, m(k)

i = 0

for ` < i < `′ and p(k)
`′ = 0 it follows that ˜̀̇(k) = `′. Furthermore by (1.15) and (1.21) we

also have ˜̀(k+1) = s̃(k+1) = s̃(k) = `′ = ˜̀̇(k). This is the second string of equalities in
case I.(`s)(1’). By (1.1) the conditions m(k)

`′ = 1 and p(k)
`′ = 0 imply

(1.22) p
(k)
`′−1 + p

(k)
`′+1 +m

(k−1)
`′ +m

(k+1)
`′ ≤ 2.

But since ˜̀(k+1) = s̃(k+1) = `′ we have m(k+1)
`′ ≥ 2, so that by (1.22) m(k+1)

`′ = 2,
m

(k−1)
`′ = 0, p(k)

`′−1 = p
(k)
`′ = p

(k)
`′+1 = 0. Let `′′ > `′ be minimal such that m(k)

`′′ > 0.

Then by (1.1) p(k)
i = 0 for `′ ≤ i ≤ `′′ and m(k)

i = m
(k+1)
i = 0 for `′ < i < `′′. By case
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I.(`b)(1) we must have ˙̀̃(k) ≥ ` and since m(k)
` = 1 actually ˙̀̃(k) > `. Hence ˙̀̃(k) = `′′.

The condition m(k+1)
i = 0 for ` ≤ i < `′ implies that ˙̀(k+1) ≥ `′.

Assume that ˙̀(k+1) > `′. Since m(k+1)
i = 0 for `′ < i < `′′ we obtain ˙̀(k+1) ≥ `′′ =

˙̀̃(k). By induction case I.(`a) and I.(sa) holds at k + 1, so that ˜̇s(k+1) = s̃(k+1) = `′ and
˙̃s(k+1) = ṡ(k+1). Since m(k)

`′ = 1, m(k)
i = 0 for `′ < i < `′′ and p(k)

`′′ = 0, it follows that
˜̇s(k) = `′′ unless ṡ(k) = `′′ and m(k)

`′′ = 1. This case can be dealt with in the same way as
in the proof of case I.(`b)(2). Also ṡ(k) = ˙̃s(k). Since m(k−1)

i = 0 for `′ ≤ i < `′′, we
have s̃(k−1) ≥ `′′ = ˜̇s(k). Hence Case I.(`s)(1’) holds.

Otherwise ˙̀(k+1) = `′. In this case by induction case I.(`s)(1’) holds at k + 1 since
˙̀(k+1) = ˜̀(k+1) = ˜̀̇(k+1) = s̃(k+1) = ˜̀(k+2) = `′ and `′ < `′′ = ˙̀̃(k) ≤ ˙̀̃(k+1). By
(1.1) m(k)

i = m
(k+1)
i = 0 for `′ < i < `′′ and m(k)

`′′ ,m
(k+1)
`′′ > 0. Hence ˜̇s(k) = ˙̀̃(k) =

˜̇s(k+1) = ˙̀̃(k+1) = `′′ unless again ṡ(k) = `′′ and m(k)
`′′ = 1. Furthermore, by induction

ṡ(k+1) = ˙̃s(k+1), so that also ṡ(k) = ˙̃s(k) by the definition of δ. Since m(k−1)
i = 0 for

`′ ≤ i < `′′, we have s̃(k−1) ≥ `′′ = ˜̇s(k). Hence Case I.(`s)(1’) holds.
Now let ṡ(k) = s̃(k) = `′ and m(k)

`′ = 1. We will show that case I.(`s)(2) holds. By
(1.15) and (1.21) we have ˜̀(k+1), ˙̀(k+1) ≥ `′. Since on the other hand ṡ(k) = s̃(k) = `′,
we must have ˜̀(k+1) = ˙̀(k+1) = `′. This yields the second string of equalities in case
I.(`s)(2). Let `′′ > `′ be minimal such that m(k)

`′′ > 0. If no such `′′ exists set `′′ = ∞.
Inequality (1.22) holds again, and sincem(k+1)

`′ ≥ 2 due to the fact that s̃(k+1) = ˜̀(k+1) =
`′, it follows that m(k−1)

`′ = 0, m(k+1)
`′ = 2 and p(k)

`′ = p
(k)
`′+1 = 0. By the usual arguments

m
(k−1)
i = m

(k)
i = m

(k+1)
i = 0 for `′ < i < `′′ and p(k)

i = 0 for `′ ≤ i ≤ `′′. Since case

I.(`s)(2) cannot hold at k − 1 since this would imply m(k)
`′ ≥ 2, we have ˙̀̃(k−1) ≤ ˙̀(k)

and ˜̀̇(k−1) ≤ ˜̀(k). Since m(k)
` = m

(k)
`′ = 1, ˜̀(k) = ˙̀(k) = `, s̃(k) = ṡ(k) = `′ and

p
(k)
`′′ = 0, we must have ˙̀̃(k) = ˜̀̇(k) = `′′. Recall that m(k+1)

i = 0 for `′ < i < `′′.
Also m

(k)
`′ = 1, m(k+1)

`′ = 2, so that by (1.1) with i = `′ and a = k + 1 we have
(m(k+2)

`′ − 2) + p
(k+1)
`′−1 + p

(k+1)
`′+1 ≤ 1. Note that p(k+1)

`′−1 (ν̃) = p
(k+1)
`′−1 − 1 which implies

that p(k+1)
`′−1 ≥ 1. Hence together with the previous inequality m(k+2)

`′ = 2 and p(k+1)
`′+1 = 0.

By the usual arguments involving (1.1) it follows that p(k+1)
i = 0 for `′ ≤ i ≤ `′′. Hence

˙̀̃(k+1) = ˜̀̇(k+1) = `′′ and case I.(`s)(2) holds at k+1. By induction ˙̃s(k+1) = ˜̇s(k+1) = `′′,
so that ˙̃s(k) = ˜̇s(k) = `′′ if m(k)

`′′ ≥ 2. If m(k)
`′′ = 1, then let `′′′ > `′′ be minimal such that

m
(k)
`′′′ > 0. Since m(k)

`′′ = 1 and m(k+1)
`′′ = 2 it follows by (1.1) that m(k−1)

`′′ = p
(k)
`′′+1 = 0.

Hence p(k)
i = 0 for `′′ ≤ i ≤ `′′′ and m(k−1)

i = 0 for `′′ < i < `′′′. This implies
that ˙̃s(k) = ˜̇s(k) = `′′′. Furthermore, since m(k−1)

i = 0 for `′ ≤ i < `′′′ it follows that
s̃(k−1) ≥ `′′′ = ˜̇s(k) and ṡ(k−1) ≥ `′′′ = ˙̃s(k). This concludes the proof that case I.(`s)(2)
holds.

Finally assume that (1.12) holds. Suppose that case I.(`s)(2) does not hold at k−1. Then
by induction ˜̀̇(k−1) ≤ ˜̀(k) and ˙̀̃(k−1) ≤ ˙̀(k) and by (1.19) and (1.20) ˜̀̇(k) = ˙̀̃(k) = `′.
If case I.(`s)(2) holds at k − 1, then ˙̀̃(k−1) = ˜̀̇(k−1) = `′, so that also ˜̀̇(k) = ˙̀̃(k) = `′.
Note that by the restrictions imposed by (1.1) we also have ˜̀̇(k+1) = ˙̀̃(k+1) = `′ so
that case I.(`s)(2) holds at k + 1. By induction ˜̇s(k+1) = ˙̃s(k+1) = `′ which implies
˜̇s(k) = ˙̃s(k) = `′ unless m(k)

`′ = 1. First assume that m(k)
`′ ≥ 2. If ˙̀(k−1), ˜̀(k−1) < `, then
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p
(k)
`−1 ≥ 2 and by (1.17) m(k−1)

` = 0, so that ṡ(k−1), s̃(k−1) ≥ `′ = ˜̇s(k) = ˙̃s(k) and case

I.(`s)(2) holds. If ˙̀(k−1) < ` and ˜̀(k−1) = `, then p(k)
`−1 ≥ 1 and by (1.17) m(k−1)

` ≤ 1.
Hence s̃(k−1) > `. If ṡ(k−1) > ` then as before s̃(k−1), ṡ(k−1) ≥ `′ = ˙̃s(k) = ˜̇s(k)

and case I.(`s)(2) holds. If ṡ(k−1) = ` then case II.(1’-3’) holds at k − 1. Note that
p
(k)
`−1(ν̇) = p

(k)
`−1 − 1 = 0, so that we need ˜̀̇(k−1) ≥ `. Since case II.(3’) does not hold at

k, we must have ˜̀̇(k−1) ≤ ˜̀(k) = ` so that case II.(2’) holds at k− 1. However, this means
m

(k−1)
` ≥ 2 which contradicts s̃(k−1) > ` since p(k−1)

` = 0. The case ˙̀(k−1) = ` and
˜̀(k−1) < ` is similar. Finally let ˙̀(k−1) = ˜̀(k−1) = `. Then case I.(`s)(2) holds at k − 1
or m(k−1)

` = 1 and ṡ(k−1), s̃(k−1) > `. In either case all conditions of case I.(`s)(2) hold
at k.

If m(k)
`′ = 1, then by (1.1) m(k−1)

`′ + m
(k+1)
`′ + p

(k)
`′−1 + p

(k)
`′+1 ≤ 2. By induction

case I.(`s)(2) holds at k + 1 so that m(k+1)
`′ ≥ 2. This implies that m(k−1)

`′ = 0 and
p
(k)
`′+1 = 0. Let `′′ > `′ be minimal such that m(k)

`′′ > 0. Then p(k)
i = 0 for `′ ≤ i ≤ `′′ and

˙̃s(k) = ˜̇s(k) = `′′. Furthermore, by the same arguments as before ṡ(k−1), s̃(k−1) > ` and
since m(k−1)

i = 0 for ` < i < `′′ we have ṡ(k−1), s̃(k−1) ≥ `′′ = ˙̃s(k) = ˜̇s(k). Hence case
I.(`s)(2) holds at k.
Case (`s)(1). In the proof of case I.(`b)(2,3) we already showed that case I.(`s)(1) can
occur at k when I.(`s)(1) does not occur at k − 1. In addition we saw that then either
˜̀̇(k) ≤ ˜̀(k+1) or case I.(`s)(1) holds at k+ 1 with the same values of `′ = ` and `′′. Hence
we are left to show that if case I.(`s)(1) holds at k − 1 and k, then either ˜̀̇(k) ≤ ˜̀(k+1) or
case I.(`s)(1) holds at k + 1 with the same values of `′ = ` and `′′.

Since case I.(`s)(1) holds at k − 1 and k with the same values of `′ and `′′, we have
by (1.1) m(k−1)

i = m
(k)
i = m

(k+1)
i = 0 for `′ < i < `′′, m(k)

`′′ > 0 and p(k)
i = 0

for `′ ≤ i ≤ `′′. By induction we have m(k)
`′ = 2 (see proof of case I.(`b)(2,3)). Since

˙̀(k) = ṡ(k) = `′, we must also have ˙̀(k+1) = ṡ(k+1) = `′, so that m(k+1)
`′ ≥ 2. Since case

I.(`s)(1) holds at k − 1 we must have 1 ≤ m
(k−1)
`′ ≤ 2. The case m(k−1)

`′ = 1 can only
occur if case I.(`s)(1) occurs at k − 1 for the first time and ˙̀(k−1) = ˜̀(k−1) < `′. By the
change of vacancy numbers this implies that p(k)

`′−1 ≥ 1 so that by

m
(k−1)
`′ − 2m(k)

`′ +m
(k+1)
`′ + p

(k)
`′−1 − 2p(k)

`′ + p
(k)
`′+1 ≤ 0

m
(k+1)
`′ = 2. We obtain the same conclusion if m(k−1)

`′ = 2. If ˜̀(k+1) > `′, then ˜̀(k+1) ≥
`′′ since m(k+1)

i = 0 for `′ < i < `′′. In this case ˜̀̇(k) = `′′ ≤ ˜̀(k+1) as claimed. If
˜̀(k+1) = `′, then p(k+1)

`′ = 0 since ˜̀(k+1) = ˙̀(k+1) = `′. By (1.1) with a = k + 1
and i = `′ it follows that m(k+2)

`′ = 2 and p(k+1)
`′+1 = 0. Hence again by (1.1) we have

p
(k+1)
i = 0 for `′ ≤ i ≤ `′′ which implies that ˜̀̇(k+1) = `′′. Note that by similar

arguments as before it follows that m(k+1)
`′′ = 2. By induction either ˙̃s(k+2) = `′′ if case

I.(`s)(1) holds at k + 2 or ˙̃s(k+2) ≤ ṡ(k+1) = `′. Hence ˙̃s(k+1) = `′′ (even if s̃(k+1) = `′′

then ˙̃s(k+1) = `′′ since m(k+1)
`′′ = 2). Similarly s̃(k+1) = ˜̇s(k+1) as claimed.

Case (`s)(1’). This case is analogous to case I.(`s)(1).
Case (`s)(2). In the proof of case I.(`b)(3) we already showed that case I.(`s)(2) can occur
at k when I.(`s)(2) does not occur at k − 1. In addition we saw that then case I.(`s)(2)
holds at k+ 1 with ` = `′ and `′′′ = `′′. Hence we are left to show that case I.(`s)(2) holds
at k + 1 if the same case holds at k with the same values of ` = `′ and `′′ = `′′′.
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Let k ≤ n − 2. By induction we will show that m(a)
` = 2 for k ≤ a ≤ n − 2 and

m
(n−1)
` = m

(n)
` = 1, m(a)

i = 0 for ` < i < `′′ and k ≤ a ≤ n, and p(a)
i = 0 for

` ≤ i ≤ `′′ and k ≤ a ≤ n. By induction hypothesis (see proof of case I.(`b)(3)) the
statements are true for a = k. By (1.1) we have

m
(k−1)
` + (m(k+1)

` − 2) + p
(k)
`−1 + p

(k)
`+1 ≤ 2 for k < n− 2

m
(n−3)
` + (m(n−1)

` +m
(k)
` − 2) + p

(n−2)
`−1 + p

(n−2)
`+1 ≤ 2 for k = n− 2.

Since ˙̀(k) = ˜̀(k) = ṡ(k) = s̃(k) = `, we must have m(k+1)
` ≥ 2 and m(n−1)

` ,m
(n)
` ≥ 1.

If m(k−1)
` ≥ 2, then these inequalities prove that m(k+1)

` = 2 or m(n−1)
` = m

(n)
` = 1.

If m(k−1)
` = 1, then case I.(`s)(2) must have occurred at k − 1 for the first time and

˙̀(k−1) = ˜̀(k−1) < `. Hence by the change in vacancy numbers this implies that p(k)
`−1 ≥ 1,

so that again m(k+1)
` = 2 or m(n−1)

` = m
(n)
` = 1. Then by (1.1) with a = k + 1 and

i = ` it follows that p(k+1)
`+1 = 0, so that p(k+1)

i = 0 for ` ≤ i ≤ `′′. Note that by (1.1) also

m
(k+1)
i = 0 for ` < i < `′′ and m(k+1)

`′′ > 0. Hence ˙̀̃(k+1) = ˜̀̇(k+1) = `′′.
Note that m(k−1)

`′′ ,m
(k)
`′′ ,m

(k+1)
`′′ > 0 since by assumption case I.(`s)(2) holds at k − 1.

Assume that m(k)
`′′ = 1. Then by (1.1)

m
(k−1)
`′′ +m

(k+1)
`′′ + p

(k)
`′′+1 ≤ 2,

which shows that m(k−1)
`′′ = m

(k)
`′′ = m

(k+1)
`′′ = 1. Continuing this by induction one finds

by (1.1) with a = k, k + 1, . . . n − 2 that m(a)
`′′ = 1 for k − 1 ≤ a ≤ n − 2 and either

m
(n−1)
`′′ = 1 and m(n)

`′′ = 0 or m(n−1)
`′′ = 0 and m(n)

`′′ = 1. Suppose the latter case holds.
Then by (1.1) with a = n− 1 and i = `′′ we have

m
(n−2)
`′′ − 2m(n−1)

`′′ + p
(n−1)
`′′−1 + p

(n−1)
`′′+1 ≤ 0,

which yields a contradiction since m(n−2)
`′′ = 1 and m(n−1)

`′′ = 0. Hence m(k)
`′′ = 2 and by

induction using (1.1) in fact m(a)
`′′ = 2 for k ≤ a ≤ n − 2, m(n−1)

`′′ = m
(n)
`′′ = 1. Hence

˙̀̃(a) = ˙̀̃(a) = ˙̃s(a) = ˜̇s(a) = `′′ for k ≤ a ≤ n− 2 and ˙̀̃(n−1) = ˙̀̃(n) = ˜̀̇(n−1) = ˜̀̇(n) =
`′′.
II. Twisted case. Note that this case can only occur for 1 ≤ k ≤ n − 2. The proof that
˜̀̇(k) = ˜̀(k) goes through as for the generic case of type A in [1, Appendix A].
Case (1). Suppose that ˙̀̃(k) < `. By induction ˙̀̃(k) ≥ ˙̀̃(k−1) ≥ ˙̀(k−1) − 1. First assume
that ˙̀(k−1) ≤ ˙̀̃(k) < `. Then δ must select a string shortened by δ̃ in the transformation
(ν, J) → (ν̃, J̃). By the same arguments as for the generic case in [1, Appendix A], δ

does not pick the string of length ˜̀(k) − 1 in (ν̃, J̃)(k) shortened by δ̃.Hence ˙̀̃(k) = `− 1.
The label of the corresponding string in (ν̃, J̃)(k) must be zero since it was shortened by
δ̃ and singular since it is selected by δ. This implies that p(k)

`−1(ν̃) = 0. Next assume

that ˙̀(k−1) − 1 = ˙̀̃(k) < `. Then case II.(1) or I.(`b)(1) must hold at k − 1, so that by
induction hypothesis m(k)

˙̀(k−1)−1
= 0 or m(k)

˙̀(k−1)−1
(ν̃) = 0. For ˙̀(k−1) − 1 = ˙̀̃(k) one

needs m(k)
˙̀(k−1)−1

(ν̃) > 0, so that ` = ˙̀(k−1). Hence ˙̀̃(k) = ` − 1 and p(k)
`−1(ν̃) = 0 as

before.
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The goal is to show that ˜̇s(k) = ` − 1. Since ˙̀(k) = `, it follows that m(k)
`−1(ν̇) ≥ 1.

Also ˜̀̇(k) = ˜̀(k), so that m(k)
`−1(ν̇) ≥ 2 if ˜̀̇(k) = ` − 1. Hence it suffices to show that

˜̇s(k+1) ≤ ` − 1 and p(k)
`−1(ν̇) = 0, since then ˜̇s(k) < ` and by similar arguments as before

˜̇s(k) = `− 1.
Note that

p
(k)
`−1(ν) = p

(k)
`−1(ν̇) + χ( ˙̀(k−1) ≤ `− 1)

= p
(k)
`−1(ν̃) + χ(s̃(k+1) ≤ `− 1)− χ(˜̀(k) ≤ `− 1 < ˜̀(k+1)).

(1.23)

Since p(k)
`−1(ν̃) = 0, ˜̀(k) ≤ ˜̀(k+1) ≤ s̃(k+1) ≤ s̃(k) = ` and by construction p(k)

`−1(ν) ≥ 0,
this simplifies to

(1.24) p
(k)
`−1(ν) = p

(k)
`−1(ν̇) + χ( ˙̀(k−1) ≤ `− 1) = χ(s̃(k+1) ≤ `− 1).

Suppose that p(k)
`−1(ν̇) ≥ 1. Then by (1.24) we must have s̃(k+1) ≤ `−1 and ˙̀(k−1) ≥ `.

Since ˜̀(k−1) ≤ s̃(k+1) ≤ ` − 1, case I.(`a) or II.(1-3) must hold at k − 1. If ˙̀̃(k−1) =
˙̀(k−1) ≥ `, this contradicts ˙̀̃(k−1) ≤ ˙̀̃(k) = ` − 1. Hence case II.(1) or (3) must hold
at k − 1 and ˙̀(k−1) = s̃(k−1) ≥ `, so that ˙̀(k−1) = ˙̀(k) = s̃(k−1) = s̃(k) = `. Since
˙̀̃(k−1) ≤ ˙̀̃(k) = ` − 1 case II.(1) must hold at k − 1. But then by (1.24) with k replaced
by k − 1, it follows that ˙̀(k−2) = `, so that one of case I.(`a) and II.(1-3) holds at k − 2.
Since ˙̀̃(k−2) ≤ ˙̀̃(k−1) = ` − 1, case II.(1) must hold at k − 2. Repeating this argument
we find that 1 = ˙̀(0) = ˙̀(1) = · · · = ˙̀(k) = ` which contradicts the condition that
˙̀̃(k) = `− 1 > 0. Hence p(k)

`−1(ν̇) = 0.
Suppose that ˜̇s(k+1) ≥ ` and s̃(k+1) < `. Then the doubly singular case I.(sb) or the

mixed case I.(`s) cannot occur at k + 1 since ṡ(k+1) ≥ ˙̀(k) = `, but s̃(k+1) < `. Also
the generic case I.(sa) cannot occur since then s̃(k+1) = ˜̇s(k+1) which contradicts our
assumptions. Case II. also cannot occur since ˙̀(k+1) ≥ ` > s̃(k+1) and ṡ(k+1) ≥ ` >
˜̀(k+1). Hence ˜̇s(k+1) ≥ ` and s̃(k+1) < ` is impossible.

Next suppose that ˜̇s(k+1) ≥ ` and s̃(k+1) = `. By (1.24) this implies that ˙̀(k−1) = `.
Case I.(`a) cannot hold at k−1 since then ˙̀(k−1) = ˙̀̃(k−1) = `which contradicts ˙̀̃(k−1) ≤
˙̀̃(k) = ` − 1. Similarly for cases I.(`b)(2-3) and II.(2-3) ˙̀̃(k−1) ≥ ` which contradicts
˙̀̃(k−1) ≤ ˙̀̃(k) = ` − 1. Similarly, for the mixed case I.(`s) we have ˙̀̃(k−1) ≥ ` = ˙̀(k−1)

which contradicts our assumptions. If case I.(`b)(1) holds at k − 1, then ˙̀(k) = ˜̀(k) so
that case I.(`b)(1) and case II.(1) holds at k which contradicts our assumption. Hence case
II.(1) must hold at k − 1. Since by definition ˜̇s(k) ≥ ˜̇s(k+1) ≥ `, the same arguments
yield that case II.(1) holds at k − 2 with ˙̀(k−2) = `. Repeating this argument we find that
1 = ˙̀(0) = ˙̀(1) = · · · = ˙̀(k) = ` which contradicts the condition that ˙̀̃(k) = ` − 1 > 0.
Hence ˜̇s(k+1) < `.

This completes the proof that ˜̇s(k) = `− 1.
Next we will show that ṡ(k) = ˙̃s(k). By induction ṡ(k) ≥ ˙̃s(k+1) ≥ ṡ(k+1) − 1, so

that by the definition of the algorithm for δ also ṡ(k) ≥ ˙̃s(k). If ṡ(k) = ˙̃s(k) we are
done. First assume that ṡ(k) > ˙̃s(k) ≥ ṡ(k+1). Since by the definition of δ there are no
singular strings of length ṡ(k) > i ≥ ṡ(k+1) in (ν, J)(k), this is only possible if the string
shortened by δ̃ is the one selected by δ to obtain ˙̃s(k). However, this is impossible since
by the definitions and assumptions ṡ(k+1) ≥ ˙̀(k) = s̃(k) ≥ ˜̀(k). Hence assume that
ṡ(k) > ˙̃s(k) = ṡ(k+1)−1. Then case I.(sb)(1) or II.(1’) must hold at k+1. If case I.(sb)(1)
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holds, then m(k)
`−1 = 0 and s̃(k+1) = ṡ(k+1). Since by assumption case II.(1) holds at k,

we must have s̃(k+1) = ṡ(k+1) = ˙̀(k+1) = `. Similarly for case II.(1’) we must have
s̃(k+1) = ṡ(k+1) = ˙̀(k+1) = ` and either m(k)

`−1 = 0 or m(k)
`−1(ν̃) = 0. Since we already

showed that ˙̀̃(k) = ` − 1 we must have m(k)
`−1(ν̃) > 0. Hence both cases yield m(k)

`−1 = 0

which implies that m(k)
`−1(ν̃) ≤ 1 (note that ˜̀(k) < ` since otherwise case I.(`b) holds at k).

But ˙̀̃(k) = `− 1 so that ṡ(k) > ˙̃s(k) = ṡ(k+1) − 1 = `− 1 is impossible.
It remains to show thatm(k+1)

`−1 = 0 orm(k+1)
`−1 (ν̃) = 0, andm(k−1)

`−1 = 0 orm(k−1)
`−1 (ν̇) =

0.
With p(k)

`−1(ν̇) = 0 equation (1.24) becomes

(1.25) p
(k)
`−1(ν) = χ( ˙̀(k−1) ≤ `− 1) = χ(s̃(k+1) ≤ `− 1).

First assume that p(k)
`−1(ν) = 0. Then ˙̀(k−1) = s̃(k+1) = `. Since ˜̀(k−1) ≤ ˜̀(k) < ` case

I.(`a) or II. must hold at k − 1. Since in addition ˙̀̃(k−1) ≤ ˙̀̃(k) = ` − 1, case II.(1) must
hold at k − 1. Certainly m(k)

`−1(ν̃) > 0 because s̃(k) = `. Hence by induction hypothesis

m
(k)
`−1 = 0, so that by (1.1) m(k−1)

`−1 = m
(k+1)
`−1 = 0.

Next assume that p(k)
`−1(ν) = 1. Then by (1.25) ˙̀(k−1) ≤ ` − 1 and s̃(k+1) ≤ ` − 1.

Since p(k)
`−1(ν) = 1, there is either a string with label 0 or a singular string of length `− 1

in (ν, J)(k) ifm(k)
`−1 > 0. But then ˙̀(k) < ` or s̃(k) < ` which contradicts our assumptions.

Hence m(k)
`−1 = 0. By (1.1)

p
(k)
`−2 +m

(k−1)
`−1 +m

(k+1)
`−1 ≤ 2.

If p(k)
`−2 = 2, then m(k−1)

`−1 = m
(k+1)
`−1 = 0 and we are done.

If p(k)
`−2 = 1, we have m(k−1)

`−1 + m
(k+1)
`−1 ≤ 1. Let r < ` − 1 be maximal such that

m
(k)
r > 0. If no such r exists, set r = 0. Then by (1.1) we have p(k)

i = 1 for r < i < `,
p
(k)
r ≤ 1 and m(k−1)

i = m
(k+1)
i = 0 for r + 1 < i < ` − 1. If p(k)

r = 1, then m(k−1)
r+1 =

m
(k+1)
r+1 = 0. Suppose that m(k−1)

`−1 = 0. Then ˙̀(k−1) ≤ r. Since by assumption ˙̀(k) =
` > r the string of length r in (ν, J)(k) must have label 0. This implies that s̃(k+1) > r

and, since m(k+1)
i = 0 for r < i < ` − 1, we have s̃(k+1) = ` − 1. Since m(k−1)

`−1 = 0

implies that m(k+1)
`−1 = 1, this shows that m(k+1)

`−1 (ν̃) = 0. Similarly, if m(k+1)
`−1 = 0, then

m
(k−1)
`−1 (ν̇) = 0. Hence suppose that p(k)

r = 0. Then ˙̀(k−1) > r and s̃(k+1) > r since
otherwise ˙̀(k) ≤ r < ` or s̃(k) ≤ r < ` which contradicts our assumptions. Also by
(1.1) m(k−1)

r+1 + m
(k+1)
r+1 ≤ 1. Hence either m(k−1)

r+1 = 1, ˙̀(k−1) = r + 1, m(k+1)
`−1 = 1,

s̃(k+1) = ` − 1 or m(k+1)
r+1 = 1, s̃(k+1) = r + 1, m(k−1)

`−1 = 1, ˙̀(k−1) = ` − 1. This

implies that either m(k−1)
`−1 = 0 and m(k+1)

`−1 (ν̃) = 0, or m(k−1)
`−1 (ν̇) = 0 and m(k+1)

`−1 = 0 as
claimed.

Finally assume that p(k)
`−2 = 0. If m(k)

`−2 = 0, then by (1.1) −p(k)
`−1 − p

(k)
`−3 ≥ m

(k−1)
`−2 +

m
(k+1)
`−2 which yields a contradiction since p(k)

`−1 = 1. Hence m(k)
`−2 ≥ 1. If ˙̀(k−1) ≤ `− 2

or s̃(k+1) ≤ ` − 2, then ˙̀(k) ≤ ` − 2 or s̃(k) ≤ ` − 2 since p(k)
`−2 = 0 which contradicts

our assumptions. Hence ˙̀(k−1) = s̃(k+1) = ` − 1. This requires m(k−1)
`−1 ≥ 1 and
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m
(k+1)
`−1 ≥ 1. Since m(k−1)

`−1 + m
(k+1)
`−1 ≤ 2 this implies m(k−1)

`−1 = 1 and m(k+1)
`−1 = 1,

so that m(k−1)
`−1 (ν̇) = 0 and m(k+1)

`−1 (ν̃) = 0 as claimed.
Case (2). First assume that ˜̇s(k) ≥ `. We will show that then ˜̇s(k) = `. The assumption
˙̀̃(k) = ` implies that m(k)

` (ν̃) ≥ 1. Since s̃(k) = `, one part of size ` is shortened in
passing from ν(k) to ν̃(k), so that m(k)

` ≥ 2. Now p
(k)
` = 0, so there is at least one string

with label 0 in ν(k) that is not selected by δ acting on (ν, J). The label of this string
remains 0 in passing to ν̇(k). This shows that there is a string of label 0 and length ` in
ν̇(k). Thus to prove ˜̇s(k) = `, it suffices to show that ˜̇s(k+1) ≤ `. If ˜̇s(k+1) ≤ s̃(k+1) then
˜̇s(k+1) ≤ s̃(k+1) ≤ s̃(k) = ` as desired. Otherwise ˜̇s(k+1) > s̃(k+1), so that case I.(sb)(3),
I.(`s), II.(3) or (3’) holds at k + 1. By induction ˜̇s(k+1) ≤ s̃(k) = `.

Next assume that ˜̇s(k) < `. We will show that this is impossible. By the same arguments
as in the proof of case II.(1) the condition ˜̇s(k) < ` implies that ˜̇s(k) = `−1 and p(k)

`−1(ν̇) =

0. The goal is to show that ˙̀̃(k) = ` − 1 which contradicts the assumption that ˙̀̃(k) = `.
Similar to the proof of case II.(1), to prove ˙̀̃(k) = `−1 it suffices to show that ˙̀̃(k−1) ≤ `−1
and p(k)

`−1(ν̃) = 0.
Note that (1.23) becomes

p
(k)
`−1(ν) = χ( ˙̀(k−1) ≤ `− 1)

= p
(k)
`−1(ν̃) + χ(s̃(k+1) ≤ `− 1)− χ(˜̀(k) ≤ `− 1 < ˜̀(k+1)).

(1.26)

Suppose that p(k)
`−1(ν̃) ≥ 1. Since the top line can be at most one and ˜̀(k) ≤ ˜̀(k+1) ≤

s̃(k+1), (1.26) implies that s̃(k+1) = `. Note that ˜̇s(k+1) ≤ ˜̇s(k) = `− 1, so that ˜̇s(k+1) <
s̃(k+1) = `. This implies that case I.(sb)(1) or II.(1) holds at k + 1. In both cases ` =
˙̀(k) = ˙̀(k+1) = s̃(k) = s̃(k+1) and ˜̇s(k+1) = ` − 1. Hence p(k+1)

`−1 (ν̇) = 0 and by (1.26)

with k replaced by k + 1 also p(k+1)
`−1 = 0. Suppose that s̃(k+2) < ` and let r < ` be

maximal such that m(k+1)
r > 0. Then by definition m(k+1)

i = 0 for r < i < ` and by (1.1)
p
(k+1)
i = 0 for r ≤ i ≤ ` and m(k+2)

i = 0 for r < i < `. However, since by assumption
s̃(k+2) < `, this means that s̃(k+2) ≤ r. In addition, since p(k+1)

r = 0, there is a string
with label 0 of length r in (ν, J)(k+1). Hence s̃(k+1) ≤ r < ` which is a contradiction
to the previously shown fact that s̃(k+1) = `. Therefore s̃(k+2) = `. Repeating similar
arguments one finds that ˙̀(k) = ˙̀(k+1) = · · · = ˙̀(n−1) = ˙̀(n) = s̃(k) = s̃(k+1) = · · · =
s̃(n−2) = ˜̀(n) = ˜̀(n−1) = · · · ˜̀(k) = `. However this yields a contradiction since then
case I.(`b) holds at k instead of case II.(2). Hence p(k)

`−1(ν̃) = 0.

Next we need to show that ˙̀̃(k−1) ≤ ` − 1. Suppose that ˙̀̃(k−1) ≥ `. Now ˜̀̇(k−1) ≤
˜̀̇(k) ≤ ˜̇s(k) = `−1, so that ˙̀̃(k−1) 6= ˜̀̇(k−1). By induction case I.(`a), I.(`s)(1)(1’), II.(1-3)
or II.(1’-3’) holds at k − 1. If case I.(`s)(1) holds at k − 1, then s̃(k−1) = s̃(k) = ˙̀(k) = `

and ˜̀̇(k−1) > ` which contradicts our assumptions. For case I.(`s)(1’) ˜̀̇(k−1) = s̃(k−1) =
˙̀(k) = s̃(k) = ` which again contradicts ˜̀̇(k−1) < `. For all other cases we must have
˙̀(k−1) = `. By (1.26) this implies that s̃(k+1) = `. By similar arguments as before
˙̀(k) = ˙̀(k+1) = · · · = ˙̀(n−1) = ˙̀(n) = s̃(k) = s̃(k+1) = · · · = s̃(n−2) = ˜̀(n) =
˜̀(n−1) = · · · ˜̀(k) = `, which yields a contradiction since then case I.(`b) holds at k instead
of case II.(2). Hence ˙̀̃(k−1) ≤ `− 1 which in turn implies together with p(k)

`−1(ν̃) = 0 that
˙̀̃(k) = `− 1. This contradicts our assumption that ˙̀̃(k) = `.
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The proof of ṡ(k) = ˙̃s(k) is very similar to the proof of this statement for case II.(1).
The case ṡ(k) > ˙̃s(k) ≥ ṡ(k+1) is the same as for II.(1). For ṡ(k) > ˙̃s(k) = ṡ(k+1) − 1 one
obtains as before that s̃(k+1) = ṡ(k+1) = ˙̀(k+1) = `. However this yields the contradiction
` = ˙̀̃(k) ≤ ˙̃s(k) = ṡ(k+1) − 1 = `− 1.
Case (3). Assume that ˙̀̃(k) > `. First note that m(k)

` ≥ 2 leads to a contradiction.
Namely, if Case II.(3) holds at k − 1, then by induction hypothesis m(k)

` = 1. Otherwise,
˙̀̃(k−1) ≤ ˙̀(k) by induction hypothesis (1.2). Since ˙̀(k) = s̃(k) = ` we must have p(k)

` = 0.
The application of δ̃ leaves a singular string of length ` and label 0 in ν̃(k) since m(k)

` ≥ 2.

But ˙̀̃(k−1) ≤ ˙̀(k) implies ˙̀̃(k) ≤ ` which contradicts our assumptions. Hence we must
have m(k)

` = 1 and p(k)
` = 0. Note in particular that it was shown in the proof of case

II.(2), that ˜̇s(k) < ` implies that ˙̀̃(k) < ` which contradicts our assumptions. The case
˜̇s(k) = ` is not possible due to m(k)

` = 1. Hence ˜̇s(k) > `.
With this, inequality (1.1) for i = ` and a = k reads

(1.27)
p
(k)
`−1 + p

(k)
`+1 +m

(k−1)
` +m

(k+1)
` ≤ 2 for 1 ≤ k ≤ n− 3

p
(n−2)
`−1 + p

(n−2)
`+1 +m

(n−3)
` +m

(n−1)
` +m

(n)
` ≤ 2 for k = n− 2.

We will show that

(1.28) p
(k)
`+1 = 0 and m

(k+1)
` =

{
1 if s̃(k+1) = `

0 otherwise.

In addition, if k = n− 2, then the same equation holds for m(n)
` , and m(n−1)

` = 1 implies
that m(n)

` = 0 and vice versa.
Let k < n− 2.
If m(k−1)

` = 2, then by (1.27) we have p(k)
`+1 = m

(k+1)
` = 0, so we are done.

If m(k−1)
` = 1 and p(k)

`−1 = 1, again by (1.27) we have p(k)
`+1 = m

(k+1)
` = 0. Hence

assume m(k−1)
` = 1 and p(k)

`−1 = 0. Note that p(k)
`−1(ν) = p

(k)
`−1(ν̃) + χ(s̃(k+1) < `) which

implies that s̃(k+1) = ` since p(k)
`−1(ν) = 0 and p(k)

`−1(ν̃) ≥ 0. But s̃(k+1) = ` requires

m
(k+1)
` ≥ 1 so that by (1.27) again p(k)

`+1 = 0 and m(k+1)
` = 1.

Finally supposem(k−1)
` = 0. In this case ˙̀(k−1) ≤ `−1 and p(k)

`−1(ν) = p
(k)
`−1(ν̇)+1, so

that p(k)
`−1 ≥ 1. If p(k)

`−1 ≥ 2, then p(k)
`+1 = m

(k+1)
` = 0 by (1.27) as claimed. Hence assume

p
(k)
`−1 = 1. If s̃(k+1) = `, then necessarily m(k+1)

` ≥ 1 and by (1.1) m(k+1)
` = 1 and

p
(k)
`+1 = 0. Now assume that s̃(k+1) < `. Recall that p(k)

`−1(ν) = p
(k)
`−1(ν̃) + χ(s̃(k+1) < `),

which implies that p(k)
`−1(ν̃) = 0 since p(k)

`−1(ν) = 1 and s̃(k+1) < `. Since s̃(k) = ` this
implies that there is a singular string of length ` − 1 in (ν̃, J̃)(k). Since by assumption
˙̀̃(k) > `, we must have ˙̀̃(k−1) ≥ `, so that ˙̀̃(k−1) > ˙̀(k−1). Hence by (1.2) case II.(3)
must hold at k − 1. We show that this yields a contradiction. For case II.(3) to hold we
must have ˙̀(k−1) = s̃(k−1). Since ˙̀(k−1) ≤ ˙̀(k) = ` and s̃(k−1) ≥ s̃(k) = ` this requires
˙̀(k−1) = s̃(k−1) = `. However this contradicts our previous finding that ˙̀(k−1) < `.

For k = n− 2 the above arguments go through with minor modifications.
This proves (1.28).
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By almost identical arguments it follows that

(1.29) m
(k−1)
` =

{
1 if ˙̀(k−1) = `

0 otherwise.

Since p(k)
` = p

(k)
`+1 = 0 it follows from (1.1), that if `′ > ` and m(k)

i = 0 for all ` < i <

`′, then p(k)
i = 0 for ` ≤ i ≤ `′. Moreover (1.1) implies that m(k−1)

i = m
(k+1)
i = 0 for

` < i < `′.
Suppose that ν(k) has a string longer than `. Let `′ be minimal such that `′ > ` and

m
(k)
`′ ≥ 1. Note that, since p(k)

`′ = 0, the string of length `′ in (ν, J)(k) is singular and
has label 0. After the application of δ̃ this string remains singular with label 0 in (ν̃, J̃)(k)

since `′ > ` = s̃(k) ≥ ˜̀(k). After the application of δ, a singular string with label 0 of
length `′ remains in (ν̇, J̇)(k) unless m(k)

`′ = 1 and ṡ(k) = `′.
First assume that not both m(k)

`′ = 1 and ṡ(k) = `′ hold. We will show that then case

II.(3)(i) holds. By induction we have ˙̀̃(k−1) ≤ ` (resp. ˜̇s(k+1) ≤ `), unless possibly
case II.(3) holds at k − 1 (resp. case II.(3)(1) k + 1). If ˙̀̃(k−1) > ` and case II.(3)
holds at k − 1, then by induction hypothesis ˙̀(k−1) = ˙̀(k) = `, ˙̀̃(k−1) = ˙̀̃(k) > `

and m
(k)
` = 1. Note that m(k−1)

i = m
(k)
i = 0 for ` < i < `′, m(k−1)

`′ ,m
(k)
`′ > 0

and ˙̀̃(k−1) = ˙̀̃(k) = `′. Similarly, if ˜̇s(k+1) > ` and case II.(3)(i) holds at k + 1, then
˜̇s(k+1) = ˙̀̃(k+1) = ˙̀̃(k) = `′, so that ˜̇s(k) = `′. Now assume that ˙̀̃(k−1) ≤ ` (resp.
˜̇s(k+1) ≤ `). Since by assumption ˙̀̃(k) > ` and ˜̇s(k) > `, it follows that ˙̀̃(k) = `′

(resp. ˜̇s(k) = `′). Moreover, if ˙̀(k+1) > `, by the previous paragraph m(k+1)
i = 0 for

˙̀(k) = ` < i < `′, so that ˙̀(k+1) ≥ `′. If ˙̀(k+1) = `, we must have m(k+1)
` = 1 so that by

(1.28) s̃(k+1) = `. Since in addition ˙̀̃(k+1) ≥ ˙̀̃(k) > `, case II.(3)(i) holds at k + 1 with
˙̀(k) = ˙̀(k+1), ˙̀̃(k) = ˙̀̃(k+1) and m(k+1)

` = 1. Similarly, if s̃(k−1) > `, by the previous
paragraph m(k−1)

i = 0 for ` < i < `′, so that s̃(k−1) ≥ `′. If s̃(k−1) = `, we must have
m

(k−1)
` = 1 so that by (1.29) ˙̀(k−1) = `. Since in addition ˜̇s(k−1) > `, case II.(3) must

hold at k − 1.
Next assume that m(k)

`′ = 1 and ṡ(k) = `′. We will show that then case II.(3)(ii) holds.
By (1.1) with a = k and i = `′, using that p(k)

`′−1 = p
(k)
`′ = 0, we have

(1.30)
p
(k)
`′+1 +m

(k−1)
`′ +m

(k+1)
`′ ≤ 2 for 1 ≤ k ≤ n− 3

p
(n−2)
`′+1 +m

(n−3)
`′ +m

(n−1)
`′ +m

(n)
`′ ≤ 2 for k = n− 2.

Note that for k ≤ n − 3, since 0 ≤ m
(k+1)
` ≤ 1 and m(k+1)

i = 0 for ` < i < `′, we
must have ṡ(k+1) = `′, which in turn implies that m(k+1)

`′ ≥ 1. Similarly for k = n − 2,
it follows that max{ ˙̀(n−1), ˙̀(n)} = `′ so that m(n−1)

`′ ≥ 1 or m(n)
`′ ≥ 1. Hence by (1.30)

0 ≤ m(k−1)
`′ ≤ 1. We distinguish the two cases.

We will show that m(k−1)
`′ = 1 leads to a contradiction. By (1.30) the assumption

m
(k−1)
`′ = 1 implies that m(k+1)

`′ = 1 for k ≤ n− 3 and m(n−1)
`′ = 1 or m(n)

`′ = 1 for k =
n− 2. Since ṡ(k+1) = `′ and m(k+1)

i = 0 for ` < i < `′, we must have ˙̀(k+1) = ` which
by (1.28) implies s̃(k+1) = ` so that case II.(3) holds at k + 1. Repeating the argument
we must have ˙̀(k) = ˙̀(k+1) = · · · = ˙̀(n−2) = s̃(k) = s̃(k+1) = · · · = s̃(n−2) = `,
ṡ(k) = ṡ(k+1) = · · · = ṡ(n−2) = `′, m(k)

` = m
(k+1)
` = · · · = m

(n−2)
` = m

(k)
`′ =
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m
(k+1)
`′ = · · · = m

(n−2)
`′ = 1. By (1.30) and (1.27) for k = n − 2 and the constraints

on ˙̀(n−1) and ˙̀(n), we have m(n−1)
` = m

(n)
`′ = 1, m(n)

` = m
(n−1)
`′ = 0, ˙̀(n−1) = ` and

˙̀(n) = `′ or the same with n − 1 and n interchanged. For concreteness let us assume that
the first conditions hold. By (1.1) with a = n− 1 and i = `′ we have

(1.31) p
(n−1)
`′−1 − 2p(n−1)

`′ + p
(n−1)
`′+1 +m

(n−2)
`′ − 2m(n−1)

`′ ≤ 0.

Since m(n−1)
` = 1 it follows from (1.28) that ˙̀(n−1) = ˜̀(n−1) = `, so that p(n−1)

` = 0.
By similar arguments as before it follows that p(n−1)

i = 0 for ` ≤ i ≤ `′. But this with
m

(n−1)
`′ = 0 and m(n−2)

`′ = 1 yields a contradiction to (1.31).
Hence m(k−1)

`′ = 0. If m(k+1)
`′ = 1 we get a contradiction as in the previous case.

Hence by (1.30) m(k+1)
`′ = 2 and p(k)

`′+1 = 0. By induction we have ˙̀̃(k−1) ≤ `, unless
possibly case II.(3) holds at k−1. If case II.(3) holds at k−1, then by induction hypothesis
˙̀(k−1) = ˙̀(k) = `. But m(k−1)

i = 0 for ` < i ≤ `′ which would imply that m(k)
`′ = 0

which contradicts our assumptions. Hence ˙̀̃(k−1) ≤ ` and, since by assumption ˙̀̃(k) > `

we must have ˙̀̃(k) = `′ = ṡ(k) as claimed in case II.(3)(ii). Let `′′ > `′ be minimal
such that m(k)

`′′ ≥ 1. If no such `′′ exists, set `′′ = ∞. Again by (1.1) we have p(k)
i = 0

for `′ ≤ i ≤ `′′. At k + 1, either case II.(3)(i) holds with ˙̀(k+1) = s̃(k+1) = ` and
˙̀̃(k+1) = ṡ(k+1) = ˙̃s(k+1) = ˜̇s(k+1) = `′, or ˙̀(k+1) = `′ and the nontwisted generic case
holds. In both cases ˙̃s(k+1) = `′ so that ˙̃s(k) = `′′. If case II.(3)(i) holds at k + 1, then
˜̇s(k+1) = `′, so that ˜̇s(k) = ˙̃s(k) = `′′ as claimed for case II.(3)(ii). Otherwise the untwisted
generic case holds at k + 1, so that ˜̇s(k+1) = s̃(k+1) ≤ `. We already showed in the proof
of case II.(2) that ˜̇s(k) < ` implies that ˙̀̃(k) < `which contradicts our assumptions. Hence,
since the strings of length ` and `′ are already selected, ˜̇s(k) = ˙̃s(k) = `′′. Finally, since
by assumption and (1.1) m(k−1)

i = 0 for `′ ≤ i < `′′, we have ṡ(k−1) ≥ `′′. Hence case
II.(3)(ii) holds.

Otherwise there is no string in ν(k) longer than ` so that m(k)
i = 0 for i > `. Then

˙̀̃(k) = ˜̇s(k) = ∞. Moreover, m(k−1)
i = m

(k+1)
i = 0 for i > `. Hence if ˙̀(k+1) > `

(resp. s̃(k−1) > `), we must have ˙̀(k+1) = ∞ (resp. s̃(k−1) = ∞). If ˙̀(k+1) = ` (resp.
s̃(k−1) = `), then m(k+1)

` = 1 and s̃(k+1) = ` by (1.28) (resp. m(k−1)
` = 1 and ˙̀(k−1) = `

by (1.29)), so that again Case II.(3) holds at k + 1 (resp. k − 1).
Case (1’-3’). These cases follow from II.(1-3) by the application of θ. �

Proof of Lemma 1.2. By Lemma 1.1 we have ˙̃ν = ˜̇ν, whose proof will be used repeatedly.
We also rely on [1, Lemma A.3].
Selected strings. Consider a string in (ν, J)(k) that is either selected by δ or δ̃, or is such
that its image under δ (resp. δ̃) is selected by δ̃ (resp. δ). It is shown that the image of any
such string under both δ̃ ◦ δ and δ ◦ δ̃, has the same label. The proof of these statements
for cases I.(`a), I.(`b), I.(sa) and I.(sb) is the same as for the analogous cases in [1, Lemma
A.3].
Selected strings, case I.(`s)(1). We need to distinguish the case whether case I.(`s)(1)
occurs for the first time at k or not. First assume that case I.(`s)(1) does not occur at k− 1.

The string (`, 0) maps to a string of length `−1, with label zero under δ ◦ δ̃ and singular
label under δ̃ ◦ δ. Hence we need to show that p(k)

`−1(˜̇ν) = 0. By the change in vacancy
numbers we have

(1.32) p
(k)
`−1(˜̇ν) = p

(k)
`−1 − χ(˜̀̇(k−1) ≤ `− 1)− χ( ˙̀(k−1) ≤ `− 1)
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By (1.9), (1.14) and (1.17), p(k)
`−1 = 2 −m(k−1)

` . Hence if m(k−1)
` = 2 and the nonneg-

ativity of vacancy numbers, it follows that p(k)
`−1(˜̇ν) = 0. If m(k−1)

` = 1, it follows that

p
(k)
`−1 = 1. We need to show that either ˙̀(k−1) < ` or ˜̀̇(k−1) < `. Since by assumption

case I.(`s)(1) does not hold at k − 1, we have ˜̀̇(k−1) ≤ ˜̀(k) = ` by (1.2) which proves the
assertion. Finally, if m(k)

` = 0, we must have ˙̀(k−1), ˜̀(k−1) < `. Furthermore, p(k)
`−1 = 2

and by the same arguments as before ˜̀̇(k−1) < `. Hence by (1.32), p(k)
`−1(˜̇ν) = 0.

The string (`′, 0) is mapped to a singular string of length `′ − 1 under both δ ◦ δ̃ and
δ̃ ◦ δ.

If ˜̀̇(k) = ˙̃s(k) = `′′, the string (`′′, 0) is mapped to a string of length `′′−1 of label zero
under δ̃ ◦ δ and of singular label under δ ◦ δ̃. Hence we need to show that p(k)

`′′−1( ˙̃ν) = 0.
Note that

p
(k)
`′′−1( ˙̃ν) = p

(k)
`′′−1 − χ( ˙̃s(k+1) < `′′) + χ(`′′ ≤ ˜̀(k+1)).

By the proof of Lemma 1.1 p(k)
`′′−1 = 0. If case I.(`s)(1) holds at k+1, both other terms are

zero. If case I.(`s)(1) holds at k + 1, the other two expressions yield -1 and 1 respectively,
which proves the assertion. The string (s̃(k), 0) is mapped to a string of length s̃(k) − 1 of
label 0 under both δ ◦ δ̃ and δ̃ ◦ δ.

If ˜̀̇(k) = s̃(k) = `′′, the string (`′′, 0) is mapped to a string of length `′′ − 1 of label 0
under both δ ◦ δ̃ and δ̃ ◦ δ. The string (`′′′, 0) is mapped to a string of length `′′′−1 of label
0 under δ̃ ◦δ and singular label under δ ◦ δ̃. Hence it needs to be shown that p(k)

`′′′−1( ˙̃ν) = 0.
By the change in vacancy numbers

p
(k)
`′′′−1( ˙̃ν) = p

(k)
`′′′−1 − χ( ˙̀̃(k+1) < `′′′) + χ(s̃(k−1) ≥ `′′′).

By the proof of Lemma 1.1 p(k)
`′′′−1 = 0 and the value of the other two terms is -1 and 1,

respectively, which proves the assertion.
Now suppose that case I.(`s)(1) holds at k−1. Then by the proof of Lemma 1.1m(k)

` =
m

(k+1)
` = 2, 1 ≤ m(k−1)

` ≤ 2 and p(k)
` = p

(k)
`+1 = 0. Hence by (1.1) m(k−1)

` − 2 + p
(k)
`−1 ≤

0. If m(k−1)
` = 2, then p(k)

`−1 = 0 and by (1.32) also p(k)
`−1(˜̇ν) = 0. If m(k−1)

` = 1 we must

have ˙̀(k−1) < ` and by the change in vacancy numbers p(k)
`−1 ≥ 1. Hence by the previous

inequality p(k)
`−1 = 1 and by (1.32) p(k)

`−1(˜̇ν) = 0. The same is true for the selected string
(`′, 0) since ` = `′ in this case. The proof for the selected strings (`′′, 0) and (s̃(k), 0) goes
through as before.
Selected strings, case I.(`s)(1’). This case is analogous to the proof of case I.(`s)(1).
Selected strings, case I.(`s)(2). The proof for the string (`, 0) is almost identical to the
proof for case I.(`s)(1). When `′ = `, the string (`′, 0) also changes as required. If `′ > `,
it needs to be shown that p(k)

`′−1(˜̇ν) = 0. By the change in vacancy number

p
(k)
`′−1(˜̇ν) = p

(k)
`′−1 + χ( ˙̀(k) < `′)− χ(˜̀̇(k−1) < `′) = 0 + 1− 1 = 0

where we used that ˜̀̇(k−1) ≤ ˜̀(k) = ` since for ` < `′ case I.(`s)(2) does not hold at k−1.
The string (`′′, 0) is mapped to a string of length `′′ − 1 with singular label by δ ◦ δ̃ and

label zero by δ̃ ◦ δ. Hence it needs to be shown that p(k)
`′′−1( ˙̃ν) = 0. The vacancy number

changes as

p
(k)
`′′−1( ˙̃ν) = p

(k)
`′′−1 − χ( ˙̀̃(k−1) < `′′) + χ(s̃(k−1) ≥ `′′).
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By the proof of Lemma 1.1 p(k)
`′′−1 = 0. Except for the first occurrence of case I.(`s)(2) the

other two terms are zero as well. If case I.(`s)(2) occurs at k for the first time, ˙̀̃(k−1) ≤
˙̀(k) = ` < `′′ and s̃(k−1) ≥ `′′, so that again p(k)

`′′−1( ˙̃ν) = 0 as claimed.

Finally, if `′′′ > `′′ we need to show that p(k)
`′′′−1( ˙̃ν) = 0. The vacancy numbers change

as p(k)
`′′′−1( ˙̃ν) = p

(k)
`′′′−1 − χ( ˙̀̃(k+1) < `′′′) + χ(˜̀(k−1) ≥ `′′′) = 0 − 1 + 1 = 0 by the

details of the proof of Lemma 1.1.
Selected strings, case II.(1). The string (˜̀(k), 0) is mapped to a string of length ˜̀(k) − 1
under both δ̃ ◦ δ and δ ◦ δ̃. The singular string of length ṡ(k) is mapped to a singular string
of length ṡ(k) − 1 under both δ̃ ◦ δ and δ ◦ δ̃.

Finally, the string (`, 0) is mapped to a singular string of length `− 2 under δ ◦ δ̃ and a
string of label 0 of length `− 2 under δ̃ ◦ δ. Hence we need to show that p(k)

`−2( ˙̃ν) = 0. By

the change in vacancy number p(k)
`−2( ˙̃ν) = p

(k)
`−2−χ(s̃(k+1) ≤ `− 2)−χ( ˙̀̃(k−1) ≤ `− 2).

If p(k)
`−1 = 0, then m

(k)
`−1 = 0 and hence by (1.1) p(k)

`−2 = 0. Otherwise by (1.24)

p
(k)
`−1 = 1, s̃(k+1) < ` and ˙̀(k−1) < `. In this case m(k)

`−1 = 0 since else δ̃ or δ would pick
a string of length `− 1 in (ν, J)(k). Hence by (1.1)

(1.33) m
(k−1)
`−1 +m

(k+1)
`−1 + p

(k)
`−2 + p

(k)
` ≤ 2.

If p(k)
`−2 = 0, then also p(k)

`−2( ˙̃ν) = 0 and we are done. Assume that p(k)
`−2 = 1. We need to

show that either s̃(k+1) ≤ `−2 or ˙̀(k−1) ≤ `−2, so that p(k)
`−2( ˙̃ν) = 0 as required. Suppose

that s̃(k+1) > ` − 2 and ˙̀(k−1) > ` − 2, which implies that s̃(k+1) = ˙̀(k−1) = ` − 1.
But by (1.33) either m(k−1)

`−1 = 0 or m(k+1)
`−1 = 0 which yields a contradiction. Next

assume that p(k)
`−2 = 2. In this case (1.33) implies that m(k−1)

`−1 = m
(k+1)
`−1 = 0, so that

s̃(k+1), ˙̀(k−1) ≤ `−2. Hence p(k)
`−2( ˙̃ν) = p

(k)
`−2−χ(s̃(k+1) ≤ `−2)−χ( ˙̀̃(k−1) ≤ `−2) = 0

as required.
Selected strings, case II.(2). The selected string (˜̀(k), 0) is mapped to a string of length
˜̀(k) − 1 with label 0 under both δ ◦ δ̃ and δ̃ ◦ δ. The selected singular string of length ṡ(k)

is mapped to a singular string of length ṡ(k) − 1 under both δ ◦ δ̃ and δ̃ ◦ δ. The selected
singular string of length ˙̀(k) = ˙̀̃(k) is mapped to a singular string of length ˙̀(k) − 1, and
the selected string of length s̃(k) = ˜̇s(k) with label 0 is mapped to a string of length s̃(k)−1
with label 0 under both δ ◦ δ̃ and δ̃ ◦ δ.
Selected strings, case II.(3)(i). The argument for the selected strings of length ˜̀(k) = ˜̀̇(k)

and ṡ(k) = ˙̃s(k) is the same as in the previous cases. To show that the selected strings of
length ` = ˙̀(k) = s̃(k) obtain the same label under δ ◦ δ̃ and δ̃ ◦ δ, it suffices to show that
p
(k)
`−1(˜̇ν) = 0. By the change in vacancy numbers

(1.34) p
(k)
`−1(˜̇ν) = p

(k)
`−1 − χ( ˙̀(k−1) ≤ `− 1)− χ(˜̇s(k+1) ≤ `− 1)

and by (1.1)

(1.35) p
(k)
`−1 + p

(k)
`+1 +m

(k−1)
` +m

(k+1)
` ≤ 2.

Hence p(k)
`−1 ≤ 2. If p(k)

`−1 = 0, then by (1.34) and the nonnegativity of the vacancy numbers

also p(k)
`−1(˜̇ν) = 0. If p(k)

`−1 = 1, by (1.34) ˙̀(k−1) = ` or s̃(k+1) = ` which requires

m
(k−1)
` = 1 or m(k+1)

` = 1. By (1.35) this implies that m(k+1)
` = 0 or m(k−1)

` = 0 so that
s̃(k+1) ≤ `− 1 or ˙̀(k−1) ≤ `− 1. By (1.34) in turn we have p(k)

`−1(˜̇ν) = 0. If p(k)
`−1 = 2, we
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must have m(k−1)
` = m

(k+1)
` = 0 by (1.35). Hence ˜̇s(k+1), ˙̀(k−1) ≤ ` − 1 and by (1.35)

p
(k)
`−1(˜̇ν) = 0.

Let `′ = ˙̀̃(k) = ˜̇s(k). To show that the selected strings of length `′ obtain the same
label under δ ◦ δ̃ and δ̃ ◦ δ, it suffices to show that p(k)

`′−1( ˙̃ν) = 0. Since p(k)
`′−1 = 0,

we have p(k)
`′−1( ˙̃ν) = χ(s̃(k−1) ≥ `′) − χ( ˙̀̃(k−1) < `′). Two cases can hold. Either

s̃(k−1) ≥ ˜̇s(k) = `′ and case II.(3)(i) does not hold at k − 1 so that ˙̀̃(k−1) ≤ ˙̀(k) = `. In
this case p(k)

`′−1( ˙̃ν) = χ(s̃(k−1) ≥ `′)−χ( ˙̀̃(k−1) < `′) = 1−1 = 0 as required. Otherwise

case II.(3)(i) holds at k − 1 so that ˜̇s(k−1) = ˙̀̃(k−1) = `′ and s̃(k−1) = ` < `′, so that
p
(k)
`′−1( ˙̃ν) = χ(s̃(k−1) ≥ `′)− χ( ˙̀̃(k−1) < `′) = 0− 0 = 0.

Selected strings, case II.(3)(ii). The proof for the selected strings of length ˜̀(k) = ˜̀̇(k)

and ˙̀(k) = s̃(k) = ` is the same as for case II.(3)(i). The selected string of length ṡ(k) =
˙̀̃(k) = `′ is mapped to a singular string of length `′ − 1 under both δ ◦ δ̃ and δ̃ ◦ δ. To
show that the selected string of length ˜̇s(k) = ˙̃s(k) = `′′ obtains the same label under
δ ◦ δ̃ and δ̃ ◦ δ it needs to be shown that p(k)

`′′−1( ˙̃ν) = 0. Since p(k)
`′′−1 = 0, we have

p
(k)
`′′−1( ˙̃ν) = χ(s̃(k−1) ≥ `′′)− χ( ˙̃s(k+1) < `′′). Since case II.(3) cannot occur before case

II.(3)(ii), it follows from (1.3) that s̃(k−1) ≥ ˜̇s(k) = ˙̃s(k) = `′′. By induction either case
II.(3)(i) holds at k+1 in which case ˙̃s(k+1) = ṡ(k+1) = `′ < `′′ or ˙̃s(k+1) ≤ ṡ(k) = ` < `′′.
Hence p(k)

`′′−1( ˙̃ν) = χ(s̃(k−1) ≥ `′′)− χ( ˙̃s(k+1) < `′′) = 1− 1 = 0 as required.
Unselected strings. For the rest of the proof, assume that (i, x) is a string in (ν, J)(k) that
is not selected by δ or δ̃, and is such that its image under δ̃ (resp. δ) is not selected by δ
(resp. δ̃).

Using the fact that δ preserves labels and δ̃ preserves colabels, it is enough to show that

(1.36) p
(k)
i (ν)− p(k)

i (ν̃) = p
(k)
i (ν̇)− p(k)

i (˜̇ν),

which by the change in vacancy numbers is equivalent to

χ(˜̀(k−1) ≤ i < ˜̀(k))− χ(˜̀(k) ≤ i < ˜̀(k+1))

+χ(s̃(k+1) ≤ i < s̃(k))− χ(s̃(k) ≤ i < s̃(k−1))

=χ(˜̀̇(k−1) ≤ i < ˜̀̇(k))− χ(˜̀̇(k) ≤ i < ˜̀̇(k+1))

+χ(˜̇s(k+1) ≤ i < ˜̇s(k))− χ(˜̇s(k) ≤ i < ˜̇s(k−1)).

(1.37)

Consider the functions

∆(k)
i = χ(˜̀(k) ≤ i)− χ(˜̀̇(k) ≤ i) ∇(k)

i = χ(s̃(k) ≤ i)− χ(˜̇s(k) ≤ i)

b
−(k)
i = χ(m(k+1)

i > 0)∆(k)
i c

−(k)
i = χ(m(k+1)

i > 0)∇(k)
i

b
=(k)
i = χ(m(k)

i > 0)∆(k)
i c

=(k)
i = χ(m(k)

i > 0)∇(k)
i

b
+(k)
i = χ(m(k−1)

i > 0)∆(k)
i c

+(k)
i = χ(m(k−1)

i > 0)∇(k)
i .

For parts i that occur in ν(k), (1.37) is implied by the following two equations:

b
−(k−1)
i − b=(k)

i = b
=(k)
i − b+(k+1)

i ,(1.38)

c
−(k−1)
i − c=(k)

i = c
=(k)
i − c+(k+1)

i .(1.39)
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It will be shown that

b
−(k)
i = b

=(k)
i = b

+(k)
i = 0(1.40)

c
−(k)
i = c

=(k)
i = c

+(k)
i = 0(1.41)

for unselected strings in ν(k+1), ν(k) and ν(k−1), respectively. For cases I.(`a), I.(`b)(2),
II.(1-3) equation (1.40) is true since ˜̀(k) = ˜̀̇(k). Similarly for cases I.(sa), I.(sb)(2),
II.(2), II.(1’)(2’) and (3’)(i) equation (1.41) is true since s̃(k) = ˜̇s(k) holds. Up to minor
modifications the proof of (1.40) for cases I.(`b)(1) and I.(`b)(3) and of (1.41) for cases
I.(sb)(1) and I.(sb)(3) is the same as in [1, Appendix A]. Also note that since p(k)

i (˜̇ν) =
p
(k)
i ( ˙̃ν) (1.36) is equivalent to p(k)

i (ν)−p(k)
i (ν̇) = p

(k)
i (ν̃)−p(k)

i ( ˙̃ν), which, in terms of the
arguments, just means interchanging dot and tilde everywhere. Hence the proof of (1.40)
for cases II.(1’-3’) and I.(`s)(1’) follows from cases II.(1-3) and I.(`s)(1). Similarly, the
proof of (1.41) for cases II.(1-3) and I.(`s)(1’) follows from the proof for cases II.(1’-3’)
and I.(`s)(1). Hence it remains to prove (1.40) for cases I.(`s)(1),(2) and (1.41) for cases
I.(`s)(1),(2) and II.(3’)(ii).
Unselected strings, (1.40). Let us first focus on (1.40) in case I.(`s)(1). Note that ∆(k)

i =
χ(` ≤ i < `′′) and by the proof of case I.(`s)(1) m(k−1)

j = m
(k)
j = m

(k+1)
j = 0 for

` < j < `′ and `′ < j < `′′. By the proof of case I.(`s)(1) we have m(k+1)
`′ = 2 and

˙̀(k+1) = ṡ(k+1) = `′ so that both strings of length `′ are selected. Similarly, 1 ≤ m
(k)
`′ ≤

2, ṡ(k) = `′ and ˙̀(k) = `′ if m(k)
`′ = 2. Hence again all strings of length `′ are selected

in ν(k). Finally 0 ≤ m
(k−1)
`′ ≤ 2. If m(k−1)

`′ = 2, then by the proof of lemma 1.1 case
I.(`s)(1) holds at k− 1 and ˙̀(k−1) = ṡ(k−1) = `′. If m(k−1)

`′ = 1, then case I.(`s)(1) holds
at k − 1 for the first time and ṡ(k−1) = `′. Hence again, all strings of length `′ in (ν, J)(k)

are selected. This implies that

b
−(k)
i = χ(i = `)χ(m(k+1)

i > 0)

b
=(k)
i = χ(i = `)χ(m(k)

i > 0)

b
+(k)
i = χ(i = `)χ(m(k−1)

i > 0).

(1.42)

Note that either ` = `′, in which case the above arguments already show that all strings
are selected, or ` < `′ and case I.(`s)(1) occurs at k for the first time. In the latter case
m

(k)
` = 1 and ˙̀(k) = ˜̀(k) = ` so that the string of length ` in ν(k) is selected. If ` < `′ and

case I.(`s)(1) holds at k for the first time, equation (1.11) must hold and hence by (1.15)
m

(k+1)
` = 0 so that b−(k)

i = 0 for all unselected strings i. The proof that b+(k)
i = 0 for all

unselected strings i is very similar to the proof [1, Appendix A, Unselected strings, case
3].

Next consider (1.40) for the case I.(`s)(2). In this case ∆(k)
i = χ(` ≤ i < `′′) and

m
(k−1)
j = m

(k)
j = m

(k+1)
j = 0 for ` < j < `′ and `′ < j < `′′. By the same arguments as

in case I.(`s)(1) all existing strings of length `′ are selected. Hence (1.42) holds. Again ei-
ther ` = `′, in which case the previous arguments already show that all strings are selected,
or ` < `′ and case I.(`s)(2) occurs at k for the first time. In the latter case m(k)

` = 1 and
˙̀(k) = ˜̀(k) = ` so that the string of length ` in ν(k) is selected. If ` < `′ and case I.(`s)(2)
holds at k for the first time, equation (1.11) must hold and hence by (1.15) m(k+1)

` = 0
so that b−(k)

i = 0 for all unselected strings i. The proof that b+(k)
i = 0 for all unselected

strings i is very similar to the proof [1, Appendix A, Unselected strings, case 3].
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Unselected strings, (1.41). Consider (1.41) for the case I.(`s)(1). We have s̃(k) = ˜̇s(k)

so that ∇(k)
i = 0 unless ˜̀̇(k) = s̃(k) = s̃(k+1) = `′′, ˙̃s(k) = ˜̇s(k) = `′′′, m(k−1)

`′′ = 0,
m

(k)
`′′ = 1 andm(k+1)

`′′ = 2 if case I.(`s)(1) does not hold at k−1. In the former case (1.41)
holds. In the latter case ∇(k)

i = χ(`′′ ≤ i < `′′′) and m(k−1)
j = m

(k)
j = m

(k+1)
j = 0 for

`′′ < j < `′′′. Hence

c
−(k)
i = χ(i = `′′)χ(m(k+1)

`′′ > 0)

c
=(k)
i = χ(i = `′′)χ(m(k)

`′′ > 0)

c
+(k)
i = χ(i = `′′)χ(m(k−1)

`′′ > 0) = 0.

Since m(k)
`′′ = 1 and s̃(k) = `′′ the string of length `′′ is selected. Similarly m(k)

`′′ = 2,
s̃(k+1) = `′′ and either ˜̇s(k+1) = `′′ if case I.(`s)(1) holds at k + 1 or ˜̀(k+1) = `′′

otherwise. In either case both strings of length `′′ are selected in ν(k+1). This proves
(1.41).

Next consider (1.41) for the case I.(`s)(2). In this case ∇(k)
i = χ(`′ ≤ i < `′′′) and by

the proof of lemma 1.1 m(k−1)
j = m

(k)
j = m

(k+1)
j = 0 for `′ < j < `′′ and `′′ < j < `′′′.

The strings of lengths `′ and `′′ in ν(k+1) are all selected since by the proof of lemma 1.1
m

(a)
`′ = m

(a)
`′′ = 2 for k < a ≤ n − 2, m(n−1)

`′ = m
(n)
`′ = m

(n−1)
`′′ = m

(n)
`′′ = 1

and ˜̀(k+1) = s̃(k+1) = `′ and ˜̀̇(k+1) = ˜̇s(k+1) = `′′. Similarly, either m(k)
`′ = 2 and

˜̀(k) = s̃(k) or m(k)
`′ = 1 and ˜̀(k) = `′. This shows that all strings of lengths `′ are selected

in ν(k). Also, either m(k)
`′′ = 2 and ˜̀̇(k) = ˜̇s(k) or m(k)

`′′ = 1 and ˜̀̇(k) = `′. This shows that
all strings of lengths `′′ are selected in ν(k). To show that all strings of length `′ in ν(k−1)

are selected, observe that either m(k−1)
`′ = 0, m(k−1)

`′ = 1 and s̃(k−1) = `′ or m(k−1)
`′ = 2

and ˜̀(k−1) = s̃(k−1) = `′. Similarly, to show that all strings of length `′′ in ν(k−1) are
selected, observe that either m(k−1)

`′′ = 0, m(k−1)
`′′ = 1 and ˜̀̇(k−1) = `′′ or m(k−1)

`′′ = 2 and
˜̀̇(k−1) = ˜̇s(k−1) = `′′.

Finally consider (1.41) for the case II.(3’)(ii). Set ` = ˜̀(k) = ṡ(k), `′ = s̃(k) = ˜̀̇(k) and
`′′ = ˙̃s(k) = ˜̇s(k). From the proof of lemma 1.1 it follows that m(k−1)

`′ = 0, m(k)
`′ = 1,

m
(k+1)
`′ = 2 and m(k−1)

j = m
(k)
j = m

(k+1)
j = 0 for `′ < j < `′′. Since ∇(k)

i = χ(`′ ≤
i < `′′) we have

c
−(k)
i = χ(i = `′)χ(m(k+1)

`′ > 0)

c
=(k)
i = χ(i = `′)χ(m(k)

`′ > 0)

c
+(k)
i = χ(i = `′)χ(m(k−1)

`′ > 0) = 0.

The single string of length `′ in ν(k) is selected, so that c=(k)
i = 0 for all unselected strings

i. Furthermore, if case II.(3’)(i) holds at k+ 1, then `′ = s̃(k+1) = ˜̇s(k+1) = ˜̀̇(k+1) so that
both strings of length `′ in ν(k+1) are selected. Otherwise ˜̀(k+1) = `′ = s̃(k+1) and again
both strings of length `′ in ν(k+1) are selected. �
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