SUPPLEMENTARY NOTES ON "A BIJECTION BETWEEN TYPE $D_n^{(1)}$ CRYSTALS AND RIGGED CONFIGURATIONS"

ANNE SCHILLING

These notes supplement [2, Appendix C].

1. Proof of $[\delta, \tilde{\delta}] = 0$

One may easily verify that (see also [1, Eq. (3.10)])

(1.1)
$$-p_{i-1}^{(a)} + 2p_i^{(a)} - p_{i+1}^{(a)} = -\sum_{b \in J} (\alpha_a \mid \alpha_b) \, m_i^{(b)} + L_i^a$$
$$\geq -\sum_{b \in J} (\alpha_a \mid \alpha_b) \, m_i^{(b)},$$

The proof of $[\delta, \tilde{\delta}] = 0$ is given here by Lemmas 1.1 and 1.2 below. We rely here heavily on [1, Appendix A].

Let $(\nu, J) \in \mathrm{RC}(\lambda, B)$ where $B = (B^{1,1})^{\otimes 2} \otimes B'$. The following notation is used:

$$\begin{split} \delta(\nu,J) &= (\dot{\nu},J) \\ \tilde{\delta}(\nu,J) &= (\tilde{\nu},\tilde{J}) \\ \tilde{\delta} \circ \delta(\nu,J) &= (\tilde{\nu},\tilde{J}) \\ \delta \circ \tilde{\delta}(\nu,J) &= (\dot{\tilde{\nu}},\dot{\tilde{J}}). \end{split}$$

Furthermore, let $\{\dot{\ell}^{(k)}, \dot{s}^{(k)}\}, \{\tilde{\ell}^{(k)}, \tilde{s}^{(k)}\}, \{\tilde{\ell}^{(k)}, \tilde{s}^{(k)}\}\$ and $\{\dot{\ell}^{(k)}, \dot{\bar{s}}^{(k)}\}\$ be the lengths of the strings that are shortened in the transformations $(\nu, J) \mapsto (\dot{\nu}, \dot{J}), (\nu, J) \mapsto (\tilde{\nu}, \tilde{J}), (\dot{\nu}, \tilde{J})$

Lemma 1.1. The following cases occur at $(\nu, J)^{(k)}$:

- I. Nontwisted case. In this case the ℓ -string selected by δ (resp. $\tilde{\delta}$) in $(\nu, J)^{(k)}$ is different from the s-string selected by $\tilde{\delta}$ (resp. δ) in $(\nu, J)^{(k)}$. For the ℓ -strings one of the following must hold:
 - (la) Generic case. If δ and $\tilde{\delta}$ do not select the same ℓ -string, then $\dot{\tilde{\ell}}^{(k)} = \dot{\ell}^{(k)}$ and $\tilde{\tilde{\ell}}^{(k)} = \tilde{\ell}^{(k)}$.
 - (*l*b) **Doubly singular case.** In this case δ and $\tilde{\delta}$ select the same *l*-string, so that $\ell^{(k)} = \tilde{\ell}^{(k)} =: \ell$. Then
 - (1) If $\tilde{\ell}^{(k)} < \ell$ (or $\tilde{\ell}^{(k)} < \ell$) then $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell 1$ and $m_{\ell-1}^{(k+1)} = 0$ for k < n-2, $m_{\ell-1}^{(n-1)} = m_{\ell-1}^{(n)} = 0$ for k = n-2 and $m_{\ell-1}^{(n-2)} = 0$ for k = n-1, n.
 - (2) If $\tilde{\ell}^{(k)} = \ell$ (or $\dot{\tilde{\ell}}^{(k)} = \ell$) then case I.(ℓs)(1') (or I.(ℓs)(1)) holds or $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell$.

- (3) If $\tilde{\ell}^{(k)} > \ell$ (or $\dot{\tilde{\ell}}^{(k)} > \ell$) then case I.(ℓs)(1',2) (or I.(ℓs)(1,2)) holds or $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$ and $\tilde{\ell}^{(k)} \le \tilde{\ell}^{(k+1)}$, $\dot{\tilde{\ell}}^{(k)} \le \dot{\ell}^{(k+1)}$ for k < n-2, $\tilde{\ell}^{(n-2)} \le \min{\{\tilde{\ell}^{(n-1)}, \tilde{\ell}^{(n)}\}}$, $\dot{\tilde{\ell}}^{(n-2)} \le \min{\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\}}$ for k = n-2, and $\tilde{\ell}^{(k)} \le \tilde{s}^{(n-2)}$, $\dot{\tilde{\ell}}^{(k)} \le \dot{s}^{(n-2)}$ for k = n-1, n.
- For the s-strings, case $I.(\ell s)$ holds or one the following must hold:
- (sa) Generic case. If δ and $\tilde{\delta}$ do not select the same s-string, then $\dot{\tilde{s}}^{(k)} = \dot{s}^{(k)}$ and $\tilde{\tilde{s}}^{(k)} = \tilde{s}^{(k)}$.
- (sb) **Doubly singular case.** In this case δ and $\tilde{\delta}$ select the same s-string, so that $\dot{s}^{(k)} = \tilde{s}^{(k)} =: s$. Then
 - (1) If $\tilde{s}^{(k)} < s$ (or $\dot{\tilde{s}}^{(k)} < s$) then $\tilde{\tilde{s}}^{(k)} = \dot{\tilde{s}}^{(k)} = s 1$ and $m_{s-1}^{(k-1)} = 0$.
 - (2) If $\tilde{\dot{s}}^{(k)} = s$ (or $\dot{\tilde{s}}^{(k)} = s$) then $\tilde{\dot{s}}^{(k)} = \dot{\tilde{s}}^{(k)} = s$.
 - (3) If $\tilde{s}^{(k)} > s$ (or $\tilde{s}^{(k)} > s$) then $\tilde{s}^{(k)} = \dot{s}^{(k)}$, $\tilde{s}^{(k)} \le \tilde{s}^{(k-1)}$ and $\dot{s}^{(k)} \le \tilde{s}^{(k-1)}$.
- (ls) *Mixed case.* One of the following holds:

 - (1') $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} =: \ell, \ \tilde{\ell}^{(k)} = \tilde{s}^{(k)} = \tilde{\ell}^{(k+1)} =: \ell', \ \dot{\ell}^{(k)} = \tilde{s}^{(k)} =: \ell'', \ \dot{s}^{(k)} = \dot{s}^{(k)} \text{ or possibly the same conditions for } \ell \text{ and } \ell', \ \dot{\ell}^{(k)} = \dot{s}^{(k)} = \dot{s}^{(k+1)} = \ell'', \ \tilde{s}^{(k)} = \dot{s}^{(k)} = \ell''', \ m_{\ell''}^{(k-1)} = 0, \ m_{\ell''}^{(k)} = 1, \ m_{\ell''}^{(k+1)} = 2 \text{ if } case \ I.(\ell s)(1') \text{ does not hold at } k-1. Furthermore, either \ \dot{\ell}^{(k)} \leq \dot{\ell}^{(k+1)} \text{ or } case \ I.(\ell s)(1') \text{ holds at } k+1 \text{ with the same values of } \ell' \text{ and } \ell''. Similarly, either \ \tilde{s}^{(k)} \leq \tilde{s}^{(k-1)} \text{ or } case \ I.(\ell s)(1') \text{ holds at } k-1 \text{ with } the same values of } \ell' \text{ and } \ell''.$
 - (2) For k < n-2 (resp. k = n-2) $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} =: \ell$, $\dot{s}^{(k)} = \tilde{s}^{(k)} = \dot{s}^{(k+1)} = \tilde{s}^{(k+1)} =: \ell'$ (resp. $\dot{s}^{(k)} = \tilde{s}^{(k)} = \dot{\ell}^{(n-1)} = \dot{\ell}^{(n)} = \tilde{\ell}^{(n)} = \tilde{\ell}^{(n-1)} = \tilde{\ell}^{(n)} = \ell'$), $\dot{\tilde{\ell}}^{(k)} = \tilde{\ell}^{(k)} = \ell''$, $\dot{\tilde{s}}^{(k)} = \tilde{s}^{(k)} := \ell'''$ and case $I.(\ell s)(2)$ holds at k + 1 (resp. n-1 and n) with the same values of ℓ' and ℓ'' and $\ell = \ell'$, $\ell''' = \ell''$. Also, either $\tilde{s}^{(k)} \leq \tilde{s}^{(k-1)}$ and $\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)}$ or case $I.(\ell s)(2)$ holds at k-1 with the same values of ℓ' and ℓ'' . For $k = n-1, n, \ \dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \dot{s}^{(n-2)} = \tilde{s}^{(n-2)} = \ell'$ and $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell''$. In addition case $I.(\ell s)(2)$ holds at n-2 with the same values of ℓ' and ℓ'' .
- II. **Twisted case.** In this case the ℓ -string in $(\nu, J)^{(k)}$ selected by δ is the same as the s-string selected by $\tilde{\delta}$ or vice versa. In the first case $\dot{\ell}^{(k)} = \tilde{s}^{(k)} =: \ell$. Then $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$ and one of the following holds:
 - (1) If $\tilde{\ell}^{(k)} < \ell$, then $\tilde{\ell}^{(k)} = \tilde{s}^{(k)} = \ell 1$, $m_{\ell-1}^{(k+1)} = 0$ or $m_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$, and $m_{\ell-1}^{(k-1)} = 0$ or $m_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$. Furthermore $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$.
 - (2) If $\dot{\tilde{\ell}}^{(k)} = \ell$, then $\dot{\tilde{\ell}}^{(k)} = \tilde{s}^{(k)} = \ell$ and $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$.
 - (3) If $\tilde{\ell}^{(k)} > \ell$, then

(i) $\tilde{\ell}^{(k)} = \tilde{s}^{(k)}$ and $\dot{s}^{(k)} = \dot{s}^{(k)}$, or (ii) $\tilde{\ell}^{(k)} = \dot{s}^{(k)}$ and $\tilde{s}^{(k)} = \dot{s}^{(k)} \le \dot{s}^{(k-1)}$. Furthermore, either $\tilde{\ell}^{(k)} \le \dot{\ell}^{(k+1)}$ or $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$, $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$, $m_{\ell}^{(k+1)} = 1$ 1 and Case II.(3)(i) holds at k + 1. Similarly, either $\tilde{s}^{(k)} \le \tilde{s}^{(k-1)}$ or $\dot{\ell}^{(k)} = \dot{\ell}^{(k-1)}$, $\dot{\ell}^{(k)} = \dot{\ell}^{(k-1)}$, $m_{\ell}^{(k-1)} = 1$ and Case II.(3) holds at k - 1. If the ℓ -string in $(\nu, J)^{(k)}$ selected by $\tilde{\delta}$ is the same as the s-string selected by δ , then $\tilde{\ell}^{(k)} = \dot{s}^{(k)} = : \ell$. In this case $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ and one of the following holds: (1') If $\tilde{\ell}^{(k)} < \ell$, then $\tilde{\ell}^{(k)} = \dot{s}^{(k)} = \ell - 1$, $m_{\ell-1}^{(k+1)} = 0$ or $m_{\ell-1}^{(k+1)}(\dot{\nu}) = 0$, and $m_{\ell-1}^{(k-1)} = 0$ or $m_{\ell-1}^{(k-1)}(\tilde{\nu}) = 0$. Furthermore $\tilde{s}^{(k)} = \tilde{s}^{(k)}$. (2') If $\tilde{\ell}^{(k)} > \ell$, then $\tilde{\ell}^{(k)} = \dot{s}^{(k)} = \ell$ and $\tilde{s}^{(k)} = \tilde{s}^{(k)}$. (3') If $\tilde{\ell}^{(k)} > \ell$, then (i) $\tilde{\ell}^{(k)} = \dot{s}^{(k)}$ and $\dot{s}^{(k)} = \tilde{s}^{(k)}$, or (ii) $\tilde{\ell}^{(k)} = \tilde{s}^{(k)}$ and $\dot{s}^{(k)} = \tilde{s}^{(k)}$, or (ii) $\tilde{\ell}^{(k)} = \tilde{s}^{(k)}$ and $\dot{s}^{(k)} = \tilde{s}^{(k-1)}$. Furthermore, either $\tilde{\ell}^{(k)} \le \tilde{\ell}^{(k+1)}$ or $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k+1)}$, $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k+1)}$, $m_{\ell}^{(k+1)} = 1$ and Case II.(3')(i) holds at k + 1. Similarly, either $\dot{s}^{(k)} \le \dot{s}^{(k-1)}$ or $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k-1)}$, holds at k - 1.

Lemma 1.2. $\tilde{\dot{J}} = \tilde{\ddot{J}}$.

Proof of Lemma 1.1. The proof proceeds by induction on k in the following way. For k = 0, 1, 2, ..., n the statements about the ℓ -strings are proved assuming that the statements about the ℓ -strings hold for i = 1, 2, ..., k - 1. The statements about the s-strings are proved by induction on k = n - 2, n - 3, ..., 1 assuming that the statements for all ℓ -strings and the s-strings for i = n - 2, n - 3, ..., k + 1 hold.

For the base case k = 0 we have $\dot{\ell}^{(0)} = \tilde{\ell}^{(0)} = \dot{\tilde{\ell}}^{(0)} = \dot{\tilde{\ell}}^{(0)} = 1$. Note that

(1.2)
$$\begin{aligned} \dot{\ell}^{(k)} &\leq \tilde{\ell}^{(k+1)} \\ \dot{\tilde{\ell}}^{(k)} &\leq \dot{\ell}^{(k+1)} \end{aligned} \text{ for } 1 \leq k < n-2, \qquad \begin{aligned} \dot{\ell}^{(n-2)} &\leq \min\{\tilde{\ell}^{(n-1)}, \tilde{\ell}^{(n)}\} \\ \dot{\tilde{\ell}}^{(n-2)} &\leq \min\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\} \end{aligned}$$

unless case I.(ℓs)(1),(1'),(2) or II.(3),(3') holds at k and k + 1. Similarly,

(1.3)
$$\begin{split} & \tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)} \\ & \dot{\ddot{s}}^{(k)} \leq \dot{s}^{(k-1)} \\ \end{split} \quad \text{for } 1 < k \leq n-2, \quad \begin{array}{l} \max\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\} \leq \tilde{s}^{(n-2)} \\ & \max\{\dot{\tilde{\ell}}^{(n-1)}, \dot{\tilde{\ell}}^{(n)}\} < \dot{s}^{(n-2)} \\ \end{array} \end{split}$$

unless case I.(ℓs)(1),(1'),(2) or II.(3),(3') holds at k and k - 1.

I. Nontwisted case. For this case many arguments go through as in the proof for type A as in [1, Appendix A]. Here we mainly point out the differences.

Case (ℓa). The proof of the generic case is very similar to the proof of the generic case for type A [1, Appendix A]. We focus here on $k \le n-2$. Observe that $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$ is obtained from $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ by the involution θ . Hence we only prove the latter. The singular string in $(\nu, J)^{(k)}$ of length $\dot{\ell}^{(k)}$ remains singular in passing to $(\tilde{\nu}, \tilde{J})^{(k)}$. Since $\dot{\tilde{\ell}}^{(k-1)} \le \dot{\ell}^{(k)}$ by (1.2), it follows that $\dot{\ell}^{(k)} \le \dot{\ell}^{(k)}$.

If $\dot{\tilde{\ell}}^{(k)} = \dot{\ell}^{(k)}$ we are done. By induction hypothesis, $\dot{\tilde{\ell}}^{(k)} \ge \dot{\tilde{\ell}}^{(k-1)} \ge \dot{\ell}^{(k-1)} - 1$. If $\dot{\ell}^{(k-1)} \le \dot{\tilde{\ell}}^{(k)} < \dot{\ell}^{(k)}$, this is only possible if the string selected by δ acting on $(\tilde{\nu}, \tilde{J})^{(k)}$ is a

string shortened by $\tilde{\delta}$ acting on $(\nu, J)^{(k)}$. This string in $(\tilde{\nu}, \tilde{J})^{(k)}$ has length either $\tilde{\ell}^{(k)} - 1$ or $\tilde{s}^{(k)} - 1$ and label 0. We show that this cannot occur. For this it suffices to show that

(1.4)
$$p_{\tilde{\ell}^{(k)}-1}^{(k)}(\tilde{\nu}) > 0$$
 if $\dot{\ell}^{(k-1)} < \tilde{\ell}^{(k)} \le \dot{\ell}^{(k)}$ and $\tilde{\ell}^{(k-1)} < \tilde{\ell}^{(k)}$

(1.5)
$$p_{\tilde{s}^{(k)}-1}^{(k)}(\tilde{\nu}) > 0$$
 if $\dot{\ell}^{(k-1)} < \tilde{s}^{(k)} \le \dot{\ell}^{(k)}$ and $\dot{\tilde{\ell}}^{(k-1)} < \tilde{s}^{(k)}$.

If $\dot{\ell}^{(k-1)} - 1 = \dot{\tilde{\ell}}^{(k)} < \dot{\ell}^{(k)}$, case I.(ℓ b)(1) or II.(1) occurs at k - 1, so that $m_{\dot{\ell}^{(k-1)}-1}^{(k)} = 0$ or $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu}) = 0$. Hence $\dot{\tilde{\ell}}^{(k)} = \dot{\ell}^{(k-1)} - 1$ can only occur if $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k-1)} = \dot{\ell}^{(k-1)}$ if case I.(ℓ b)(1) holds at k - 1 or $\tilde{s}^{(k)} = \tilde{s}^{(k-1)} = \dot{\ell}^{(k-1)}$ if case II.(1) holds at k - 1. To prove that this cannot happen it suffices to show that

(1.6)
$$p_{\tilde{\ell}(k)-1}^{(k)}(\tilde{\nu}) > 0$$
 if $m_{\tilde{\ell}(k-1)-1}^{(k)} = 0$ and $\dot{\ell}^{(k-1)} = \tilde{\ell}^{(k-1)} = \tilde{\ell}^{(k)} \le \dot{\ell}^{(k)}$

$$(1.7) p_{\tilde{s}^{(k)}-1}^{(k)}(\tilde{\nu}) > 0 \text{if } m_{\tilde{s}^{(k-1)}-1}^{(k)} = 0 \text{ and } \dot{\ell}^{(k-1)} = \tilde{s}^{(k-1)} = \tilde{s}^{(k)} \le \dot{\ell}^{(k)}.$$

Up to minor modifications, the proofs of (1.4)-(1.7) go through as the proofs of [1, (A.2) and (A.3)].

The cases k = n - 1 and k = n can be proven in a similar fashion.

Case $(\ell \mathbf{b})(\mathbf{1})$. The proof follows very closely the doubly singular case (1) in [1, Appendix A]. Again we assume that $k \leq n-2$. The cases k = n-1, n go through up to minor modifications. By assumption $\tilde{\ell}^{(k)} < \ell$. By the same arguments as in [1, Appendix A] it follows that $\tilde{\ell}^{(k)} = \ell - 1$ and $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$.

First we show that the cases $I_{\ell}(\ell s)(1),(1'),(2)$, $II_{\ell}(1'-3')$ cannot occur at k-1. If $II_{\ell}(1'-3')$ holds at k-1 and the conditions of $I_{\ell}(\ell b)(1)$ at k, then $\tilde{\ell}^{(k-1)} = \dot{s}^{(k-1)} = \tilde{\ell}^{(k)} = \dot{\ell}^{(k)} = \ell$. For case II.(1') at k-1, we have $\tilde{\ell}^{(k-1)} = \ell - 1$ so that $p_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$. Otherwise this yields a contradiction to the fact that $\tilde{\ell}^{(k-1)} = \ell$. But $p_{\ell-1}^{(k-1)}(\dot{\nu}) = p_{\ell-1}^{(k-1)} + \chi(\dot{\ell}^{(k-1)} \leq \ell - 1 < \dot{\ell}^{(k)}) = p_{\ell-1}^{(k-1)} + 1 \geq 1$. On the other hand for case II.(2'-3') $\tilde{\ell}^{(k)} \geq \tilde{\ell}^{(k-1)} \geq \tilde{\ell}^{(k-1)} = \ell$ which contradicts our assumptions that $\tilde{\ell}^{(k)} < \ell$. Case I.(ℓs)(2) at k-1 requires case I.(ℓs)(2) at k which contradicts our assumption. If I.(ℓs)(1) holds at k-1, then $\tilde{\ell}^{(k-1)} = \dot{\ell}^{(k-1)} \leq \ell$ and $\tilde{\ell}^{(k-1)} \geq \ell$ which contradicts our assumption that $\tilde{\ell}^{(k)} < \ell$.

The goal is to show that $\dot{\tilde{\ell}}^{(k)} = \ell - 1$. Since $\tilde{\ell}^{(k)} = \ell$, it follows that $m_{\ell-1}^{(k)}(\tilde{\nu}) \ge 1$. It suffices to show that $\dot{\tilde{\ell}}^{(k-1)} \le \ell - 1$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. By the same arguments as in [1, Appendix A] this implies that $\dot{\tilde{\ell}}^{(k)} = \ell - 1$. Note that, since $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$,

(1.8)
$$p_{\ell-1}^{(k)} = p_{\ell-1}^{(k)}(\tilde{\nu}) + \chi(\tilde{\ell}^{(k-1)} < \ell) = \chi(\dot{\ell}^{(k-1)} < \ell).$$

Suppose that $\dot{\ell}^{(k-1)} \geq \ell$. Now $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} = \ell - 1$ so $\tilde{\ell}^{(k-1)} \neq \dot{\ell}^{(k-1)}$. By induction case I.(ℓa) or II.(1-3) has to hold at k - 1 (since we showed before that cases I.(ℓs)(1),(1'),(2) and II.(1'-3') cannot occur). In case I.(ℓa) this yields a contradiction by the same reasoning as in [1, Appendix A]. In case II.(1-3) we have $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \tilde{\epsilon}^{(k-1)} = \ell$ and $\tilde{\ell}^{(k-1)} = \tilde{\ell}^{(k-1)} < \ell$ which yields a contradiction in the evaluation of (1.8). Hence $\dot{\ell}^{(k-1)} < \ell$.

Next suppose that $p_{\ell-1}^{(k)}(\tilde{\nu}) \geq 1$. Then by (1.8), $\tilde{\ell}^{(k-1)} \geq \ell$ and $\dot{\ell}^{(k-1)} \leq \ell - 1$. Since $\tilde{\ell}^{(k-1)} \neq \dot{\ell}^{(k-1)}$, by induction case I.(ℓa) or II.(1-3) holds at k-1. As before, cases II.(1-3) yield a contradiction in evaluating (1.8). For cases $L(\ell a)$ one obtains a contradiction as in [1, Appendix A]. Hence $\dot{\tilde{\ell}}^{(k-1)} < \ell$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$ which implies $\dot{\tilde{\ell}}^{(k)} = \tilde{\ell}^{(k)} = \ell - 1$. The proof that $m_{\ell-1}^{(k+1)} = 0$ is the same as in [1, Appendix A].

The case $\tilde{\ell}^{(k)} < \ell$ is obtained by the application by θ .

Case $(\ell \mathbf{b})(\mathbf{2})$. By assumption $\tilde{\ell}^{(k)} = \ell$, so that by case $I_{\ell}(\ell \mathbf{b})(1) \ \tilde{\ell}^{(k)} \geq \ell$. In addition $m_{\ell}^{(k)} \geq 2$ and $p_{\ell}^{(k)} = 0$. By (1.2) $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$ unless case I.(ℓs)(1') holds at k-1 and k. Since $m_{\ell}^{(k)} \ge 2$ and $p_{\ell}^{(k)} = 0$, we have $\dot{\tilde{\ell}}^{(k)} = \ell$ so that case I.(ℓ b)(2) holds, unless $\tilde{s}^{(k)} = \ell$ and $m_{\ell}^{(k)} = 2$.

Hence let us from now on assume that $\tilde{s}^{(k)} = \ell$ and $m_{\ell}^{(k)} = 2$. Note that in this case $k \leq n-2$. We will show that case I.(ℓs)(1') holds with $\ell = \ell'$. Note that $\dot{s}^{(k)} > \ell$, since by assumption $\tilde{\ell}^{(k)} = \ell$. Note that $m_{\ell}^{(k+1)} \ge 2$ since $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell$, and by (1.1)

$$p_{\ell-1}^{(k)} + p_{\ell+1}^{(k)} + m_{\ell}^{(k-1)} + (m_{\ell}^{(k+1)} - 2) \le 2 \qquad \text{for } k < n-2$$
$$p_{\ell-1}^{(n-2)} + p_{\ell+1}^{(n-2)} + m_{\ell}^{(n-3)} + (m_{\ell}^{(n-1)} + m_{\ell}^{(n)} - 2) \le 2.$$

By similar arguments as in the proof [1, Appendix A case (3)] of type A it follows that

(1.9)
$$p_{\ell+1}^{(k)} = 0$$

$$p_{\ell-1}^{(k)} = 2 - m_{\ell}^{(k-1)}$$

$$m_{\ell}^{(k+1)} = 2 \quad \text{for } k < n-2 \text{ or } \qquad m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 1 \quad \text{for } k = n-2$$

Let $\ell'' > \ell$ be minimal such that $m_{\ell''}^{(k)} > 0$. If no such ℓ'' exists, set $\ell'' = \infty$. By (1.1) it follows that $p_i^{(k)} = 0$ for $\ell \le i \le \ell''$ and $m_i^{(k-1)} = m_i^{(k+1)} = 0$ for $\ell < i < \ell''$. Hence $\dot{\tilde{\ell}}^{(k)} = \ell''$

First assume that $\dot{\ell}^{(k+1)} > \ell$. We write down the arguments for k < n-2. The case k = n - 2 is analogous. Note that then case I.(ℓa) and I.(sa) holds at k + 1 so that by induction $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k)} = \ell$. Since on the other hand $\ell = \dot{\ell}^{(k)} \leq \tilde{s}^{(k+1)}$, it follows that $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell$. Since $\tilde{s}^{(k+1)} = \ell$ and $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell$ and $m_{\ell}^{(k)} = 2$, it follows that $\tilde{s}^{(k)} > \ell$. Since $m_i^{(k)} = 0$ for $\ell < i < \ell''$ and $p_{\ell''}^{(k)} = 0$, we have $\tilde{s}^{(k)} = \ell''$ unless $\dot{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$. We deal with this case later. In addition, since $m_i^{(k+1)} = 0$ for $\ell < i < \ell''$, it follows that $\tilde{\ell}^{(k)} = \ell'' < \dot{\ell}^{(k+1)}$.

If $\dot{\ell}^{(k+1)} = \ell$, then $\tilde{\ell}^{(k+1)} = \ell$. (Note that in this case k < n-2, since for k = n-2we have $\dot{\ell}^{(n-1)} = \dot{\ell}^{(n)} = \ell$, which would imply that $\dot{s}^{(n-2)} = \ell$. However this contradicts $\tilde{\ell}^{(n-2)} = \ell$ since $m_{\ell}^{(n-2)} = 2$). Furthermore by (1.1), $m_i^{(k)} = m_i^{(k+1)} = 0$ for $\ell < i < \ell''$ and $m_{\ell''}^{(k)}, m_{\ell''}^{(k+1)} > 0$. By the same arguments as above $p_i^{(k+1)} = 0$ for $\ell \le i \le \ell''$, so that $\dot{\tilde{\ell}}^{(k+1)} = \ell''$. Hence case I.(ℓs)(1') holds at k+1 with the same values for $\ell = \ell'$ and ℓ'' . By induction $\tilde{s}^{(k+1)} = \ell''$, so that $\tilde{s}^{(k)} = \ell''$ as claimed unless again $\dot{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1.$

By (1.3) we have $\dot{\tilde{s}}^{(k+1)} \leq \dot{s}^{(k)}$ unless possibly case I.(ℓs)(1') holds at k and k + 1. However, if case I.(ℓs)(1') holds at k + 1 by induction $\dot{\tilde{s}}^{(k+1)} = \dot{s}^{(k+1)} \leq \dot{s}^{(k)}$. Hence by the definition of δ also $\dot{\tilde{s}}^{(k)} = \dot{s}^{(k)}$ unless $\dot{\tilde{s}}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$.

Suppose $\dot{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$. Then $\dot{\tilde{\ell}}^{(k)} = \dot{s}^{(k)} = \ell''$ and $\tilde{\tilde{\ell}}^{(k)} > \ell''$. Let $\ell''' > \ell''$ be minimal such that $m_{\ell'''}^{(k)} > 0$. By (1.1) with $p_{\ell''-1}^{(k)} = p_{\ell''}^{(k)} = 0$

(1.10)
$$m_{\ell''}^{(k-1)} + (m_{\ell''}^{(k+1)} - 2) + p_{\ell''+1}^{(k)} \le 2$$

Note that $m_{\ell''}^{(k+1)} \geq 2$. Assume that $m_{\ell''}^{(k+1)} = 1$ (since $\dot{s}^{(k)} = \ell''$ we must have $m_{\ell''}^{(k+1)} \geq 1$). Then by (1.1) $m_{\ell''}^{(a)} = 1$ for all $k \leq a \leq n-2$. However this is a contradiction to the fact that $\dot{\ell}^{(a)} = \dot{s}^{(a)} = \ell''$ for some $a \geq k$. This proves in particular that case I. $(\ell s)(1')$ cannot hold at k-1. Furthermore, by (1.10) $m_{\ell''}^{(k-1)} = 0$, $m_{\ell''}^{(k+1)} = 2$ and $p_{\ell''+1}^{(k)} = 0$. Using (1.1) once again this implies $p_i^{(k)} = 0$ for $\ell'' \leq i \leq \ell'''$, so that $\tilde{s}^{(k)} = \dot{s}^{(k)} = \ell'''$. Note that $m_i^{(k-1)} = 0$ for $\ell' < i < \ell'''$ in this case.

It remains to show that $\tilde{s}^{(k)} \leq \tilde{s}^{(k-1)}$ or case $I_{\cdot}(\ell s)(1')$ holds at k-1 with the same values of $\ell = \ell'$ and ℓ'' . Since $m_i^{(k-1)} = 0$ for $\ell < i < \ell''$ (resp. for $\ell < i < \ell'''$ in the special case that $\dot{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$), it follows that $\tilde{s}^{(k-1)} \geq \ell'' = \tilde{s}^{(k)}$ (resp. $\tilde{s}^{(k-1)} \geq \ell'' = \tilde{s}^{(k)}$) if $\tilde{s}^{(k-1)} > \ell$. Hence assume that $\tilde{s}^{(k-1)} = \ell$.

$$\begin{split} \tilde{s}^{(k-1)} \geq \ell^{\prime\prime\prime\prime} &= \tilde{s}^{(k)} \text{ if } \tilde{s}^{(k-1)} > \ell. \text{ Hence assume that } \tilde{s}^{(k-1)} = \ell. \\ \text{ If } \tilde{\ell}^{(k-1)} &= \ell, \text{ then } m_{\ell}^{(k-1)} \geq 2 \text{ and } \text{ by } (1.9) \ m_{\ell}^{(k-1)} = 2 \text{ and } p_{\ell-1}^{(k)} = 0. \text{ Let } v < \ell \text{ be maximal such that } m_v^{(k)} > 0. \text{ Then by } (1.1) \ m_i^{(k-1)} = m_i^{(k+1)} = 0 \text{ for } v < i < \ell \text{ and } p_i^{(k)} = 0 \text{ for } v \leq i \leq \ell. \text{ Hence, if } \ell^{(k-1)} < \ell, \text{ then } \ell^{(k-1)} \leq v \text{ and } \ell^{(k)} = v < \ell \text{ since } p_v^{(k)} = 0 \text{ which is a contradiction to our definition } \ell^{(k)} = \ell. \text{ Hence } \ell^{(k-1)} = \ell \text{ and case } \text{ I.}(\ell s)(1') \text{ holds at } k - 1 \text{ with the same value for } \ell = \ell'. \text{ Also } \ell'' \text{ is the same by } (1.1). \end{split}$$

I. $(\ell s)(1')$ holds at k - 1 with the same value for $\ell = \ell'$. Also ℓ'' is the same by (1.1). Next assume $\tilde{\ell}^{(k-1)} < \ell$. Then $m_{\ell}^{(k-1)} \ge 1$ and $0 \le p_{\ell-1}^{(k)} \le 1$ by (1.9). Note that $p_{\ell-1}^{(k)}(\dot{\nu}) = p_{\ell-1}^{(k)} - \chi(\dot{\ell}^{(k-1)} < \ell)$. If $\dot{\ell}^{(k-1)} < \ell$, this implies that $p_{\ell-1}^{(k)} = 1$ and $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$. By induction case I. must hold at k - 1 and $\tilde{\ell}^{(k-1)} \le \tilde{\ell}^{(k)} = \ell$. If $\tilde{\ell}^{(k-1)} < \ell$ this implies that $\tilde{\ell}^{(k)} \le \ell - 1$ which contradicts our assumption that $\tilde{\ell}^{(k)} = \ell$. The condition $\tilde{\ell}^{(k-1)} = \ell$ can only occur for case I.(ℓ b)(3) at k - 1. However, then $\dot{\ell}^{(k-1)} = \tilde{\ell}^{(k-1)} = \ell$ which contradicts $m_{\ell}^{(k-1)} = 1$. Hence $\dot{\ell}^{(k-1)} = \ell$. The case $p_{\ell-1}^{(k)} = 0$ yields a contradiction as before. Therefore $p_{\ell-1}^{(k)} = 1$ and $m_{\ell}^{(k-1)} = 1$ by (1.9), so that case II.(1-3) must hold at k - 1. Note that $p_{\ell-1}^{(k)}(\tilde{\nu}) = p_{\ell-1}^{(k)} - 1 = 0$. Hence if case II.(1) holds at k - 1, $\dot{\ell}^{(k-1)} = \ell - 1$ so that $\dot{\ell}^{(k)} = \ell - 1$ which contradicts our assumptions. For case II.(2) at k - 1 we must have $\dot{\ell}^{(k-1)} = \ell$ which however contradicts $m_{\ell}^{(k-1)} = 1$ and $\tilde{s}^{(k-1)} = \ell$. In case II.(3) we have $\dot{\ell}^{(k-1)} \geq \dot{\ell}^{(k-1)} = \ell$ which contradicts $\dot{\ell}^{(k-1)} = \ell$.

The case $\tilde{\ell}^{(k)} = \ell$ follows from the above by the application of θ .

Case $(\ell \mathbf{b})(\mathbf{3})$. By (1.2) either $\dot{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\tilde{\ell}^{(k-1)} \leq \dot{\ell}^{(k)}$ or case I. (ℓs) holds at k-1 and k. The latter case will be dealt with in the proof of case I. (ℓs) , hence we assume that $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$. We follow the proof for type $A_n^{(1)}$ in [1, Appendix A]. By the same arguments as for type A the assumption $m_{\ell}^{(k)} > 1$ leads to a contradiction unless $m_{\ell}^{(k)} = 2$ and $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \dot{s}^{(k)} = \tilde{s}^{(k)} = \ell$. Hence either

(1.11)
$$m_{\ell}^{(k)} = 1 \text{ for } k \le n \text{ or }$$

(1.12)
$$m_{\ell}^{(k)} = 2$$
 and $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \dot{s}^{(k)} = \tilde{s}^{(k)} = \ell$ for $k \le n-2$

If (1.11) holds, up to small modifications the arguments for type A yield:

(1.13)
$$p_{\ell+1}^{(k)} = 0$$
 for $k \le n$
(1.14) $p_{\ell-1}^{(k)} = 2 - m_{\ell}^{(k-1)}$ for $k \le n-1$, $p_{\ell-1}^{(n)} = 2 - m_{\ell}^{(n-2)}$ for $k = n$
(1.15) $m_{\ell}^{(k+1)} = 0$ for $k < n-2$ $m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 0$ for $k = n-2$.

If (1.12) holds, then by (1.1) we have

$$p_{\ell-1}^{(k)} + p_{\ell+1}^{(k)} + m_{\ell}^{(k-1)} + (m_{\ell}^{(k+1)} - 2) \le 2 \qquad \text{for } k < n-2$$
$$p_{\ell-1}^{(n-2)} + p_{\ell+1}^{(n-2)} + m_{\ell}^{(n-3)} + (m_{\ell}^{(n-1)} + m_{\ell}^{(n)} - 2) \le 2 \qquad \text{for } k = n-2$$

since $p_{\ell}^{(k)} = 0$. Up to small modifications, the type A proof yields that in this case

 $(1.16) p_{\ell+1}^{(k)} = 0$

(1.17)
$$p_{\ell+1} = 0$$

(1.17) $p_{\ell-1}^{(k)} = 2 - m_{\ell}^{(k-1)}$

(1.18)
$$m_{\ell}^{(k+1)} = 2$$
 for $k < n-2$, $m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 1$ for $k = n-2$.

Let ℓ' be minimal such that $\ell' > \ell$ and $m_{\ell'}^{(k)} > 0$. If no such ℓ' exists, set $\ell' = \infty$. By (1.13) (resp. (1.16)) $p_{\ell}^{(k)} = p_{\ell+1}^{(k)} = 0$ so that as a consequence of (1.1)

(1.19)
$$m_i^{(k)} = 0$$
 for $\ell < i < \ell'$

$$(1.20) p_i^{(k)} = 0 for \ \ell \le i \le \ell$$

(1.21)
$$m_i^{(k-1)} = m_i^{(k+1)} = 0$$
 for $\ell < i < \ell$

and $m_i^{(n)} = 0$ for $\ell < i < \ell'$ and k = n - 2. If $\ell' = \infty$, then $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \infty$ and, by (1.1) and (1.15) $m_i^{(k+1)} = 0$ for $i \ge \ell$, also $\tilde{\ell}^{(k+1)} = \tilde{\ell}^{(k+1)} = \infty$ so that Case I.(ℓ b)(3) holds.

Hence assume $\ell' < \infty$. Assume that (1.11) holds. Since $m_{\ell}^{(k)} = 1$ and $m_{i}^{(k)} = 0$ for $\ell < i < \ell'$ certainly $\dot{s}^{(k)} \ge \ell'$ and $\tilde{s}^{(k)} \ge \ell'$. First assume that $\dot{s}^{(k)} \ge \ell'$ and $\tilde{s}^{(k)} > \ell'$ or $m_{\ell'}^{(k)} > 1$. By the same arguments as in type A it follows that $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell' \leq \ell'$ $\dot{\ell}^{(k+1)}, \tilde{\ell}^{(k+1)}$ so that Case I.(ℓ b)(3) holds. Up to small modifications these arguments also go through for k = n - 1, n and yield $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} < \dot{s}^{(n-2)}, \tilde{s}^{(n-2)}$.

Next consider the case $\tilde{s}^{(k)} = \ell', \dot{s}^{(k)} > \ell'$ and $m_{\ell'}^{(k)} = 1$. This can only occur for $k \leq n-2$. We focus here on k < n-2. The case k = n-2 is obtained by minor notational changes. By induction we have $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} = \ell$. Since $\tilde{\ell}^{(k)} > \ell, m_i^{(k)} = 0$ for $\ell < i < \ell'$ and $p_{\ell'}^{(k)} = 0$ it follows that $\tilde{\ell}^{(k)} = \ell'$. Furthermore by (1.15) and (1.21) we also have $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \tilde{s}^{(k)} = \ell' = \tilde{\ell}^{(k)}$. This is the second string of equalities in case I.(ℓs)(1'). By (1.1) the conditions $m_{\ell'}^{(k)} = 1$ and $p_{\ell'}^{(k)} = 0$ imply

(1.22)
$$p_{\ell'-1}^{(k)} + p_{\ell'+1}^{(k)} + m_{\ell'}^{(k-1)} + m_{\ell'}^{(k+1)} \le 2.$$

But since $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell'$ we have $m_{\ell'}^{(k+1)} \ge 2$, so that by (1.22) $m_{\ell'}^{(k+1)} = 2$, $m_{\ell'}^{(k-1)} = 0$, $p_{\ell'-1}^{(k)} = p_{\ell'}^{(k)} = p_{\ell'+1}^{(k)} = 0$. Let $\ell'' > \ell'$ be minimal such that $m_{\ell''}^{(k)} > 0$. Then by (1.1) $p_i^{(k)} = 0$ for $\ell' \le i \le \ell''$ and $m_i^{(k)} = m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$. By case

I.(ℓ b)(1) we must have $\dot{\tilde{\ell}}^{(k)} \ge \ell$ and since $m_{\ell}^{(k)} = 1$ actually $\dot{\tilde{\ell}}^{(k)} > \ell$. Hence $\dot{\tilde{\ell}}^{(k)} = \ell''$. The condition $m_i^{(k+1)} = 0$ for $\ell \le i < \ell'$ implies that $\dot{\ell}^{(k+1)} \ge \ell'$.

Assume that $\hat{\ell}^{(k+1)} > \ell'$. Since $m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$ we obtain $\hat{\ell}^{(k+1)} \ge \ell'' = \hat{\ell}^{(k)}$. By induction case I.(ℓ a) and I.(sa) holds at k + 1, so that $\tilde{s}^{(k+1)} = \tilde{s}^{(k+1)} = \ell'$ and $\hat{s}^{(k+1)} = \hat{s}^{(k+1)}$. Since $m_{\ell'}^{(k)} = 1$, $m_i^{(k)} = 0$ for $\ell' < i < \ell''$ and $p_{\ell''}^{(k)} = 0$, it follows that $\tilde{s}^{(k)} = \ell''$ unless $\hat{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$. This case can be dealt with in the same way as in the proof of case I.(ℓ b)(2). Also $\hat{s}^{(k)} = \hat{s}^{(k)}$. Since $m_i^{(k-1)} = 0$ for $\ell' \le i < \ell''$, we have $\tilde{s}^{(k-1)} \ge \ell'' = \tilde{s}^{(k)}$. Hence Case I.(ℓ s)(1') holds.

Otherwise $\dot{\ell}^{(k+1)} = \ell'$. In this case by induction case I. $(\ell s)(1')$ holds at k + 1 since $\dot{\ell}^{(k+1)} = \tilde{\ell}^{(k+1)} = \tilde{\ell}^{(k+1)} = \tilde{\epsilon}^{(k+1)} = \tilde{\ell}^{(k+2)} = \ell'$ and $\ell' < \ell'' = \dot{\ell}^{(k)} \leq \dot{\ell}^{(k+1)}$. By (1.1) $m_i^{(k)} = m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$ and $m_{\ell''}^{(k)}, m_{\ell''}^{(k+1)} > 0$. Hence $\tilde{s}^{(k)} = \dot{\ell}^{(k)} = \tilde{s}^{(k+1)} = \dot{\ell}^{(k+1)} = \ell''$ unless again $\dot{s}^{(k)} = \ell''$ and $m_{\ell''}^{(k)} = 1$. Furthermore, by induction $\dot{s}^{(k+1)} = \dot{s}^{(k+1)}$, so that also $\dot{s}^{(k)} = \dot{s}^{(k)}$ by the definition of δ . Since $m_i^{(k-1)} = 0$ for $\ell' \leq i < \ell''$, we have $\tilde{s}^{(k-1)} \geq \ell'' = \tilde{s}^{(k)}$. Hence Case I. $(\ell s)(1')$ holds.

Now let $\dot{s}^{(k)} = \tilde{s}^{(k)} = \ell'$ and $m_{\ell'}^{(k)} = 1$. We will show that case I.(ℓs)(2) holds. By (1.15) and (1.21) we have $\tilde{\ell}^{(k+1)}, \dot{\ell}^{(k+1)} \geq \ell'$. Since on the other hand $\dot{s}^{(k)} = \tilde{s}^{(k)} = \ell'$, we must have $\tilde{\ell}^{(k+1)} = \dot{\ell}^{(k+1)} = \ell'$. This yields the second string of equalities in case I. $(\ell s)(2)$. Let $\ell'' > \ell'$ be minimal such that $m_{\ell''}^{(k)} > 0$. If no such ℓ'' exists set $\ell'' = \infty$. Inequality (1.22) holds again, and since $m_{\ell'}^{(k+1)} \ge 2$ due to the fact that $\tilde{s}^{(k+1)} = \tilde{\ell}^{(k+1)} =$ ℓ' , it follows that $m_{\ell'}^{(k-1)} = 0$, $m_{\ell'}^{(k+1)} = 2$ and $p_{\ell'}^{(k)} = p_{\ell'+1}^{(k)} = 0$. By the usual arguments $m_i^{(k-1)} = m_i^{(k)} = m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$ and $p_i^{(k)} = 0$ for $\ell' \le i \le \ell''$. Since case I.(ℓs)(2) cannot hold at k-1 since this would imply $m_{\ell'}^{(k)} \geq 2$, we have $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ and $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}$. Since $m_{\ell}^{(k)} = m_{\ell'}^{(k)} = 1$, $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell$, $\tilde{s}^{(k)} = \dot{s}^{(k)} = \ell'$ and $p_{\ell''}^{(k)} = 0$, we must have $\dot{\tilde{\ell}}^{(k)} = \tilde{\ell}^{(k)} = \ell''$. Recall that $m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$. Also $m_{\ell'}^{(k)} = 1$, $m_{\ell'}^{(k+1)} = 2$, so that by (1.1) with $i = \ell'$ and a = k + 1 we have $(m_{\ell'}^{(k+2)} - 2) + p_{\ell'-1}^{(k+1)} + p_{\ell'+1}^{(k+1)} \le 1$. Note that $p_{\ell'-1}^{(k+1)}(\tilde{\nu}) = p_{\ell'-1}^{(k+1)} - 1$ which implies that $p_{\ell'-1}^{(k+1)} \ge 1$. Hence together with the previous inequality $m_{\ell'}^{(k+2)} = 2$ and $p_{\ell'+1}^{(k+1)} = 0$. By the usual arguments involving (1.1) it follows that $p_i^{(k+1)} = 0$ for $\ell' \le i \le \ell''$. Hence $\dot{\tilde{\ell}}^{(k+1)} = \tilde{\tilde{\ell}}^{(k+1)} = \ell''$ and case I.(ℓs)(2) holds at k+1. By induction $\dot{\tilde{s}}^{(k+1)} = \tilde{\tilde{s}}^{(k+1)} = \ell''$, so that $\dot{\tilde{s}}^{(k)} = \tilde{\tilde{s}}^{(k)} = \ell''$ if $m_{\ell''}^{(k)} \ge 2$. If $m_{\ell''}^{(k)} = 1$, then let $\ell''' > \ell''$ be minimal such that $m_{\ell''}^{(k)} > 0$. Since $m_{\ell''}^{(k)} = 1$ and $m_{\ell''}^{(k+1)} = 2$ it follows by (1.1) that $m_{\ell''}^{(k-1)} = p_{\ell''+1}^{(k)} = 0$. Hence $p_i^{(k)} = 0$ for $\ell'' \le i \le \ell'''$ and $m_i^{(k-1)} = 0$ for $\ell'' < i < \ell'''$. This implies that $\dot{s}^{(k)} = \tilde{s}^{(k)} = \ell'''$. Furthermore, since $m_i^{(k-1)} = 0$ for $\ell' \le i < \ell'''$ it follows that $\tilde{s}^{(k-1)} \ge \ell''' = \tilde{s}^{(k)}$ and $\dot{s}^{(k-1)} \ge \ell''' = \dot{s}^{(k)}$. This concludes the proof that case I.(ℓs)(2) holds.

Finally assume that (1.12) holds. Suppose that case I.(ℓs)(2) does not hold at k-1. Then by induction $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ and by (1.19) and (1.20) $\tilde{\ell}^{(k)} = \dot{\tilde{\ell}}^{(k)} = \ell'$. If case I.(ℓs)(2) holds at k-1, then $\tilde{\ell}^{(k-1)} = \tilde{\ell}^{(k-1)} = \ell'$, so that also $\tilde{\ell}^{(k)} = \dot{\tilde{\ell}}^{(k)} = \ell'$. Note that by the restrictions imposed by (1.1) we also have $\tilde{\ell}^{(k+1)} = \dot{\tilde{\ell}}^{(k+1)} = \ell'$ so that case I.(ℓs)(2) holds at k+1. By induction $\tilde{s}^{(k+1)} = \dot{s}^{(k+1)} = \ell'$ which implies $\tilde{s}^{(k)} = \dot{\tilde{s}}^{(k)} = \ell'$ unless $m_{\ell'}^{(k)} = 1$. First assume that $m_{\ell'}^{(k)} \geq 2$. If $\dot{\ell}^{(k-1)}, \tilde{\ell}^{(k-1)} < \ell$, then
$$\begin{split} p_{\ell-1}^{(k)} &\geq 2 \text{ and by (1.17) } m_{\ell}^{(k-1)} = 0 \text{, so that } \dot{s}^{(k-1)}, \tilde{s}^{(k-1)} \geq \ell' = \tilde{s}^{(k)} = \dot{\bar{s}}^{(k)} \text{ and case } \\ \mathrm{I}.(\ell s)(2) \text{ holds. If } \dot{\ell}^{(k-1)} &< \ell \text{ and } \tilde{\ell}^{(k-1)} = \ell \text{, then } p_{\ell-1}^{(k)} \geq 1 \text{ and by (1.17) } m_{\ell}^{(k-1)} \leq 1. \\ \mathrm{Hence } \tilde{s}^{(k-1)} > \ell. \text{ If } \dot{s}^{(k-1)} > \ell \text{ then as before } \tilde{s}^{(k-1)}, \dot{s}^{(k-1)} \geq \ell' = \dot{\bar{s}}^{(k)} = \tilde{s}^{(k)} \\ \mathrm{and case } \mathrm{I}.(\ell s)(2) \text{ holds. If } \dot{s}^{(k-1)} = \ell \text{ then case } \mathrm{II}.(1'\text{-3'}) \text{ holds at } k - 1. \text{ Note that } \\ p_{\ell-1}^{(k)}(\dot{\nu}) = p_{\ell-1}^{(k)} - 1 = 0 \text{, so that we need } \tilde{\ell}^{(k-1)} \geq \ell. \text{ Since case II.(3') does not hold at } \\ k, \text{ we must have } \tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} = \ell \text{ so that case II.(2') holds at } k - 1. \text{ However, this means } \\ m_{\ell}^{(k-1)} \geq 2 \text{ which contradicts } \tilde{s}^{(k-1)} > \ell \text{ since } p_{\ell}^{(k-1)} = 0. \text{ The case } \tilde{\ell}^{(k-1)} = \ell \text{ and } \\ \tilde{\ell}^{(k-1)} < \ell \text{ is similar. Finally let } \ell^{(k-1)} = \tilde{\ell}^{(k-1)} = \ell. \text{ Then case I.}(\ell s)(2) \text{ holds at } k - 1 \\ \text{ or } m_{\ell}^{(k-1)} = 1 \text{ and } \dot{s}^{(k-1)}, \tilde{s}^{(k-1)} > \ell. \text{ In either case all conditions of case I.}(\ell s)(2) \text{ holds at } k. \end{split}$$

If $m_{\ell'}^{(k)} = 1$, then by (1.1) $m_{\ell'}^{(k-1)} + m_{\ell'}^{(k+1)} + p_{\ell'-1}^{(k)} + p_{\ell'+1}^{(k)} \le 2$. By induction case I. $(\ell s)(2)$ holds at k + 1 so that $m_{\ell'}^{(k+1)} \ge 2$. This implies that $m_{\ell'}^{(k-1)} = 0$ and $p_{\ell'+1}^{(k)} = 0$. Let $\ell'' > \ell'$ be minimal such that $m_{\ell''}^{(k)} > 0$. Then $p_i^{(k)} = 0$ for $\ell' \le i \le \ell''$ and $\dot{s}^{(k)} = \tilde{s}^{(k)} = \ell''$. Furthermore, by the same arguments as before $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)} > \ell$ and since $m_i^{(k-1)} = 0$ for $\ell < i < \ell''$ we have $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)} \ge \ell'' = \tilde{s}^{(k)} = \tilde{s}^{(k)}$. Hence case I. $(\ell s)(2)$ holds at k.

Case $(\ell s)(1)$. In the proof of case I. $(\ell b)(2,3)$ we already showed that case I. $(\ell s)(1)$ can occur at k when I. $(\ell s)(1)$ does not occur at k - 1. In addition we saw that then either $\tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or case I. $(\ell s)(1)$ holds at k + 1 with the same values of $\ell' = \ell$ and ℓ'' . Hence we are left to show that if case I. $(\ell s)(1)$ holds at k - 1 and k, then either $\tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or case I. $(\ell s)(1)$ holds at k + 1 with the same values of $\ell' = \ell$ and ℓ'' .

Since case I.(ℓs)(1) holds at k - 1 and k with the same values of ℓ' and ℓ'' , we have by (1.1) $m_i^{(k-1)} = m_i^{(k)} = m_i^{(k+1)} = 0$ for $\ell' < i < \ell''$, $m_{\ell''}^{(k)} > 0$ and $p_i^{(k)} = 0$ for $\ell' \le i \le \ell''$. By induction we have $m_{\ell'}^{(k)} = 2$ (see proof of case I.(ℓb)(2,3)). Since $\dot{\ell}^{(k)} = \dot{s}^{(k)} = \ell'$, we must also have $\dot{\ell}^{(k+1)} = \dot{s}^{(k+1)} = \ell'$, so that $m_{\ell'}^{(k+1)} \ge 2$. Since case I.(ℓs)(1) holds at k - 1 we must have $1 \le m_{\ell'}^{(k-1)} \le 2$. The case $m_{\ell'}^{(k-1)} = 1$ can only occur if case I.(ℓs)(1) occurs at k - 1 for the first time and $\dot{\ell}^{(k-1)} = \tilde{\ell}^{(k-1)} < \ell'$. By the change of vacancy numbers this implies that $p_{\ell'-1}^{(k)} \ge 1$ so that by

$$m_{\ell'}^{(k-1)} - 2m_{\ell'}^{(k)} + m_{\ell'}^{(k+1)} + p_{\ell'-1}^{(k)} - 2p_{\ell'}^{(k)} + p_{\ell'+1}^{(k)} \le 0$$

$$\begin{split} m_{\ell'}^{(k+1)} &= 2. \text{ We obtain the same conclusion if } m_{\ell'}^{(k-1)} &= 2. \text{ If } \tilde{\ell}^{(k+1)} > \ell', \text{ then } \tilde{\ell}^{(k+1)} \geq \\ \ell'' \text{ since } m_i^{(k+1)} &= 0 \text{ for } \ell' < i < \ell''. \text{ In this case } \tilde{\ell}^{(k)} &= \ell'' \leq \tilde{\ell}^{(k+1)} \text{ as claimed. If } \\ \tilde{\ell}^{(k+1)} &= \ell', \text{ then } p_{\ell'}^{(k+1)} &= 0 \text{ since } \tilde{\ell}^{(k+1)} &= \ell'(k+1) = \ell'. \text{ By (1.1) with } a &= k+1 \\ \text{ and } i &= \ell' \text{ it follows that } m_{\ell'}^{(k+2)} &= 2 \text{ and } p_{\ell'+1}^{(k+1)} &= 0. \text{ Hence again by (1.1) we have } \\ p_i^{(k+1)} &= 0 \text{ for } \ell' \leq i \leq \ell'' \text{ which implies that } \tilde{\ell}^{(k+1)} &= \ell''. \text{ Note that by similar } \\ \text{ arguments as before it follows that } m_{\ell''}^{(k+1)} &= 2. \text{ By induction either } \dot{s}^{(k+2)} &= \ell'' \text{ if case } \\ \text{ I.}(\ell s)(1) \text{ holds at } k+2 \text{ or } \dot{s}^{(k+2)} \leq \dot{s}^{(k+1)} &= \ell'. \text{ Hence } \dot{s}^{(k+1)} &= \ell'' \text{ (even if } \tilde{s}^{(k+1)} &= \ell'' \\ \text{ then } \dot{s}^{(k+1)} &= \ell'' \text{ since } m_{\ell''}^{(k+1)} &= 2). \text{ Similarly } \tilde{s}^{(k+1)} &= \tilde{s}^{(k+1)} \text{ as claimed. } \\ \text{ Case } (\ell s)(1'). \text{ This case is analogous to case } \text{ I.}(\ell s)(1). \end{split}$$

Case $(\ell s)(2)$. In the proof of case I. $(\ell b)(3)$ we already showed that case I. $(\ell s)(2)$ can occur at k when I. $(\ell s)(2)$ does not occur at k - 1. In addition we saw that then case I. $(\ell s)(2)$ holds at k + 1 with $\ell = \ell'$ and $\ell''' = \ell''$. Hence we are left to show that case I. $(\ell s)(2)$ holds at k + 1 if the same case holds at k with the same values of $\ell = \ell'$ and $\ell'' = \ell'''$.

Let $k \leq n-2$. By induction we will show that $m_{\ell}^{(a)} = 2$ for $k \leq a \leq n-2$ and $m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 1$, $m_{i}^{(a)} = 0$ for $\ell < i < \ell''$ and $k \leq a \leq n$, and $p_{i}^{(a)} = 0$ for $\ell \leq i \leq \ell''$ and $k \leq a \leq n$. By induction hypothesis (see proof of case I.(ℓ b)(3)) the statements are true for a = k. By (1.1) we have

$$\begin{split} m_{\ell}^{(k-1)} + (m_{\ell}^{(k+1)} - 2) + p_{\ell-1}^{(k)} + p_{\ell+1}^{(k)} &\leq 2 \qquad \text{for } k < n-2 \\ m_{\ell}^{(n-3)} + (m_{\ell}^{(n-1)} + m_{\ell}^{(k)} - 2) + p_{\ell-1}^{(n-2)} + p_{\ell+1}^{(n-2)} &\leq 2 \qquad \text{for } k = n-2. \end{split}$$

Since $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \dot{s}^{(k)} = \dot{s}^{(k)} = \ell$, we must have $m_{\ell}^{(k+1)} \ge 2$ and $m_{\ell}^{(n-1)}, m_{\ell}^{(n)} \ge 1$. If $m_{\ell}^{(k-1)} \ge 2$, then these inequalities prove that $m_{\ell}^{(k+1)} = 2$ or $m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 1$. If $m_{\ell}^{(k-1)} = 1$, then case I.(ℓs)(2) must have occurred at k - 1 for the first time and $\ell^{(k-1)} = \ell^{(k-1)} < \ell$. Hence by the change in vacancy numbers this implies that $p_{\ell-1}^{(k)} \ge 1$, so that again $m_{\ell}^{(k+1)} = 2$ or $m_{\ell}^{(n-1)} = m_{\ell}^{(n)} = 1$. Then by (1.1) with a = k + 1 and $i = \ell$ it follows that $p_{\ell+1}^{(k+1)} = 0$, so that $p_i^{(k+1)} = 0$ for $\ell \le i \le \ell''$. Note that by (1.1) also $m_{i}^{(k+1)} = 0 \text{ for } \ell < i < \ell'' \text{ and } m_{\ell''}^{(k+1)} > 0. \text{ Hence } \dot{\ell}^{(k+1)} = \dot{\ell}^{(k+1)} = \ell''.$ Note that $m_{\ell''}^{(k-1)}, m_{\ell''}^{(k)}, m_{\ell''}^{(k+1)} > 0$ since by assumption case I.(ℓs)(2) holds at k - 1.

Assume that $m_{\ell''}^{(k)} = 1$. Then by (1.1)

$$m_{\ell''}^{(k-1)} + m_{\ell''}^{(k+1)} + p_{\ell''+1}^{(k)} \le 2$$

which shows that $m_{\ell''}^{(k-1)} = m_{\ell''}^{(k)} = m_{\ell''}^{(k+1)} = 1$. Continuing this by induction one finds by (1.1) with $a = k, k+1, \ldots n-2$ that $m_{\ell''}^{(a)} = 1$ for $k-1 \le a \le n-2$ and either $m_{\ell''}^{(n-1)} = 1$ and $m_{\ell''}^{(n)} = 0$ or $m_{\ell''}^{(n-1)} = 0$ and $m_{\ell''}^{(n)} = 1$. Suppose the latter case holds. Then by (1.1) with a = n - 1 and $i = \ell''$ we have

$$m_{\ell''}^{(n-2)} - 2m_{\ell''}^{(n-1)} + p_{\ell''-1}^{(n-1)} + p_{\ell''+1}^{(n-1)} \le 0,$$

which yields a contradiction since $m_{\ell''}^{(n-2)} = 1$ and $m_{\ell''}^{(n-1)} = 0$. Hence $m_{\ell''}^{(k)} = 2$ and by induction using (1.1) in fact $m_{\ell''}^{(a)} = 2$ for $k \le a \le n-2$, $m_{\ell''}^{(n-1)} = m_{\ell''}^{(n)} = 1$. Hence $\dot{\ell}^{(a)} = \dot{\ell}^{(a)} = \dot{\tilde{s}}^{(a)} = \ell''$ for $k \le a \le n-2$ and $\dot{\tilde{\ell}}^{(n-1)} = \dot{\tilde{\ell}}^{(n)} = \tilde{\ell}^{(n-1)} = \tilde{\ell}^{(n)} = \tilde{\ell}^{(n)}$ ℓ'' .

II. Twisted case. Note that this case can only occur for $1 \le k \le n-2$. The proof that $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ goes through as for the generic case of type A in [1, Appendix A].

Case (1). Suppose that $\dot{\tilde{\ell}}^{(k)} < \ell$. By induction $\dot{\tilde{\ell}}^{(k)} > \dot{\tilde{\ell}}^{(k-1)} > \dot{\ell}^{(k-1)} - 1$. First assume that $\dot{\ell}^{(k-1)} < \dot{\tilde{\ell}}^{(k)} < \ell$. Then δ must select a string shortened by $\tilde{\delta}$ in the transformation $(\nu, J) \rightarrow (\tilde{\nu}, \tilde{J})$. By the same arguments as for the generic case in [1, Appendix A], δ does not pick the string of length $\tilde{\ell}^{(k)} - 1$ in $(\tilde{\nu}, \tilde{J})^{(k)}$ shortened by $\tilde{\delta}$. Hence $\tilde{\ell}^{(k)} = \ell - 1$. The label of the corresponding string in $(\tilde{\nu}, \tilde{J})^{(k)}$ must be zero since it was shortened by $\tilde{\delta}$ and singular since it is selected by δ . This implies that $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. Next assume that $\dot{\ell}^{(k-1)} - 1 = \dot{\tilde{\ell}}^{(k)} < \ell$. Then case II.(1) or I.(ℓ b)(1) must hold at k - 1, so that by induction hypothesis $m_{\dot{\ell}^{(k-1)}-1}^{(k)} = 0$ or $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu}) = 0$. For $\dot{\ell}^{(k-1)} - 1 = \dot{\ell}^{(k)}$ one needs $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu}) > 0$, so that $\ell = \dot{\ell}^{(k-1)}$. Hence $\dot{\tilde{\ell}}^{(k)} = \ell - 1$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$ as before.

The goal is to show that $\tilde{s}^{(k)} = \ell - 1$. Since $\dot{\ell}^{(k)} = \ell$, it follows that $m_{\ell-1}^{(k)}(\dot{\nu}) \ge 1$. Also $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$, so that $m_{\ell-1}^{(k)}(\dot{\nu}) \ge 2$ if $\tilde{\ell}^{(k)} = \ell - 1$. Hence it suffices to show that $\tilde{s}^{(k+1)} \le \ell - 1$ and $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$, since then $\tilde{s}^{(k)} < \ell$ and by similar arguments as before $\tilde{s}^{(k)} = \ell - 1$.

Note that

(1.23)
$$p_{\ell-1}^{(k)}(\nu) = p_{\ell-1}^{(k)}(\dot{\nu}) + \chi(\dot{\ell}^{(k-1)} \le \ell - 1) \\ = p_{\ell-1}^{(k)}(\tilde{\nu}) + \chi(\tilde{s}^{(k+1)} \le \ell - 1) - \chi(\tilde{\ell}^{(k)} \le \ell - 1 < \tilde{\ell}^{(k+1)}).$$

Since $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$, $\tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)} \leq \tilde{s}^{(k+1)} \leq \tilde{s}^{(k)} = \ell$ and by construction $p_{\ell-1}^{(k)}(\nu) \geq 0$, this simplifies to

(1.24)
$$p_{\ell-1}^{(k)}(\nu) = p_{\ell-1}^{(k)}(\dot{\nu}) + \chi(\dot{\ell}^{(k-1)} \le \ell - 1) = \chi(\tilde{s}^{(k+1)} \le \ell - 1).$$

Suppose that $p_{\ell-1}^{(k)}(\dot{\nu}) \geq 1$. Then by (1.24) we must have $\tilde{s}^{(k+1)} \leq \ell-1$ and $\dot{\ell}^{(k-1)} \geq \ell$. Since $\tilde{\ell}^{(k-1)} \leq \tilde{s}^{(k+1)} \leq \ell-1$, case I.(ℓ a) or II.(1-3) must hold at k-1. If $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k-1)} \geq \ell$, this contradicts $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell-1$. Hence case II.(1) or (3) must hold at k-1 and $\dot{\ell}^{(k-1)} = \tilde{s}^{(k-1)} \geq \ell$, so that $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} = \tilde{s}^{(k-1)} = \tilde{s}^{(k)} = \ell$. Since $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell - 1$ case II.(1) must hold at k-1. But then by (1.24) with k replaced by k-1, it follows that $\dot{\ell}^{(k-2)} = \ell$, so that one of case I.(ℓ a) and II.(1-3) holds at k-2. Since $\dot{\ell}^{(k-2)} \leq \dot{\ell}^{(k-1)} = \ell-1$, case II.(1) must hold at k-2. Repeating this argument we find that $1 = \dot{\ell}^{(0)} = \dot{\ell}^{(1)} = \cdots = \dot{\ell}^{(k)} = \ell$ which contradicts the condition that $\dot{\ell}^{(k)} = \ell - 1 > 0$. Hence $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$.

Suppose that $\tilde{s}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)} < \ell$. Then the doubly singular case I.(*sb*) or the mixed case I.(*k*) cannot occur at k + 1 since $\dot{s}^{(k+1)} \geq \dot{\ell}^{(k)} = \ell$, but $\tilde{s}^{(k+1)} < \ell$. Also the generic case I.(*sa*) cannot occur since then $\tilde{s}^{(k+1)} = \tilde{s}^{(k+1)}$ which contradicts our assumptions. Case II. also cannot occur since $\dot{\ell}^{(k+1)} \geq \ell > \tilde{s}^{(k+1)}$ and $\dot{s}^{(k+1)} \geq \ell > \tilde{\ell}^{(k+1)}$. Hence $\tilde{s}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)} < \ell$ is impossible. Next suppose that $\tilde{s}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)} = \ell$. By (1.24) this implies that $\dot{\ell}^{(k-1)} = \ell$.

Next suppose that $\tilde{s}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)} = \ell$. By (1.24) this implies that $\dot{\ell}^{(k-1)} = \ell$. Case I.(ℓ a) cannot hold at k-1 since then $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k-1)} = \ell$ which contradicts $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell - 1$. Similarly for cases I.(ℓ b)(2-3) and II.(2-3) $\dot{\ell}^{(k-1)} \geq \ell$ which contradicts $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell - 1$. Similarly, for the mixed case I.(ℓ s) we have $\dot{\ell}^{(k-1)} \geq \ell = \dot{\ell}^{(k-1)}$ which contradicts our assumptions. If case I.(ℓ b)(1) holds at k - 1, then $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ so that case I.(ℓ b)(1) and case II.(1) holds at k which contradicts our assumption. Hence case II.(1) must hold at k - 1. Since by definition $\tilde{s}^{(k)} \geq \tilde{s}^{(k+1)} \geq \ell$, the same arguments yield that case II.(1) holds at k - 2 with $\dot{\ell}^{(k-2)} = \ell$. Repeating this argument we find that $1 = \dot{\ell}^{(0)} = \dot{\ell}^{(1)} = \cdots = \dot{\ell}^{(k)} = \ell$ which contradicts the condition that $\dot{\ell}^{(k)} = \ell - 1 > 0$. Hence $\tilde{s}^{(k+1)} < \ell$.

This completes the proof that $\tilde{\dot{s}}^{(k)} = \ell - 1$.

Next we will show that $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$. By induction $\dot{s}^{(k)} \ge \dot{\tilde{s}}^{(k+1)} \ge \dot{s}^{(k+1)} - 1$, so that by the definition of the algorithm for δ also $\dot{s}^{(k)} \ge \dot{\tilde{s}}^{(k)}$. If $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$ we are done. First assume that $\dot{s}^{(k)} > \dot{\tilde{s}}^{(k)} \ge \dot{s}^{(k+1)}$. Since by the definition of δ there are no singular strings of length $\dot{s}^{(k)} > i \ge \dot{s}^{(k+1)}$ in $(\nu, J)^{(k)}$, this is only possible if the string shortened by $\tilde{\delta}$ is the one selected by δ to obtain $\dot{\tilde{s}}^{(k)}$. However, this is impossible since by the definitions and assumptions $\dot{s}^{(k+1)} \ge \dot{\ell}^{(k)} = \tilde{s}^{(k)} \ge \tilde{\ell}^{(k)}$. Hence assume that $\dot{s}^{(k)} > \dot{\tilde{s}}^{(k)} = \dot{s}^{(k+1)} - 1$. Then case I.(sb)(1) or II.(1') must hold at k + 1. If case I.(sb)(1)

holds, then $m_{\ell-1}^{(k)} = 0$ and $\tilde{s}^{(k+1)} = \dot{s}^{(k+1)}$. Since by assumption case II.(1) holds at k, we must have $\tilde{s}^{(k+1)} = \dot{s}^{(k+1)} = \dot{\ell}^{(k+1)} = \ell$. Similarly for case II.(1') we must have $\tilde{s}^{(k+1)} = \dot{s}^{(k+1)} = \ell$ and either $m_{\ell-1}^{(k)} = 0$ or $m_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. Since we already showed that $\dot{\tilde{\ell}}^{(k)} = \ell - 1$ we must have $m_{\ell-1}^{(k)}(\tilde{\nu}) > 0$. Hence both cases yield $m_{\ell-1}^{(k)} = 0$ which implies that $m_{\ell-1}^{(k)}(\tilde{\nu}) \leq 1$ (note that $\tilde{\ell}^{(k)} < \ell$ since otherwise case I.(ℓ b) holds at k). But $\dot{\tilde{\ell}}^{(k)} = \ell - 1$ so that $\dot{s}^{(k)} > \dot{\tilde{s}}^{(k)} = \dot{s}^{(k+1)} - 1 = \ell - 1$ is impossible. It remains to show that $m_{\ell-1}^{(k+1)} = 0$ or $m_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$, and $m_{\ell-1}^{(k-1)} = 0$ or $m_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$.

0.

With $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$ equation (1.24) becomes

(1.25)
$$p_{\ell-1}^{(k)}(\nu) = \chi(\dot{\ell}^{(k-1)} \le \ell - 1) = \chi(\tilde{s}^{(k+1)} \le \ell - 1).$$

First assume that $p_{\ell-1}^{(k)}(\nu) = 0$. Then $\dot{\ell}^{(k-1)} = \tilde{s}^{(k+1)} = \ell$. Since $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} < \ell$ case I.(ℓa) or II. must hold at k - 1. Since in addition $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\tilde{\ell}}^{(k)} = \ell - 1$, case II.(1) must hold at k - 1. Certainly $m_{\ell-1}^{(k)}(\tilde{\nu}) > 0$ because $\tilde{s}^{(k)} = \ell$. Hence by induction hypothesis $m_{\ell-1}^{(k)} = 0$, so that by (1.1) $m_{\ell-1}^{(k-1)} = m_{\ell-1}^{(k+1)} = 0$.

Next assume that $p_{\ell-1}^{(k)}(\nu) = 1$. Then by (1.25) $\dot{\ell}^{(k-1)} \leq \ell - 1$ and $\tilde{s}^{(k+1)} \leq \ell - 1$. Since $p_{\ell-1}^{(k)}(\nu) = 1$, there is either a string with label 0 or a singular string of length $\ell - 1$ in $(\nu, J)^{(k)}$ if $m_{\ell-1}^{(k)} > 0$. But then $\dot{\ell}^{(k)} < \ell$ or $\tilde{s}^{(k)} < \ell$ which contradicts our assumptions. Hence $m_{\ell-1}^{(k)} = 0$. By (1.1)

$$p_{\ell-2}^{(k)} + m_{\ell-1}^{(k-1)} + m_{\ell-1}^{(k+1)} \le 2.$$

If $p_{\ell-2}^{(k)} = 2$, then $m_{\ell-1}^{(k-1)} = m_{\ell-1}^{(k+1)} = 0$ and we are done. If $p_{\ell-2}^{(k)} = 1$, we have $m_{\ell-1}^{(k-1)} + m_{\ell-1}^{(k+1)} \le 1$. Let $r < \ell - 1$ be maximal such that

 $m_r^{(k)} > 0$. If no such r exists, set r = 0. Then by (1.1) we have $p_i^{(k)} = 1$ for $r < i < \ell$, $p_r^{(k)} \le 1$ and $m_i^{(k-1)} = m_i^{(k+1)} = 0$ for $r + 1 < i < \ell - 1$. If $p_r^{(k)} = 1$, then $m_{r+1}^{(k-1)} = 0$ $m_{r+1}^{(k+1)} = 0$. Suppose that $m_{\ell-1}^{(k-1)} = 0$. Then $\dot{\ell}^{(k-1)} \leq r$. Since by assumption $\dot{\ell}^{(k)} =$ $\ell > r$ the string of length r in $(\nu, J)^{(k)}$ must have label 0. This implies that $\tilde{s}^{(k+1)} > r$ and, since $m_i^{(k+1)} = 0$ for $r < i < \ell - 1$, we have $\tilde{s}^{(k+1)} = \ell - 1$. Since $m_{\ell-1}^{(k-1)} = 0$ implies that $m_{\ell-1}^{(k+1)} = 1$, this shows that $m_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$. Similarly, if $m_{\ell-1}^{(k+1)} = 0$, then $m_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$. Hence suppose that $p_r^{(k)} = 0$. Then $\dot{\ell}^{(k-1)} > r$ and $\tilde{s}^{(k+1)} > r$ since otherwise $\dot{\ell}^{(k)} \leq r < \ell$ or $\tilde{s}^{(k)} \leq r < \ell$ which contradicts our assumptions. Also by (1.1) $m_{r+1}^{(k-1)} + m_{r+1}^{(k+1)} \leq 1$. Hence either $m_{r+1}^{(k-1)} = 1$, $\dot{\ell}^{(k-1)} = r+1$, $m_{\ell-1}^{(k+1)} = 1$, $\tilde{s}^{(k+1)} = \ell - 1$ or $m_{r+1}^{(k+1)} = 1$, $\tilde{s}^{(k+1)} = r+1$, $m_{\ell-1}^{(k-1)} = 1$, $\dot{\ell}^{(k-1)} = \ell - 1$. This implies that either $m_{\ell-1}^{(k-1)} = 0$ and $m_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$, or $m_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$ and $m_{\ell-1}^{(k+1)} = 0$ as claimed.

Finally assume that $p_{\ell-2}^{(k)} = 0$. If $m_{\ell-2}^{(k)} = 0$, then by $(1.1) - p_{\ell-1}^{(k)} - p_{\ell-3}^{(k)} \ge m_{\ell-2}^{(k-1)} + m_{\ell-2}^{(k+1)}$ which yields a contradiction since $p_{\ell-1}^{(k)} = 1$. Hence $m_{\ell-2}^{(k)} \ge 1$. If $\dot{\ell}^{(k-1)} \le \ell - 2$ or $\tilde{s}^{(k+1)} \leq \ell - 2$, then $\dot{\ell}^{(k)} \leq \ell - 2$ or $\tilde{s}^{(k)} \leq \ell - 2$ since $p_{\ell-2}^{(k)} = 0$ which contradicts our assumptions. Hence $\dot{\ell}^{(k-1)} = \tilde{s}^{(k+1)} = \ell - 1$. This requires $m_{\ell-1}^{(k-1)} \ge 1$ and

 $m_{\ell-1}^{(k+1)} \ge 1$. Since $m_{\ell-1}^{(k-1)} + m_{\ell-1}^{(k+1)} \le 2$ this implies $m_{\ell-1}^{(k-1)} = 1$ and $m_{\ell-1}^{(k+1)} = 1$, so that $m_{\ell-1}^{(k-1)}(\dot{\nu}) = 0$ and $m_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$ as claimed. **Case (2).** First assume that $\tilde{s}^{(k)} \ge \ell$. We will show that then $\tilde{s}^{(k)} = \ell$. The assumption

Case (2). First assume that $\dot{s}^{(k)} \geq \ell$. We will show that then $\dot{s}^{(k)} = \ell$. The assumption $\dot{\ell}^{(k)} = \ell$ implies that $m_{\ell}^{(k)}(\tilde{\nu}) \geq 1$. Since $\tilde{s}^{(k)} = \ell$, one part of size ℓ is shortened in passing from $\nu^{(k)}$ to $\tilde{\nu}^{(k)}$, so that $m_{\ell}^{(k)} \geq 2$. Now $p_{\ell}^{(k)} = 0$, so there is at least one string with label 0 in $\nu^{(k)}$ that is not selected by δ acting on (ν, J) . The label of this string remains 0 in passing to $\dot{\nu}^{(k)}$. This shows that there is a string of label 0 and length ℓ in $\dot{\nu}^{(k)}$. Thus to prove $\tilde{s}^{(k)} = \ell$, it suffices to show that $\tilde{s}^{(k+1)} \leq \ell$. If $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k+1)}$ then $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k+1)} \leq \tilde{s}^{(k)} = \ell$ as desired. Otherwise $\tilde{s}^{(k+1)} > \tilde{s}^{(k+1)}$, so that case I.(*s*b)(3), I.(*l*s), II.(3) or (3') holds at k + 1. By induction $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k)} = \ell$.

Next assume that $\tilde{s}^{(k)} < \ell$. We will show that this is impossible. By the same arguments as in the proof of case II.(1) the condition $\tilde{s}^{(k)} < \ell$ implies that $\tilde{s}^{(k)} = \ell - 1$ and $p_{\ell-1}^{(k)}(\dot{\nu}) = 0$. The goal is to show that $\dot{\ell}^{(k)} = \ell - 1$ which contradicts the assumption that $\dot{\ell}^{(k)} = \ell$. Similar to the proof of case II.(1), to prove $\dot{\ell}^{(k)} = \ell - 1$ it suffices to show that $\dot{\ell}^{(k-1)} \leq \ell - 1$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$.

Note that (1.23) becomes

(1.26)
$$p_{\ell-1}^{(k)}(\nu) = \chi(\dot{\ell}^{(k-1)} \le \ell - 1) \\ = p_{\ell-1}^{(k)}(\tilde{\nu}) + \chi(\tilde{s}^{(k+1)} \le \ell - 1) - \chi(\tilde{\ell}^{(k)} \le \ell - 1 < \tilde{\ell}^{(k+1)}).$$

Suppose that $p_{\ell-1}^{(k)}(\tilde{\nu}) \geq 1$. Since the top line can be at most one and $\tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)} \leq \tilde{s}^{(k+1)}$, (1.26) implies that $\tilde{s}^{(k+1)} = \ell$. Note that $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k)} = \ell - 1$, so that $\tilde{s}^{(k+1)} < \tilde{s}^{(k+1)} = \ell$. This implies that case I.(sb)(1) or II.(1) holds at k + 1. In both cases $\ell = \tilde{\ell}^{(k)} = \tilde{\ell}^{(k+1)} = \tilde{s}^{(k)} = \tilde{s}^{(k+1)}$ and $\tilde{s}^{(k+1)} = \ell - 1$. Hence $p_{\ell-1}^{(k+1)}(\tilde{\nu}) = 0$ and by (1.26) with k replaced by k + 1 also $p_{\ell-1}^{(k+1)} = 0$. Suppose that $\tilde{s}^{(k+2)} < \ell$ and let $r < \ell$ be maximal such that $m_r^{(k+1)} > 0$. Then by definition $m_i^{(k+1)} = 0$ for $r < i < \ell$ and by (1.1) $p_i^{(k+1)} = 0$ for $r \leq i \leq \ell$ and $m_i^{(k+2)} \leq r$. In addition, since $p_r^{(k+1)} = 0$, there is a string with label 0 of length r in $(\nu, J)^{(k+1)}$. Hence $\tilde{s}^{(k+1)} \leq r < \ell$ which is a contradiction to the previously shown fact that $\tilde{s}^{(k+1)} = \cdots = \tilde{\ell}^{(n-1)} = \tilde{\ell}^{(n-1)} = \tilde{\ell}^{(n-1)} = \tilde{\ell}^{(k)} = \tilde{\ell}^{(k-1)} = \cdots = \tilde{\ell}^{(k-1)} = \ell$. However this yields a contradiction since then case I.(ℓ b) holds at k instead of case II.(2). Hence $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$.

Next we need to show that $\dot{\tilde{\ell}}^{(k-1)} \leq \ell - 1$. Suppose that $\dot{\tilde{\ell}}^{(k-1)} \geq \ell$. Now $\tilde{\tilde{\ell}}^{(k-1)} \leq \tilde{\tilde{\ell}}^{(k)} \leq \tilde{\tilde{s}}^{(k)} = \ell - 1$, so that $\dot{\tilde{\ell}}^{(k-1)} \neq \tilde{\ell}^{(k-1)}$. By induction case I.(ℓa), I.(ℓs)(1)(1'), II.(1-3) or II.(1'-3') holds at k - 1. If case I.(ℓs)(1) holds at k - 1, then $\tilde{s}^{(k-1)} = \tilde{s}^{(k)} = \ell^{(k)} = \ell$ and $\tilde{\ell}^{(k-1)} > \ell$ which contradicts our assumptions. For case I.(ℓs)(1') $\tilde{\ell}^{(k-1)} = \tilde{s}^{(k-1)} = \tilde{\ell}^{(k)} = \tilde{s}^{(k)} = \tilde{\epsilon}^{(k-1)} = \ell$. By (1.26) this implies that $\tilde{s}^{(k+1)} = \ell$. By similar arguments as before $\ell^{(k)} = \ell^{(k+1)} = \cdots = \ell^{(n-1)} = \ell^{(n)} = \tilde{s}^{(k)} = \tilde{s}^{(k+1)} = \cdots = \tilde{s}^{(n-2)} = \ell^{(n)} = \tilde{\ell}^{(n-1)} = \cdots \tilde{\ell}^{(k-1)} \leq \ell - 1$ which in turn implies together with $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$ that $\dot{\ell}^{(k)} = \ell - 1$. This contradicts our assumption that $\dot{\ell}^{(k)} = \ell$.

The proof of $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$ is very similar to the proof of this statement for case II.(1). The case $\dot{s}^{(k)} > \dot{\tilde{s}}^{(k)} \ge \dot{s}^{(k+1)}$ is the same as for II.(1). For $\dot{s}^{(k)} > \dot{\tilde{s}}^{(k)} = \dot{s}^{(k+1)} - 1$ one obtains as before that $\tilde{s}^{(k+1)} = \dot{s}^{(k+1)} = \dot{\ell}^{(k+1)} = \ell$. However this yields the contradiction $\ell = \dot{\tilde{\ell}}^{(k)} < \dot{\tilde{s}}^{(k)} = \dot{s}^{(k+1)} - 1 = \ell - 1.$

Case (3). Assume that $\dot{\tilde{\ell}}^{(k)} > \ell$. First note that $m_{\ell}^{(k)} \ge 2$ leads to a contradiction. Namely, if Case II.(3) holds at k-1, then by induction hypothesis $m_{\ell}^{(k)} = 1$. Otherwise, $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)}$ by induction hypothesis (1.2). Since $\dot{\ell}^{(k)} = \tilde{s}^{(k)} = \ell$ we must have $p_{\ell}^{(k)} = 0$. The application of $\tilde{\delta}$ leaves a singular string of length ℓ and label 0 in $\tilde{\nu}^{(k)}$ since $m_{\ell}^{(k)} \geq 2$. But $\dot{\tilde{\ell}}^{(k-1)} < \dot{\ell}^{(k)}$ implies $\dot{\tilde{\ell}}^{(k)} < \ell$ which contradicts our assumptions. Hence we must have $m_{\ell}^{(k)} = 1$ and $p_{\ell}^{(k)} = 0$. Note in particular that it was shown in the proof of case II.(2), that $\tilde{\dot{s}}^{(k)} < \ell$ implies that $\tilde{\ell}^{(k)} < \ell$ which contradicts our assumptions. The case $\tilde{\dot{s}}^{(k)} = \ell$ is not possible due to $m_{\ell}^{(k)} = 1$. Hence $\tilde{\dot{s}}^{(k)} > \ell$.

With this, inequality (1.1) for $i = \ell$ and a = k reads

(1.27)
$$p_{\ell-1}^{(k)} + p_{\ell+1}^{(k)} + m_{\ell}^{(k-1)} + m_{\ell}^{(k+1)} \le 2 \qquad \text{for } 1 \le k \le n-3 \\ p_{\ell-1}^{(n-2)} + p_{\ell+1}^{(n-2)} + m_{\ell}^{(n-3)} + m_{\ell}^{(n-1)} + m_{\ell}^{(n)} \le 2 \quad \text{for } k = n-2.$$

We will show that

(1.28)
$$p_{\ell+1}^{(k)} = 0$$
 and $m_{\ell}^{(k+1)} = \begin{cases} 1 & \text{if } \tilde{s}^{(k+1)} = \ell \\ 0 & \text{otherwise.} \end{cases}$

In addition, if k = n - 2, then the same equation holds for $m_{\ell}^{(n)}$, and $m_{\ell}^{(n-1)} = 1$ implies that $m_{\ell}^{(n)} = 0$ and vice versa.

 $\begin{aligned} & \text{Let } k < n-2. \\ & \text{Let } k < n-2. \\ & \text{If } m_{\ell}^{(k-1)} = 2, \text{ then by (1.27) we have } p_{\ell+1}^{(k)} = m_{\ell}^{(k+1)} = 0, \text{ so we are done.} \\ & \text{If } m_{\ell}^{(k-1)} = 1 \text{ and } p_{\ell-1}^{(k)} = 1, \text{ again by (1.27) we have } p_{\ell+1}^{(k)} = m_{\ell}^{(k+1)} = 0. \end{aligned}$ implies that $\tilde{s}^{(k+1)} = \ell$ since $p_{\ell-1}^{(k)}(\nu) = 0$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) \ge 0$. But $\tilde{s}^{(k+1)} = \ell$ requires $m_{\ell}^{(k+1)} \ge 1$ so that by (1.27) again $p_{\ell+1}^{(k)} = 0$ and $m_{\ell}^{(k+1)} = 1$.

Finally suppose $m_{\ell}^{(k-1)} = 0$. In this case $\dot{\ell}^{(k-1)} \leq \ell - 1$ and $p_{\ell-1}^{(k)}(\nu) = p_{\ell-1}^{(k)}(\dot{\nu}) + 1$, so that $p_{\ell-1}^{(k)} \ge 1$. If $p_{\ell-1}^{(k)} \ge 2$, then $p_{\ell+1}^{(k)} = m_{\ell}^{(k+1)} = 0$ by (1.27) as claimed. Hence assume $p_{\ell-1}^{(k)} = 1$. If $\tilde{s}^{(k+1)} = \ell$, then necessarily $m_{\ell}^{(k+1)} \ge 1$ and by (1.1) $m_{\ell}^{(k+1)} = 1$ and $p_{\ell+1}^{(k)} = 0$. Now assume that $\tilde{s}^{(k+1)} < \ell$. Recall that $p_{\ell-1}^{(k)}(\nu) = p_{\ell-1}^{(k)}(\tilde{\nu}) + \chi(\tilde{s}^{(k+1)} < \ell)$, which implies that $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$ since $p_{\ell-1}^{(k)}(\nu) = 1$ and $\tilde{s}^{(k+1)} < \ell$. Since $\tilde{s}^{(k)} = \ell$ this implies that there is a singular string of length $\ell - 1$ in $(\tilde{\nu}, \tilde{J})^{(k)}$. Since by assumption $\dot{\ell}^{(k)} > \ell$, we must have $\dot{\ell}^{(k-1)} \ge \ell$, so that $\dot{\ell}^{(k-1)} > \dot{\ell}^{(k-1)}$. Hence by (1.2) case II.(3) must hold at k - 1. We show that this yields a contradiction. For case II.(3) to hold we must have $\dot{\ell}^{(k-1)} = \tilde{s}^{(k-1)}$. Since $\dot{\ell}^{(k-1)} < \dot{\ell}^{(k)} = \ell$ and $\tilde{s}^{(k-1)} > \tilde{s}^{(k)} = \ell$ this requires $\dot{\ell}^{(k-1)} = \tilde{s}^{(k-1)} = \ell$. However this contradicts our previous finding that $\dot{\ell}^{(k-1)} < \ell$.

For k = n - 2 the above arguments go through with minor modifications.

This proves (1.28).

By almost identical arguments it follows that

(1.29)
$$m_{\ell}^{(k-1)} = \begin{cases} 1 & \text{if } \dot{\ell}^{(k-1)} = \ell \\ 0 & \text{otherwise.} \end{cases}$$

Since $p_{\ell}^{(k)} = p_{\ell+1}^{(k)} = 0$ it follows from (1.1), that if $\ell' > \ell$ and $m_i^{(k)} = 0$ for all $\ell < i < \ell'$, then $p_i^{(k)} = 0$ for $\ell \le i \le \ell'$. Moreover (1.1) implies that $m_i^{(k-1)} = m_i^{(k+1)} = 0$ for $\ell < i < \ell'$.

Suppose that $\nu^{(k)}$ has a string longer than ℓ . Let ℓ' be minimal such that $\ell' > \ell$ and $m_{\ell'}^{(k)} \ge 1$. Note that, since $p_{\ell'}^{(k)} = 0$, the string of length ℓ' in $(\nu, J)^{(k)}$ is singular and has label 0. After the application of δ this string remains singular with label 0 in $(\tilde{\nu}, \tilde{J})^{(k)}$ since $\ell' > \ell = \tilde{s}^{(k)} \ge \tilde{\ell}^{(k)}$. After the application of δ , a singular string with label 0 of length ℓ' remains in $(\dot{\nu}, \dot{J})^{(k)}$ unless $m_{\ell'}^{(k)} = 1$ and $\dot{s}^{(k)} = \ell'$.

First assume that not both $m_{\ell'}^{(k)} = 1$ and $\dot{s}^{(k)} = \ell'$ hold. We will show that then case II.(3)(i) holds. By induction we have $\dot{\ell}^{(k-1)} \leq \ell$ (resp. $\tilde{s}^{(k+1)} \leq \ell$), unless possibly case II.(3) holds at k - 1 (resp. case II.(3)(1) k + 1). If $\dot{\ell}^{(k-1)} > \ell$ and case II.(3) holds at k - 1, then by induction hypothesis $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} = \ell$, $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} > \ell$ and $m_{\ell}^{(k)} = 1$. Note that $m_i^{(k-1)} = m_i^{(k)} = 0$ for $\ell < i < \ell'$, $m_{\ell'}^{(k-1)}, m_{\ell'}^{(k)} > 0$ and $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} = \ell'$. Similarly, if $\tilde{s}^{(k+1)} > \ell$ and case II.(3)(i) holds at k + 1, then $\dot{s}^{(k+1)} = \dot{\ell}^{(k+1)} = \dot{\ell}^{(k)} = \ell'$, so that $\tilde{s}^{(k)} = \ell'$. Now assume that $\dot{\ell}^{(k-1)} \leq \ell$ (resp. $\tilde{s}^{(k+1)} \leq \ell$). Since by assumption $\dot{\ell}^{(k)} > \ell$ and $\tilde{s}^{(k)} > \ell$, it follows that $\dot{\ell}^{(k)} = \ell'$ (resp. $\tilde{s}^{(k)} = \ell'$). Moreover, if $\dot{\ell}^{(k+1)} > \ell$, by the previous paragraph $m_i^{(k+1)} = 0$ for $\dot{\ell}^{(k)} = \ell < i < \ell'$, so that $\dot{\ell}^{(k+1)} \geq \ell'$. If $\dot{\ell}^{(k+1)} = \ell$, case II.(3)(i) holds at k + 1 with $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$, $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$ and $m_{\ell}^{(k+1)} = 1$. Similarly, if $\tilde{s}^{(k-1)} > \ell$, by the previous paragraph $m_i^{(k+1)} = 0$ for $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$, $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)}$ and $m_{\ell}^{(k+1)} = 1$. Similarly, if $\tilde{s}^{(k-1)} > \ell$, by the previous paragraph $m_i^{(k+1)} = 1$ so that by (1.28) $\dot{s}^{(k-1)} = 0$ for $\ell < i < \ell'$, so that $\tilde{s}^{(k-1)} \geq \dot{\ell}$. If $\tilde{s}^{(k-1)} > \ell$, by the previous paragraph $m_i^{(k-1)} = 0$ for $\ell < i < \ell'$, so that $\tilde{s}^{(k-1)} = 1$. Since in addition $\dot{\tilde{s}}^{(k-1)} \geq \ell'$. If $\tilde{s}^{(k-1)} > \ell$, by the previous paragraph $m_i^{(k-1)} = 0$ for $\ell < i < \ell'$, so that $\tilde{s}^{(k-1)} \geq \ell'$. If $\tilde{s}^{(k-1)} = \ell$, we must have $m_{\ell}^{(k-1)} = 1$ so that by (1.29) $\dot{\ell}^{(k-1)} = \ell$. Since in addition $\tilde{s}^{(k-1)} \geq \ell'$. If $\tilde{s}^{(k-1)} > \ell$, case II.(3) must hold at k - 1.

Next assume that $m_{\ell'}^{(k)} = 1$ and $\dot{s}^{(k)} = \ell'$. We will show that then case II.(3)(ii) holds. By (1.1) with a = k and $i = \ell'$, using that $p_{\ell'-1}^{(k)} = p_{\ell'}^{(k)} = 0$, we have

(1.30)
$$p_{\ell'+1}^{(k)} + m_{\ell'}^{(k-1)} + m_{\ell'}^{(k+1)} \le 2 \qquad \text{for } 1 \le k \le n-3$$
$$p_{\ell'+1}^{(n-2)} + m_{\ell'}^{(n-3)} + m_{\ell'}^{(n-1)} + m_{\ell'}^{(n)} \le 2 \qquad \text{for } k = n-2.$$

Note that for $k \leq n-3$, since $0 \leq m_{\ell}^{(k+1)} \leq 1$ and $m_i^{(k+1)} = 0$ for $\ell < i < \ell'$, we must have $\dot{s}^{(k+1)} = \ell'$, which in turn implies that $m_{\ell'}^{(k+1)} \geq 1$. Similarly for k = n-2, it follows that $\max\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\} = \ell'$ so that $m_{\ell'}^{(n-1)} \geq 1$ or $m_{\ell'}^{(n)} \geq 1$. Hence by (1.30) $0 \leq m_{\ell'}^{(k-1)} \leq 1$. We distinguish the two cases.

We will show that $m_{\ell'}^{(k-1)} = 1$ leads to a contradiction. By (1.30) the assumption $m_{\ell'}^{(k-1)} = 1$ implies that $m_{\ell'}^{(k+1)} = 1$ for $k \le n-3$ and $m_{\ell'}^{(n-1)} = 1$ or $m_{\ell'}^{(n)} = 1$ for k = n-2. Since $\dot{s}^{(k+1)} = \ell'$ and $m_i^{(k+1)} = 0$ for $\ell < i < \ell'$, we must have $\dot{\ell}^{(k+1)} = \ell$ which by (1.28) implies $\tilde{s}^{(k+1)} = \ell$ so that case II.(3) holds at k + 1. Repeating the argument we must have $\dot{\ell}^{(k)} = \dot{\ell}^{(k+1)} = \cdots = \dot{\ell}^{(n-2)} = \tilde{s}^{(k)} = \tilde{s}^{(k+1)} = \cdots = \tilde{s}^{(n-2)} = \ell$, $\dot{s}^{(k)} = \dot{s}^{(k+1)} = \cdots = \dot{s}^{(n-2)} = \ell'$, $m_{\ell}^{(k)} = m_{\ell'}^{(k+1)} = \cdots = m_{\ell}^{(n-2)} = m_{\ell'}^{(k)} = m_{\ell'}^{(k)}$

 $m_{\ell'}^{(k+1)} = \cdots = m_{\ell'}^{(n-2)} = 1$. By (1.30) and (1.27) for k = n-2 and the constraints on $\dot{\ell}^{(n-1)}$ and $\dot{\ell}^{(n)}$, we have $m_{\ell}^{(n-1)} = m_{\ell'}^{(n)} = 1$, $m_{\ell}^{(n)} = m_{\ell'}^{(n-1)} = 0$, $\dot{\ell}^{(n-1)} = \ell$ and $\dot{\ell}^{(n)} = \ell'$ or the same with n-1 and n interchanged. For concreteness let us assume that the first conditions hold. By (1.1) with a = n - 1 and $i = \ell'$ we have

(1.31)
$$p_{\ell'-1}^{(n-1)} - 2p_{\ell'}^{(n-1)} + p_{\ell'+1}^{(n-1)} + m_{\ell'}^{(n-2)} - 2m_{\ell'}^{(n-1)} \le 0.$$

Since $m_{\ell}^{(n-1)} = 1$ it follows from (1.28) that $\dot{\ell}^{(n-1)} = \tilde{\ell}^{(n-1)} = \ell$, so that $p_{\ell}^{(n-1)} = 0$. By similar arguments as before it follows that $p_i^{(n-1)} = 0$ for $\ell \leq i \leq \ell'$. But this with $m_{\ell'}^{(n-1)} = 0$ and $m_{\ell'}^{(n-2)} = 1$ yields a contradiction to (1.31). Hence $m_{\ell'}^{(k-1)} = 0$. If $m_{\ell'}^{(k+1)} = 1$ we get a contradiction as in the previous case.

Hence by (1.30) $m_{\ell'}^{(k+1)} = 2$ and $p_{\ell'+1}^{(k)} = 0$. By induction we have $\dot{\ell}^{(k-1)} \leq \ell$, unless possibly case II.(3) holds at k-1. If case II.(3) holds at k-1, then by induction hypothesis $\dot{\ell}^{(k-1)} = \dot{\ell}^{(k)} = \ell$. But $m_i^{(k-1)} = 0$ for $\ell < i \leq \ell'$ which would imply that $m_{\ell'}^{(k)} = 0$ which contradicts our assumptions. Hence $\dot{\ell}^{(k-1)} \leq \ell$ and, since by assumption $\dot{\ell}^{(k)} > \ell$ we must have $\hat{\ell}^{(k)} = \ell' = \dot{s}^{(k)}$ as claimed in case II.(3)(ii). Let $\ell'' > \ell'$ be minimal such that $m_{\ell''}^{(k)} \ge 1$. If no such ℓ'' exists, set $\ell'' = \infty$. Again by (1.1) we have $p_i^{(k)} = 0$ for $\ell' \le i \le \ell''$. At k + 1, either case II.(3)(i) holds with $\dot{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell$ and $\dot{\ell}^{(k+1)} = \dot{s}^{(k+1)} = \dot{\tilde{s}}^{(k+1)} = \tilde{\tilde{s}}^{(k+1)} = \ell'$, or $\dot{\ell}^{(k+1)} = \ell'$ and the nontwisted generic case holds. In both cases $\dot{\tilde{s}}^{(k+1)} = \ell'$ so that $\dot{\tilde{s}}^{(k)} = \ell''$. If case II.(3)(i) holds at k+1, then $\tilde{s}^{(k+1)} = \ell'$, so that $\tilde{s}^{(k)} = \dot{\tilde{s}}^{(k)} = \ell''$ as claimed for case II.(3)(ii). Otherwise the untwisted generic case holds at k + 1, so that $\tilde{s}^{(k+1)} = \tilde{s}^{(k+1)} \leq \ell$. We already showed in the proof of case II.(2) that $\tilde{\dot{s}}^{(k)} < \ell$ implies that $\dot{\tilde{\ell}}^{(k)} < \ell$ which contradicts our assumptions. Hence, since the strings of length ℓ and ℓ' are already selected, $\tilde{s}^{(k)} = \dot{s}^{(k)} = \ell''$. Finally, since by assumption and (1.1) $m_i^{(k-1)} = 0$ for $\ell' < i < \ell''$, we have $\dot{s}^{(k-1)} > \ell''$. Hence case II.(3)(ii) holds.

Otherwise there is no string in $\nu^{(k)}$ longer than ℓ so that $m_i^{(k)} = 0$ for $i > \ell$. Then $\dot{\tilde{\ell}}^{(k)} = \tilde{\tilde{s}}^{(k)} = \infty.$ Moreover, $m_i^{(k-1)} = m_i^{(k+1)} = 0$ for $i > \ell$. Hence if $\dot{\ell}^{(k+1)} > \ell$ (resp. $\tilde{s}^{(k-1)} > \ell$), we must have $\dot{\ell}^{(k+1)} = \infty$ (resp. $\tilde{s}^{(k-1)} = \infty$). If $\dot{\ell}^{(k+1)} = \ell$ (resp. $\tilde{s}^{(k-1)} = \ell$), then $m_\ell^{(k+1)} = 1$ and $\tilde{s}^{(k+1)} = \ell$ by (1.28) (resp. $m_\ell^{(k-1)} = 1$ and $\dot{\ell}^{(k-1)} = \ell$ by (1.29)), so that again Case II.(3) holds at k + 1 (resp. k - 1). **Case (1'-3').** These cases follow from II.(1-3) by the application of θ .

Proof of Lemma 1.2. By Lemma 1.1 we have $\dot{\tilde{\nu}} = \tilde{\tilde{\nu}}$, whose proof will be used repeatedly. We also rely on [1, Lemma A.3].

Selected strings. Consider a string in $(\nu, J)^{(k)}$ that is either selected by δ or $\tilde{\delta}$, or is such that its image under δ (resp. $\tilde{\delta}$) is selected by $\tilde{\delta}$ (resp. δ). It is shown that the image of any such string under both $\delta \circ \delta$ and $\delta \circ \delta$, has the same label. The proof of these statements for cases $I.(\ell a)$, $I.(\ell b)$, I.(sa) and I.(sb) is the same as for the analogous cases in [1, Lemma A.3].

Selected strings, case I.(ℓs)(1). We need to distinguish the case whether case I.(ℓs)(1) occurs for the first time at k or not. First assume that case I.(ℓs)(1) does not occur at k-1.

The string $(\ell, 0)$ maps to a string of length $\ell - 1$, with label zero under $\delta \circ \delta$ and singular label under $\tilde{\delta} \circ \delta$. Hence we need to show that $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. By the change in vacancy numbers we have

(1.32)
$$p_{\ell-1}^{(k)}(\tilde{\nu}) = p_{\ell-1}^{(k)} - \chi(\tilde{\ell}^{(k-1)} \le \ell - 1) - \chi(\ell^{(k-1)} \le \ell - 1)$$

By (1.9), (1.14) and (1.17), $p_{\ell-1}^{(k)} = 2 - m_{\ell}^{(k-1)}$. Hence if $m_{\ell}^{(k-1)} = 2$ and the nonnegativity of vacancy numbers, it follows that $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. If $m_{\ell}^{(k-1)} = 1$, it follows that $p_{\ell-1}^{(k)} = 1$. We need to show that either $\dot{\ell}^{(k-1)} < \ell$ or $\tilde{\ell}^{(k-1)} < \ell$. Since by assumption case I.(ℓs)(1) does not hold at k - 1, we have $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} = \ell$ by (1.2) which proves the assertion. Finally, if $m_{\ell}^{(k)} = 0$, we must have $\dot{\ell}^{(k-1)}, \tilde{\ell}^{(k-1)} < \ell$. Furthermore, $p_{\ell-1}^{(k)} = 2$ and by the same arguments as before $\tilde{\ell}^{(k-1)} < \ell$. Hence by (1.32), $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$.

The string $(\ell', 0)$ is mapped to a singular string of length $\ell' - 1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta_{-\tilde{\lambda}}$

If $\tilde{\ell}^{(k)} = \dot{\tilde{s}}^{(k)} = \ell''$, the string $(\ell'', 0)$ is mapped to a string of length $\ell'' - 1$ of label zero under $\tilde{\delta} \circ \delta$ and of singular label under $\delta \circ \tilde{\delta}$. Hence we need to show that $p_{\ell''-1}^{(k)}(\dot{\nu}) = 0$. Note that

$$p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = p_{\ell''-1}^{(k)} - \chi(\dot{\tilde{s}}^{(k+1)} < \ell'') + \chi(\ell'' \le \tilde{\ell}^{(k+1)}).$$

By the proof of Lemma 1.1 $p_{\ell''-1}^{(k)} = 0$. If case I. $(\ell s)(1)$ holds at k+1, both other terms are zero. If case I. $(\ell s)(1)$ holds at k+1, the other two expressions yield -1 and 1 respectively, which proves the assertion. The string $(\tilde{s}^{(k)}, 0)$ is mapped to a string of length $\tilde{s}^{(k)} - 1$ of label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$.

If $\dot{\ell}^{(k)} = \tilde{s}^{(k)} = \ell''$, the string $(\ell'', 0)$ is mapped to a string of length $\ell'' - 1$ of label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The string $(\ell''', 0)$ is mapped to a string of length $\ell''' - 1$ of label 0 under $\tilde{\delta} \circ \delta$ and singular label under $\delta \circ \tilde{\delta}$. Hence it needs to be shown that $p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = 0$. By the change in vacancy numbers

$$p_{\ell'''-1}^{(k)}(\dot{\tilde{\nu}}) = p_{\ell'''-1}^{(k)} - \chi(\dot{\tilde{\ell}}^{(k+1)} < \ell''') + \chi(\tilde{s}^{(k-1)} \ge \ell''').$$

By the proof of Lemma 1.1 $p_{\ell''-1}^{(k)} = 0$ and the value of the other two terms is -1 and 1, respectively, which proves the assertion.

Now suppose that case I.(ℓs)(1) holds at k-1. Then by the proof of Lemma 1.1 $m_{\ell}^{(k)} = m_{\ell}^{(k+1)} = 2, 1 \le m_{\ell}^{(k-1)} \le 2$ and $p_{\ell}^{(k)} = p_{\ell+1}^{(k)} = 0$. Hence by (1.1) $m_{\ell}^{(k-1)} - 2 + p_{\ell-1}^{(k)} \le 0$. If $m_{\ell}^{(k-1)} = 2$, then $p_{\ell-1}^{(k)} = 0$ and by (1.32) also $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. If $m_{\ell}^{(k-1)} = 1$ we must have $\dot{\ell}^{(k-1)} < \ell$ and by the change in vacancy numbers $p_{\ell-1}^{(k)} \ge 1$. Hence by the previous inequality $p_{\ell-1}^{(k)} = 1$ and by (1.32) $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. The same is true for the selected string $(\ell', 0)$ since $\ell = \ell'$ in this case. The proof for the selected strings $(\ell'', 0)$ and $(\tilde{s}^{(k)}, 0)$ goes through as before.

Selected strings, case I.(ℓs)(1'). This case is analogous to the proof of case I.(ℓs)(1). Selected strings, case I.(ℓs)(2). The proof for the string (ℓ , 0) is almost identical to the proof for case I.(ℓs)(1). When $\ell' = \ell$, the string (ℓ' , 0) also changes as required. If $\ell' > \ell$, it needs to be shown that $p_{\ell'-1}^{(k)}(\tilde{\nu}) = 0$. By the change in vacancy number

$$p_{\ell'-1}^{(k)}(\tilde{\nu}) = p_{\ell'-1}^{(k)} + \chi(\ell^{(k)} < \ell') - \chi(\tilde{\ell}^{(k-1)} < \ell') = 0 + 1 - 1 = 0$$

where we used that $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)} = \ell$ since for $\ell < \ell'$ case I.(ℓs)(2) does not hold at k-1.

The string $(\ell'', 0)$ is mapped to a string of length $\ell'' - 1$ with singular label by $\delta \circ \tilde{\delta}$ and label zero by $\tilde{\delta} \circ \delta$. Hence it needs to be shown that $p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = 0$. The vacancy number changes as

$$p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = p_{\ell''-1}^{(k)} - \chi(\dot{\tilde{\ell}}^{(k-1)} < \ell'') + \chi(\tilde{s}^{(k-1)} \ge \ell'').$$
17

By the proof of Lemma 1.1 $p_{\ell''-1}^{(k)} = 0$. Except for the first occurrence of case I. $(\ell s)(2)$ the other two terms are zero as well. If case I. $(\ell s)(2)$ occurs at k for the first time, $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell < \ell''$ and $\tilde{s}^{(k-1)} \geq \ell''$, so that again $p_{\ell''-1}^{(k)}(\dot{\nu}) = 0$ as claimed.

Finally, if $\ell''' > \ell''$ we need to show that $p_{\ell'''-1}^{(k)}(\dot{\tilde{\nu}}) = 0$. The vacancy numbers change as $p_{\ell'''-1}^{(k)}(\dot{\tilde{\nu}}) = p_{\ell'''-1}^{(k)} - \chi(\dot{\tilde{\ell}}^{(k+1)} < \ell''') + \chi(\tilde{\ell}^{(k-1)} \ge \ell''') = 0 - 1 + 1 = 0$ by the details of the proof of Lemma 1.1.

Selected strings, case II.(1). The string $(\tilde{\ell}^{(k)}, 0)$ is mapped to a string of length $\tilde{\ell}^{(k)} - 1$ under both $\tilde{\delta} \circ \delta$ and $\delta \circ \tilde{\delta}$. The singular string of length $\dot{s}^{(k)}$ is mapped to a singular string of length $\dot{s}^{(k)} - 1$ under both $\tilde{\delta} \circ \delta$ and $\delta \circ \tilde{\delta}$.

Finally, the string $(\ell, 0)$ is mapped to a singular string of length $\ell - 2$ under $\delta \circ \tilde{\delta}$ and a string of label 0 of length $\ell - 2$ under $\tilde{\delta} \circ \delta$. Hence we need to show that $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}}) = 0$. By the change in vacancy number $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}}) = p_{\ell-2}^{(k)} - \chi(\tilde{s}^{(k+1)} \leq \ell - 2) - \chi(\dot{\tilde{\ell}}^{(k-1)} \leq \ell - 2)$. If $p_{\ell-1}^{(k)} = 0$, then $m_{\ell-1}^{(k)} = 0$ and hence by (1.1) $p_{\ell-2}^{(k)} = 0$. Otherwise by (1.24) $p_{\ell-1}^{(k)} = 1$, $\tilde{s}^{(k+1)} < \ell$ and $\dot{\ell}^{(k-1)} < \ell$. In this case $m_{\ell-1}^{(k)} = 0$ since else $\tilde{\delta}$ or δ would pick a string of length $\ell - 1$ in $(\nu, J)^{(k)}$. Hence by (1.1)

(1.33)
$$m_{\ell-1}^{(k-1)} + m_{\ell-1}^{(k+1)} + p_{\ell-2}^{(k)} + p_{\ell}^{(k)} \le 2.$$

If $p_{\ell-2}^{(k)} = 0$, then also $p_{\ell-2}^{(k)}(\dot{\nu}) = 0$ and we are done. Assume that $p_{\ell-2}^{(k)} = 1$. We need to show that either $\tilde{s}^{(k+1)} \leq \ell - 2$ or $\dot{\ell}^{(k-1)} \leq \ell - 2$, so that $p_{\ell-2}^{(k)}(\dot{\nu}) = 0$ as required. Suppose that $\tilde{s}^{(k+1)} > \ell - 2$ and $\dot{\ell}^{(k-1)} > \ell - 2$, which implies that $\tilde{s}^{(k+1)} = \dot{\ell}^{(k-1)} = \ell - 1$. But by (1.33) either $m_{\ell-1}^{(k-1)} = 0$ or $m_{\ell-1}^{(k+1)} = 0$ which yields a contradiction. Next assume that $p_{\ell-2}^{(k)} = 2$. In this case (1.33) implies that $m_{\ell-1}^{(k-1)} = m_{\ell-1}^{(k+1)} = 0$, so that $\tilde{s}^{(k+1)}, \dot{\ell}^{(k-1)} \leq \ell - 2$. Hence $p_{\ell-2}^{(k)}(\dot{\nu}) = p_{\ell-2}^{(k)} - \chi(\tilde{s}^{(k+1)} \leq \ell - 2) - \chi(\dot{\ell}^{(k-1)} \leq \ell - 2) = 0$ as required.

Selected strings, case II.(2). The selected string $(\tilde{\ell}^{(k)}, 0)$ is mapped to a string of length $\tilde{\ell}^{(k)} - 1$ with label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The selected singular string of length $\dot{s}^{(k)}$ is mapped to a singular string of length $\dot{s}^{(k)} - 1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The selected singular string of length $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ is mapped to a singular string of length $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)}$ is mapped to a singular string of length $\dot{\ell}^{(k)} - 1$, and the selected string of length $\tilde{s}^{(k)} = \tilde{s}^{(k)}$ with label 0 is mapped to a string of length $\tilde{s}^{(k)} - 1$ with label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$.

Selected strings, case II.(3)(i). The argument for the selected strings of length $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$ and $\dot{s}^{(k)} = \dot{\tilde{s}}^{(k)}$ is the same as in the previous cases. To show that the selected strings of length $\ell = \dot{\ell}^{(k)} = \tilde{s}^{(k)}$ obtain the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$, it suffices to show that $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. By the change in vacancy numbers

(1.34)
$$p_{\ell-1}^{(k)}(\tilde{\nu}) = p_{\ell-1}^{(k)} - \chi(\dot{\ell}^{(k-1)} \le \ell - 1) - \chi(\tilde{\dot{s}}^{(k+1)} \le \ell - 1)$$

and by (1.1)

(1.35)
$$p_{\ell-1}^{(k)} + p_{\ell+1}^{(k)} + m_{\ell}^{(k-1)} + m_{\ell}^{(k+1)} \le 2$$

Hence $p_{\ell-1}^{(k)} \leq 2$. If $p_{\ell-1}^{(k)} = 0$, then by (1.34) and the nonnegativity of the vacancy numbers also $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. If $p_{\ell-1}^{(k)} = 1$, by (1.34) $\dot{\ell}^{(k-1)} = \ell$ or $\tilde{s}^{(k+1)} = \ell$ which requires $m_{\ell}^{(k-1)} = 1$ or $m_{\ell}^{(k+1)} = 1$. By (1.35) this implies that $m_{\ell}^{(k+1)} = 0$ or $m_{\ell}^{(k-1)} = 0$ so that $\tilde{s}^{(k+1)} \leq \ell - 1$ or $\dot{\ell}^{(k-1)} \leq \ell - 1$. By (1.34) in turn we have $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0$. If $p_{\ell-1}^{(k)} = 2$, we

must have $m_{\ell}^{(k-1)} = m_{\ell}^{(k+1)} = 0$ by (1.35). Hence $\tilde{s}^{(k+1)}, \ell^{(k-1)} \leq \ell - 1$ and by (1.35) $p_{\ell-1}^{(k)}(\tilde{\nu}) = 0.$

Let $\ell' = \dot{\ell}^{(k)} = \tilde{s}^{(k)}$. To show that the selected strings of length ℓ' obtain the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$, it suffices to show that $p_{\ell'-1}^{(k)}(\dot{\tilde{\nu}}) = 0$. Since $p_{\ell'-1}^{(k)} = 0$, we have $p_{\ell'-1}^{(k)}(\dot{\tilde{\nu}}) = \chi(\tilde{s}^{(k-1)} \geq \ell') - \chi(\dot{\tilde{\ell}}^{(k-1)} < \ell')$. Two cases can hold. Either $\tilde{s}^{(k-1)} \geq \tilde{s}^{(k)} = \ell'$ and case II.(3)(i) does not hold at k-1 so that $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)} = \ell$. In this case $p_{\ell'-1}^{(k)}(\dot{\nu}) = \chi(\tilde{s}^{(k-1)} \ge \ell') - \chi(\dot{\ell}^{(k-1)} < \ell') = 1 - 1 = 0$ as required. Otherwise case II.(3)(i) holds at k-1 so that $\tilde{s}^{(k-1)} = \dot{\ell}^{(k-1)} = \ell'$ and $\tilde{s}^{(k-1)} = \ell < \ell'$, so that $p_{\ell'-1}^{(k)}(\dot{\tilde{\nu}}) = \chi(\tilde{s}^{(k-1)} \ge \ell') - \chi(\dot{\tilde{\ell}}^{(k-1)} < \ell') = 0 - 0 = 0.$

Selected strings, case II.(3)(ii). The proof for the selected strings of length $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$ and $\dot{\ell}^{(k)} = \tilde{s}^{(k)} = \ell$ is the same as for case II.(3)(i). The selected string of length $\dot{s}^{(k)} =$ $\dot{\tilde{\ell}}^{(k)} = \ell'$ is mapped to a singular string of length $\ell' - 1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. To show that the selected string of length $\tilde{\dot{s}}^{(k)} = \dot{\tilde{s}}^{(k)} = \ell''$ obtains the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$ it needs to be shown that $p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = 0$. Since $p_{\ell''-1}^{(k)} = 0$, we have $p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = \chi(\tilde{s}^{(k-1)} \ge \ell'') - \chi(\dot{\tilde{s}}^{(k+1)} < \ell'')$. Since case II.(3) cannot occur before case II.(3)(ii), it follows from (1.3) that $\tilde{s}^{(k-1)} \geq \tilde{\tilde{s}}^{(k)} = \dot{\tilde{s}}^{(k)} = \ell''$. By induction either case II.(3)(i) holds at k+1 in which case $\dot{\tilde{s}}^{(k+1)} = \dot{s}^{(k+1)} = \ell' < \ell''$ or $\dot{\tilde{s}}^{(k+1)} \le \dot{s}^{(k)} = \ell < \ell''$. Hence $p_{\ell''-1}^{(k)}(\dot{\tilde{\nu}}) = \chi(\tilde{s}^{(k-1)} \ge \ell'') - \chi(\dot{\tilde{s}}^{(k+1)} < \ell'') = 1 - 1 = 0$ as required.

Unselected strings. For the rest of the proof, assume that (i, x) is a string in $(\nu, J)^{(k)}$ that is not selected by δ or $\tilde{\delta}$, and is such that its image under $\tilde{\delta}$ (resp. δ) is not selected by δ (resp. δ).

Using the fact that δ preserves labels and $\tilde{\delta}$ preserves colabels, it is enough to show that

(1.36)
$$p_i^{(k)}(\nu) - p_i^{(k)}(\tilde{\nu}) = p_i^{(k)}(\dot{\nu}) - p_i^{(k)}(\tilde{\nu}),$$

which by the change in vacancy numbers is equivalent to

(1.37)

$$\chi(\tilde{\ell}^{(k-1)} \leq i < \tilde{\ell}^{(k)}) - \chi(\tilde{\ell}^{(k)} \leq i < \tilde{\ell}^{(k+1)}) + \chi(\tilde{s}^{(k+1)} \leq i < \tilde{s}^{(k)}) - \chi(\tilde{s}^{(k)} \leq i < \tilde{s}^{(k-1)}) = \chi(\tilde{\ell}^{(k-1)} \leq i < \tilde{\ell}^{(k)}) - \chi(\tilde{\ell}^{(k)} \leq i < \tilde{\ell}^{(k+1)}) + \chi(\tilde{s}^{(k+1)} \leq i < \tilde{s}^{(k)}) - \chi(\tilde{s}^{(k)} \leq i < \tilde{s}^{(k-1)}).$$

Consider the functions

$$\begin{split} &\Delta_i^{(k)} = \chi(\tilde{\ell}^{(k)} \leq i) - \chi(\tilde{\ell}^{(k)} \leq i) & \nabla_i^{(k)} = \chi(\tilde{s}^{(k)} \leq i) - \chi(\tilde{s}^{(k)} \leq i) \\ &b_i^{-(k)} = \chi(m_i^{(k+1)} > 0) \Delta_i^{(k)} & c_i^{-(k)} = \chi(m_i^{(k+1)} > 0) \nabla_i^{(k)} \\ &b_i^{=(k)} = \chi(m_i^{(k)} > 0) \Delta_i^{(k)} & c_i^{=(k)} = \chi(m_i^{(k)} > 0) \nabla_i^{(k)} \\ &b_i^{+(k)} = \chi(m_i^{(k-1)} > 0) \Delta_i^{(k)} & c_i^{+(k)} = \chi(m_i^{(k-1)} > 0) \nabla_i^{(k)}. \end{split}$$

For parts *i* that occur in $\nu^{(k)}$, (1.37) is implied by the following two equations:

(1.38)
$$b_i^{-(k-1)} - b_i^{=(k)} = b_i^{=(k)} - b_i^{+(k+1)}$$

 $\begin{aligned} & \upsilon_i - \upsilon_i = \upsilon_i - \upsilon_i, \\ & c_i^{-(k-1)} - c_i^{=(k)} = c_i^{=(k)} - c_i^{+(k+1)}. \end{aligned}$ (1.39)

It will be shown that

- (1.40) $b_i^{-(k)} = b_i^{=(k)} = b_i^{+(k)} = 0$
- (1.41) $c_i^{-(k)} = c_i^{=(k)} = c_i^{+(k)} = 0$

for unselected strings in $\nu^{(k+1)}$, $\nu^{(k)}$ and $\nu^{(k-1)}$, respectively. For cases I.(ℓ a), I.(ℓ b)(2), II.(1-3) equation (1.40) is true since $\tilde{\ell}^{(k)} = \tilde{\ell}^{(k)}$. Similarly for cases I.(sa), I.(sb)(2), II.(2), II.(1')(2') and (3')(i) equation (1.41) is true since $\tilde{s}^{(k)} = \tilde{s}^{(k)}$ holds. Up to minor modifications the proof of (1.40) for cases I.(ℓ b)(1) and I.(ℓ b)(3) and of (1.41) for cases I.(sb)(1) and I.(sb)(3) is the same as in [1, Appendix A]. Also note that since $p_i^{(k)}(\tilde{\nu}) = p_i^{(k)}(\tilde{\nu})$ (1.36) is equivalent to $p_i^{(k)}(\nu) - p_i^{(k)}(\tilde{\nu}) = p_i^{(k)}(\tilde{\nu}) - p_i^{(k)}(\tilde{\nu})$, which, in terms of the arguments, just means interchanging dot and tilde everywhere. Hence the proof of (1.40) for cases II.(1-3) and I.(ℓs)(1') follows from cases II.(1-3) and I.(ℓs)(1). Similarly, the proof of (1.41) for cases II.(1-3) and I.(ℓs)(1') follows from the proof for cases II.(1'-3') and I.(ℓs)(1). Hence it remains to prove (1.40) for cases I.(ℓs)(1),(2) and (1.41) for cases I.(ℓs)(1),(2) and II.(3')(ii).

Unselected strings, (1.40). Let us first focus on (1.40) in case I.(ℓs)(1). Note that $\Delta_i^{(k)} = \chi(\ell \le i < \ell'')$ and by the proof of case I.(ℓs)(1) $m_j^{(k-1)} = m_j^{(k)} = m_j^{(k+1)} = 0$ for $\ell < j < \ell'$ and $\ell' < j < \ell''$. By the proof of case I.(ℓs)(1) we have $m_{\ell'}^{(k+1)} = 2$ and $\dot{\ell}^{(k+1)} = \dot{s}^{(k+1)} = \ell'$ so that both strings of length ℓ' are selected. Similarly, $1 \le m_{\ell'}^{(k)} \le 2$, $\dot{s}^{(k)} = \ell'$ and $\dot{\ell}^{(k)} = \ell'$ if $m_{\ell'}^{(k)} = 2$. Hence again all strings of length ℓ' are selected in $\nu^{(k)}$. Finally $0 \le m_{\ell'}^{(k-1)} \le 2$. If $m_{\ell'}^{(k-1)} = 2$, then by the proof of lemma 1.1 case I.(ℓs)(1) holds at k - 1 and $\dot{\ell}^{(k-1)} = \dot{s}^{(k-1)} = \ell'$. If $m_{\ell'}^{(k-1)} = 1$, then case I.(ℓs)(1) holds at k - 1 for the first time and $\dot{s}^{(k-1)} = \ell'$. Hence again, all strings of length ℓ' in $(\nu, J)^{(k)}$ are selected. This implies that

(1.42)
$$b_i^{-(k)} = \chi(i = \ell)\chi(m_i^{(k+1)} > 0)$$
$$b_i^{=(k)} = \chi(i = \ell)\chi(m_i^{(k)} > 0)$$
$$b_i^{+(k)} = \chi(i = \ell)\chi(m_i^{(k-1)} > 0).$$

Note that either $\ell = \ell'$, in which case the above arguments already show that all strings are selected, or $\ell < \ell'$ and case $I_i(\ell s)(1)$ occurs at k for the first time. In the latter case $m_{\ell}^{(k)} = 1$ and $\dot{\ell}^{(k)} = \tilde{\ell}^{(k)} = \ell$ so that the string of length ℓ in $\nu^{(k)}$ is selected. If $\ell < \ell'$ and case $I_i(\ell s)(1)$ holds at k for the first time, equation (1.11) must hold and hence by (1.15) $m_{\ell}^{(k+1)} = 0$ so that $b_i^{-(k)} = 0$ for all unselected strings i. The proof that $b_i^{+(k)} = 0$ for all unselected strings i is very similar to the proof [1, Appendix A, Unselected strings, case 3].

Next consider (1.40) for the case $I_{\ell}(\ell s)(2)$. In this case $\Delta_i^{(k)} = \chi(\ell \le i < \ell'')$ and $m_j^{(k-1)} = m_j^{(k)} = m_j^{(k+1)} = 0$ for $\ell < j < \ell'$ and $\ell' < j < \ell''$. By the same arguments as in case $I_{\ell}(\ell s)(1)$ all existing strings of length ℓ' are selected. Hence (1.42) holds. Again either $\ell = \ell'$, in which case the previous arguments already show that all strings are selected, or $\ell < \ell'$ and case $I_{\ell}(\ell s)(2)$ occurs at k for the first time. In the latter case $m_{\ell}^{(k)} = 1$ and $\ell^{(k)} = \tilde{\ell}^{(k)} = \ell$ so that the string of length ℓ in $\nu^{(k)}$ is selected. If $\ell < \ell'$ and case $I_{\ell}(\ell s)(2)$ holds at k for the first time, equation (1.11) must hold and hence by (1.15) $m_{\ell}^{(k+1)} = 0$ so that $b_i^{-(k)} = 0$ for all unselected strings i. The proof that $b_i^{+(k)} = 0$ for all unselected strings i is very similar to the proof [1, Appendix A, Unselected strings, case 3].

Unselected strings, (1.41). Consider (1.41) for the case $I.(\ell s)(1)$. We have $\tilde{s}^{(k)} = \tilde{s}^{(k)}$ so that $\nabla_i^{(k)} = 0$ unless $\tilde{\ell}^{(k)} = \tilde{s}^{(k)} = \tilde{s}^{(k+1)} = \ell''$, $\dot{\tilde{s}}^{(k)} = \tilde{s}^{(k)} = \ell'''$, $m_{\ell''}^{(k-1)} = 0$, $m_{\ell''}^{(k)} = 1$ and $m_{\ell''}^{(k+1)} = 2$ if case $I.(\ell s)(1)$ does not hold at k-1. In the former case (1.41) holds. In the latter case $\nabla_i^{(k)} = \chi(\ell'' \le i < \ell''')$ and $m_j^{(k-1)} = m_j^{(k)} = m_j^{(k+1)} = 0$ for $\ell'' < j < \ell'''$. Hence

$$\begin{split} c_i^{-(k)} &= \chi(i = \ell'') \chi(m_{\ell''}^{(k+1)} > 0) \\ c_i^{=(k)} &= \chi(i = \ell'') \chi(m_{\ell''}^{(k)} > 0) \\ c_i^{+(k)} &= \chi(i = \ell'') \chi(m_{\ell''}^{(k-1)} > 0) = 0 \end{split}$$

Since $m_{\ell''}^{(k)} = 1$ and $\tilde{s}^{(k)} = \ell''$ the string of length ℓ'' is selected. Similarly $m_{\ell''}^{(k)} = 2$, $\tilde{s}^{(k+1)} = \ell''$ and either $\tilde{s}^{(k+1)} = \ell''$ if case I. $(\ell s)(1)$ holds at k + 1 or $\tilde{\ell}^{(k+1)} = \ell''$ otherwise. In either case both strings of length ℓ'' are selected in $\nu^{(k+1)}$. This proves (1.41).

Next consider (1.41) for the case I.(ℓs)(2). In this case $\nabla_i^{(k)} = \chi(\ell' \le i < \ell''')$ and by the proof of lemma 1.1 $m_j^{(k-1)} = m_j^{(k)} = m_j^{(k+1)} = 0$ for $\ell' < j < \ell''$ and $\ell'' < j < \ell'''$. The strings of lengths ℓ' and ℓ'' in $\nu^{(k+1)}$ are all selected since by the proof of lemma 1.1 $m_{\ell'}^{(a)} = m_{\ell''}^{(a)} = 2$ for $k < a \le n-2$, $m_{\ell'}^{(n-1)} = m_{\ell''}^{(n)} = m_{\ell''}^{(n-1)} = m_{\ell''}^{(n)} = 1$ and $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell'$ and $\tilde{\ell}^{(k+1)} = \tilde{s}^{(k+1)} = \ell''$. Similarly, either $m_{\ell'}^{(k)} = 2$ and $\tilde{\ell}^{(k)} = \tilde{s}^{(k)}$ or $m_{\ell'}^{(k)} = 1$ and $\tilde{\ell}^{(k)} = \ell'$. This shows that all strings of lengths ℓ' are selected in $\nu^{(k)}$. Also, either $m_{\ell''}^{(k)} = 2$ and $\tilde{\ell}^{(k)} = \tilde{s}^{(k)}$ or $m_{\ell''}^{(k)} = 1$ and $\tilde{\ell}^{(k-1)} = 0$, $m_{\ell''}^{(k-1)} = 1$ and $\tilde{\ell}^{(k-1)} = \ell'$ or $m_{\ell''}^{(k-1)} = 2$ and $\tilde{\ell}^{(k-1)} = \delta^{(k-1)} = \ell'$. Similarly, to show that all strings of length ℓ'' in $\nu^{(k-1)}$ are selected, observe that either $m_{\ell''}^{(k-1)} = 0$, $m_{\ell''}^{(k-1)} = 1$ and $\tilde{\ell}^{(k-1)} = \ell''$ or $m_{\ell''}^{(k-1)} = 2$ and $\tilde{\ell}^{(k-1)} = \delta^{(k-1)} = \ell'$.

Finally consider (1.41) for the case II.(3')(ii). Set $\ell = \tilde{\ell}^{(k)} = \dot{s}^{(k)}, \ell' = \tilde{s}^{(k)} = \tilde{\ell}^{(k)}$ and $\ell'' = \dot{\tilde{s}}^{(k)} = \tilde{s}^{(k)}$. From the proof of lemma 1.1 it follows that $m_{\ell'}^{(k-1)} = 0, m_{\ell'}^{(k)} = 1, m_{\ell'}^{(k+1)} = 2$ and $m_j^{(k-1)} = m_j^{(k)} = m_j^{(k+1)} = 0$ for $\ell' < j < \ell''$. Since $\nabla_i^{(k)} = \chi(\ell' \le i < \ell'')$ we have

$$\begin{split} c_i^{-(k)} &= \chi(i=\ell')\chi(m_{\ell'}^{(k+1)}>0)\\ c_i^{=(k)} &= \chi(i=\ell')\chi(m_{\ell'}^{(k)}>0)\\ c_i^{+(k)} &= \chi(i=\ell')\chi(m_{\ell'}^{(k-1)}>0) = 0 \end{split}$$

The single string of length ℓ' in $\nu^{(k)}$ is selected, so that $c_i^{=(k)} = 0$ for all unselected strings *i*. Furthermore, if case II.(3')(i) holds at k + 1, then $\ell' = \tilde{s}^{(k+1)} = \tilde{\delta}^{(k+1)} = \tilde{\ell}^{(k+1)}$ so that both strings of length ℓ' in $\nu^{(k+1)}$ are selected. Otherwise $\tilde{\ell}^{(k+1)} = \ell' = \tilde{s}^{(k+1)}$ and again both strings of length ℓ' in $\nu^{(k+1)}$ are selected. \Box

REFERENCES

A. N. Kirillov, A. Schilling and M. Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Mathematica (N.S.) 8 (2002) 67–135.

[2] A. Schilling, A bijection between type $D_n^{(1)}$ crystals and rigged configurations, J. Algebra **285** (2005) 292–334.