SUPPLEMENTARY NOTES ON “A BIJECTION BETWEEN TYPE D"
CRYSTALS AND RIGGED CONFIGURATIONS”

ANNE SCHILLING

These notes supplement [2, Appendix C].

1. PROOF OF [§,6] = 0

One may easily verify that (see also [1, Eq. (3.10)])
a a a b a
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(1.1)

The proof of [9, 5] = 0 is given here by Lemmas 1.1 and 1.2 below. We rely here heavily
on [1, Appendix A].

Let (v, J) € RC()\, B) where B = (B'!)®? @ B’. The following notation is used:
S(v,J) = (i, J)
o(v, J) = (,J)
§oo(v,J) = (5,.J)
§0b(v,J) = (5,J).

Furthermore, let {/(*), (7} {¢(k) 5(k)1, {g(k), 5"} and {Z(’“), 5%} be the lengths of
the strings that are shortened in the transformations (v, J) — (i, J), (v, J) — (7,J),
(0,J) — (1, J) and (¥, J) — (i, J), respectively. We call the strings, whose lengths are
labeled by an /¢, ¢-strings and those labeled by an s, s-strings.

Lemma 1.1. The following cases occur at (v, J)*):

1. Nontwisted case. In this case the (-string selected by 6 (resp. 8) in (v, J )(k) is
different from the s-string selected by ) (resp. 0) in (v, J)(k). For the (-strings one
of the following must hold: '

(ta) Generic case. If § and & do not select the same (-string, then (%) = (%) and
ik — jk).

(/b) Doubly singular case. In this case § and b select the same (-string, so that
() = ¢(F) —. 0. Then ~ )

(D Ifé(k) < l(or %) < ¢) then (%) = ¢(%) = ¢ — 1 and mEkfll) = 0 for
k<n-—2 méi}l) = mé@l =0fork=n—2and méﬁzg) = 0 for
k=n—-1n

() If IR = ¢ (or {%) = {) then case L((s)(1°) (or L({s)(1)) holds or
gk = §) — g,



3) Iff(k) > l (0r€ > () then case L(¢s)(1°,2) (or L.(¢s)(1, 2)) holds or
§R) — ) gng (k) < JlktD) gk) < (64D fork < — 2, (n=2) <
min{ (=1 ¢}, f(n=2) < min{f=V (MY for k = n — 2, and
() < 5(n=2) (k) < 3(n=2) for k =n—1,n.
For the s-strings, case 1.({s) holds or one the followmg must hold:
(sa) Generic case. If § and 6 do not select the same s-string, then §%) = %) and
5(k) — 5(k).
(sb) Doubly singular case. In this case § and & select the same s-string, so that
) = 5(k) = 5. Then
@)) 1f§(’€) <s (ors < s) then s0) = §0) = s — 1 and m(k 11) 0.
2) IfsTW =s(ors 5k = s) then k) = k) = g,
3) I]Zg(k)) > s (or §(k) > s) then s = k) 5(F) < 5D gpd 5 <
5=,
(ls) Mixed case. One of the following holds:

(1) 08) = §b) —. g j0) = g(b) — (D)) — g k) — F) — g
%) = 5 or possibly the same conditions for £ and ¢, (R = 5k =

D) — g Gk — (k) — g1 méf“fl) 0, é”) —1, gﬁ+1) =2if

case I.(¢s)(1) does not hold at k — 1. Furthermore, either E(k) < Jk+1)
or case L(¢s)(1) holds at k + 1 with the same values of ¢’ and {".
Similarly, either 5§ < $k=1) or case L(0s)(1) holds at k — 1 with the
same values of ' and (" .

(1) 60 = J0) =, g, () = 5 — 1) — g1, j0) = 300 —; g7

50 = §() or possibly the same conditions for € and ', (%) = (k) =

S(+1) — o 3(k) — (k) — o mgcl—l) 0, E”) -1, %+1) = 2if

case L.(¢s)(1’) does not hold at k—1. Furthermore, either K(k) < fk+1)
or case L.({s)(1’) holds at k + 1 with the same values of ¢’ and {".
Similarly, either 5 < 5k=1) o case L(¢s)(1’) holds at k — 1 with
the same values of ¢’ and ¢
2) Fork <n—2(resp. k =n—2) (k) = k) = g s(k) = (k) =
kA = gk t1) —. ¢/ (pesp. §) = gk) = f(n=1) — j(n) — g(n-1) —
() =g E(k) = E(k) = ¢, §®) = i) .= 0" and case 1.(¢s)(2)
holds at k + 1 (resp. n — 1 and n) with the same values of ¢' and ¢"
and 0 =0, 0" = {". Also, either 3¥) < 3k=1) gnd §5) < §(k=1) o
case 1.((s)(2) holds at k — 1 with the same values of ¢’ and {". For k =
n—1,n (®) = (k) = 3n=2) — 5(n=2) — ¢ gpq (k ) — k) — g,
In addition case I.(£s)(2) holds at n — 2 with the same values of V' and
4
1. Twisted case. In this case the (-string in (v, J)*) selected by § is the same as
the s-string selected by & or vice versa. In the first case () = 3(k) —. 0. Then

o) = é(k) and one of the following holds:

(1) If0%) < ¢, then () = §(F) = ¢ — (kH) =00 méktl)( ) =0, and
mgli_ll) =0or m(k 1)( )=0. Furthermore 5(k) = 5(k),

@) IF0®) = 0, then () = 39) = ¢ and %) = (8,
(3) If I%) > ¢, then



(@) £ = 5®) gnd 50 = 30), o
(i) ) = 5 and 5 = §k) < 50-=1),
Furthermore, either ((F) < ((k+1) op j(k) — j(k+1) g(k) — glk+1) mgkﬂ) =
1 and Case II.(3)(i) holds at k + 1. Similarly, either §F) < 5k=1) op (k) =
é(kfl), k) — Z(kfl), mék_l) = 1 and Case I1.(3) holds at k — 1.
If the (-string in (v, J)(k) selected by ) is.the same as the s-string selected by 9,
then lZ(’i) =35k =y, In this case () = 1% and one of the following holds:
(1) Ifﬂm < 0, then {F) = k) = ¢ _q, mgf[l) = 0or mékjl)(ﬂ) =0, and
myi_ll) =0or myi_ll)(ﬂ) = 0. Furthermore 3*) = (k)
@) L) = £, then i) = 50 = ¢ and 3®) = 58,
(3") If %) > ¢, then
(i) 0% = 50 and 5) = 50), or
(i) £®) =50 and §F) = §*) < gk=1),
Furthermore, either I(F) < {(k+1) op §(k) — plk+1) (k) — j(k+1) mgkﬂ) =
1 and Case 11.(3°)(i) holds at k + 1. Similarly, either k) < g(k=1) o p(k) —
!Z(kfl), k) — lf(kfl), mék_l) = 1 and Case I1.(3’) holds at k — 1.

Lemma 1.2. j = j

Proof of Lemma 1.1. The proof proceeds by induction on k in the following way. For k =

0,1,2,...,n the statements about the /-strings are proved assuming that the statements
about the ¢-strings hold for ¢ = 1,2,...,k — 1. The statements about the s-strings are
proved by induction on k = n — 2,n — 3,...,1 assuming that the statements for all /-

strings and the s-strings fori =n —2,n —3,... ,lc +1 hpld.
For the base case k = 0 we have £(0) = ¢(0) — (0) — p(0) — 1,
Note that

(k) < plk+1)
P0) < jlet1)

E(n_Q) S min{g(n_l)’g(n)}
(=2 < pin i), {01

unless case 1.(¢s)(1),(17),(2) or I1.(3),(3’) holds at k and k£ + 1. Similarly,

(1.2) forl1 <k<n-—2,

(k) < glk-1) j(n—1) () < 5(n—2)
e forl <k <n-2, max{l AREL

(13) G0 < gle) max{F D, {0} < 4(n-2)

unless case 1.(¢s)(1),(17),(2) or I1.(3),(3’) holds at k and k£ — 1.
I. Nontwisted case. For this case many arguments go through as in the proof for type A as
in [1, Appendix A]. Here we mainly point out the differences.
Case (¢a). The proof of the generic case is very similar to the proof of the generic case for

type A [1, Appendix A]. We focus here on k < n — 2. Observe that (k) = (%) s obtained
from () = ¢(k) by the involution 6. Hence we only prove the latter. The singular string
in (v, J)® of length /(*) remains singular in passing to (7, J)*). Since £(k=1) < ¢(¥) by
(1.2), it follows that /() < §(K),

If 2 = §(%) we are done. By induction hypothesis, /) > {k=1) > (k=1 _ 1 If

(k=1 < Z(k) < %) this is only possible if the string selected by ¢ acting on (7, j)(k) isa
3



string shortened by 4 acting on (v, .J)(*). This string in (7, J)*) has length either /(%) —
or 5(¥) — 1 and label 0. We show that this cannot occur. For this it suffices to show that

a4 M @)>0 if 4= < JR) < (R gng §E=1) < fR)
s pE_ @ >0 if (k=D < 50 < §(B) gpg =1 < 5k
If (k=1 1 = Z(k) < ™) case L. (¢b)(1) or IL.(1) occurs at k — 1, so that m%c) vo1 = =0
or méﬁzfl)_l(ﬁ) — 0. Hence ) = {*=1) _ 1 can only occur if /%) = §(k=1) = j(k=1)

if case L(/b)(1) holds at k — 1 or (%) = (k=1 = ¢(k=1) if case IL(1) holds at k — 1. To
prove that this cannot happen it suffices to show that

k . k (k— S(k— Pt 5
(1.6)  p) (@) >0 iftml) | =0and (D = {7D = 70 < j0)
A7 %) @) >0 itml), | =0and iD= k-0 = 5k < k),

Up to minor modifications, the proofs of (1.4)-(1.7) go through as the proofs of [1, (A.2)
and (A.3)].

The cases k = n — 1 and k = n can be proven in a similar fashion.
Case (¢/b)(1). The proof follows very closely the doubly singular case (1) in [1, Appendix
A]. Again we assume that k¥ < n — 2. The cases ¥ = n — 1,n go through up to minor

modifications. By assumption E(k) < {. By the same arguments as in [1, Appendix A] it

follows that /%) = ¢ — 1 and P () = 0.
First we show that the cases I. (65)(1),(1 ),(2), 11.(1°-3”) cannot occur at kjl. IfH.(l’-S’)
holds at k — 1 and the conditions of L(¢b)(1) at k, then ((*~1) = k=1 — g(k) — p(k) — ¢,

For case IL(1°) at k — 1, we have /(*=1) = ¢ — 1 so that pgkzl)(f/) = 0. Otherwise this
yields a contradiction to the fact that /(*~1) = ¢. But pE; 11)( ) = pE;k Yy X(é(k <
(-1 < W)y = pé'ill) + 1 > 1. On the other hand for case IL.(2’-3") HO) > E(k_l) >
(=1 — ¢ which contradicts our assumptions that g(k) < L. Case I.(ds)(2) at k — 1
requires case L.(¢s)(2) at k Wthh contradicts our assumption. If I.(¢/s)(1) holds at k£ — 1,
then ((k=1) = E(’“ 1) < ¢ and 6=V > ¢ which contradicts our assumption that Oy
since #(h—1) ) < gk Slmllarly, for L.(¢s)(1’ )é(k 1) — ¢ which contradicts /(%) < .

The goal is to show that 7K = ¢~ 1. Since i) = £, it follows that m§k)1 P)> 1.1t

suffices to show that /(*~1) <{¢—1and pﬁ )1( ) = 0. By the same arguments as in [1,
Appendix A] this implies that /(*) = ¢ — 1. Note that, since péjl(y) =0,

(1.8) PP = p () + x (@D < 0) = x ({4 < p).

Suppose that /(k=1) > (. Now k=) < i) = g1 50 {0h—1) # k=), By induction case
I.(¢a) or I1.(1-3) has to hold at k£ — 1 (since we showed before that cases 1.(¢s)(1),(1°),(2)
and I1.(1°-3”) cannot occur). In case I.(¢a) this yield; a contradi.ction by the same reasoning
as in [1, Appendix A]. In case IL(1-3) we have ((*=1) = (k) = (k) — 5(k=1) — 4
e}nd (k=1 — p(k=1) ~ ¢ which yields a contradiction in the evaluation of (1.8). Hence
(k=1 <y,



Next suppose that p( ) L (#) > 1. Then by (1.8), /=1 > ¢ and /=1 < ¢ — 1. Since
gk=1) #+ fe—1) by induction case I.(¢a) or I1.(1-3) holds at &k — 1. As before, cases II.(1-
3) yield a contradiction in evaluating (1.8). For cases I.(¢a) one obtains a conEradiction as
in [1, Appendix A]. Hence /(=1 < ¢ and p{*), () = 0 which implies P — k) — g1,

(k+1)

The proof that m, = 0 is the same as in [1, Appendix A].

The case E(k) < £ is obtained by the application by 6.
Case (/b)(2). By assumption (%) = ¢, so that by case L(¢b)(1) E(k > /. In addition
mgk) > 2 and pEk) = 0. By (1.2) Z(k 1) < ¢ unless case L(¢s)(1°) holds at k — 1 and k.
Since m(k) > 2and pg,k) = 0, we have Z(k) =/ so that case L(/b)(2) holds, unless 5*) = ¢
and m(k) =

Hence let us from now on assume that %) = ¢ and mgk) = 2. Note that in this case
k < n — 2. We will show that case I.(¢s)(1") holds with £ = ¢'. Note that §*) > ¢, since

by assumption (k) — . Note that mF) > 2 since Fk+1) = 5(++1 = ¢, and by (1.1)
p; )1 +p,§’21 —|—mék 1)—|—(m(k—i_1)—2)§2 fork <n—2

P T 4w Y e —2) < 2.

By similar arguments as in the proof [1, Appendix A case (3)] of type A it follows that

k)
p§+1 =0
(1.9) P =2 —m{FY
m§k+1):2 fork <n—2or myl_l):mé"):l fork =n — 2.

Let ¢ > ¢ be minimal such that m%) > 0. If no such ¢ exists, set £’ = oco. By (1.1) it
follows that pgk) =0forl <4< ¢ and mgk_l) = ml(»kﬂ) = 0for? < i < {". Hence
i = g

First assume that /(*T1) > ¢. We write down the arguments for £ < n — 2. The case
k=mn-—2is analogous Note that then case 1.(¢a) and I(sa) holds at k + 1 so that by

induction $k+1) < 5(k) — ¢, Since on the other hand £ = () < 5(k+1) it follows that
fU+1) — -+ — ¢ Since §k+) = ¢ and ¢®) = (B = ¢ and mgk) = 2, it follows
that §*) > /. Since mz(-k) =0forl < i< ¢ and p%) = 0, we have $§®) = ¢ unless

k) = ¢ and mgc,) = 1. We deal with this case later. In addition, since ml(»kﬂ) = 0 for
0 < i < 0", it follows that /(") = ¢ < {(k+1),

If /(k+1) = ¢, then ¢(*T1) = ¢. (Note that in this case k < n — 2, since for k = n — 2
we have ¢(n=1) = §(n) = ¢ which would imply that §("~2) = ¢. However this contradicts
¢("=2) = { since m(n_Q) EkH) Oforl <i< £’
and méfv,), mff,“) > 0. By the same arguments as above pEkH) =0forl <i</{, so

that E(kH) = (". Hence case L.(¢s)(1") holds at k + 1 with the same values for ¢ = (" and
¢". By induction $Ft1) = ¢ so that $*) = ¢ as claimed unless again $(*) = ¢ and
m(k) =1

Z// - . .

By (1.3) we have 5§11 < 5(*) unless possibly case L.(¢s)(1°) holds at k and k + 1.
However, if case I.(¢s)(1°) holds at k + 1 by induction §*T1) = 5(k+1) < 5(k) Hence by
the definition of 6 also s(*) = (%) unless $(*) = ¢ and mgc,) = 1.

5

= 2). Furthermore by (1.1), mg



Suppose ) = ¢ and m{})) = 1. Then P8 = 50) = ¢ and (%) > ¢ Let 0" > ¢"

be minimal such that m(%) > 0. By (1.1) with p{)_ | = pih) =0

(1.10) miED 4 (it —2) ) < 2.
Note that m;,H) > 2 Assume that mgf“) =1 (since $(¥) = ¢ we must have mgi“) >

1). Then by (1.1) mz,, = 1forall £ < a < n — 2. However this is a contradiction to the
fact that /(@) = (@) = ¢” for some a > k. This proves in particular that case 1.(¢s)(1”)
cannot hold at k& — 1. Furthermore, by (1.10) m;, =0, mﬁﬂ) = 2 and pgc,)ﬂ = 0.
Using (1.1) once again this implies pg ) = 0for ¢" < i < (" sothat §%) = (k) = g,
Note that m(k D' = 0 for £/ < i < £ in this case.

It remains to show that $(*) < 5(*=1) or case 1.(¢s)(1°) holds at k& — 1 with the same
values of ¢ = ¢ and ¢”. Since mgkfl) =0for ¢ < i < ¢ (resp. for ¢ < i < £" in
the special case that §(*) = ¢ and m%) = 1), it follows that 3*=1) > ¢ = §() (resp.
=1 > g — $(R)yif 5(k=1) > ¢ Hence assume that §*=1) = ¢.

If £=1) = ¢, then m{* ™" > 2 and by (1.9) m{* " = 2 and p{*| = 0. Let v < £ be
maximal such that m(k) 0. Then by (1.1) m(k - Ekﬂ) =0forv < i < {and
pgk) = 0 for v < i < /. Hence, if (k=1 < /¢, then E(k’l) < v and /) = y < / since
pg,k) = 0 which is a contradiction to our definition /(¥) = ¢. Hence /(*~1) = ¢ and case
I.(¢s)(1’) holds at k — 1 with the same value for £ = ¢’. Also ¢" is the same by (1.1).

Next assume £(*~1) < (. Then m(kfl) > 1land 0 < pék)l < 1 by (1.9). Note that
pg,k)l( )= pyc)l (E*=1 < ). 1f £+=1) < ¢, this implies thatp( ) =1 andp(k) (v) =
0. By induction case I. must hold at k — 1 and Jk=1) < §8) = ¢, TF ¢k < {this implies
that /(%) < ¢—1 which contradicts our assumption that #(¥) = ¢. The condition /(*~1) = ¢
can only occur for case 1.(¢b)(3) at k — 1. However, then Z(’“ = E(k 1) = ¢ which
contradicts m(kfl) = 1. Hence /(*~1) = /. The case pék)l = 0 yields a contradiction as
M —1and m{* Y = 1 by (1.9), so that case IL(1- 3) must hold at
k—1. Note thatpéjl(u) = pEJI —1 = 0. Hence if case IL.(1) holds at k —1, {1 = g1

SO thay ¢(®) = ¢ — 1 which contradicts our assumptions. For case I1.(2) at £k — 1 we must

have /(*=1) = ¢ which however contradicts mf_l) =1and §*=1 = ¢, In case IL.(3) we

have Z (k—1) > ¢+=1) = ¢ which contradicts Z (k=1) < Z(k) = /.

The case E(k) = { follows from the above by the application of 6.
Case (¢b)(3). By (1.2) either (=1 < J(k) gapd j(k=D) ) < (%) or case L(¢s) holds at k — 1
and k. The latter case will be dealt with in the proof of case I.(¢s), hence we assume that
§=1) < §(k) and g1 < (%) We follow the proof for type AL in [1, Appendix A]. By
the same arguments as for type A the assumption mék) > 1 leads to a contradiction unless
mgk) =2and /%) = /(*) = 3() = 5(k) — ¢, Hence either

before. Therefore p,

(1.1D) m&k) =1 fork<nor
(1.12) m® =2 and (®) =) =B —5®) — ¢ fork <n—2.
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If (1.11) holds, up to small modifications the arguments for type A yield:

113 ¥ =0 for k < n
.14 pF =2-mlFY fork<n—1, p{" =2—m{"? fork=n
(1.15) m{F =0 fork<n—2 m{" YV =m"=0 fork=n-2
If (1.12) holds, then by (1.1) we have
p@k)l +p§i)1 + mzk RS (my (D) _9) <2 fork<mn—2
Y e P s B 1>+m(”) 9)<2  fork=n-—2

since py‘:) = (. Up to small modifications, the type A proof yields that in this case

(1.16) P =0
(1.17) P =2 —m{FY
1.18)  mFtV =2 fork<n-2  m{"V=m{ =1 fork=n-2

Let ¢’ be minimal such that ¢/ > ¢ and mgc) > 0. If no such ¢ exists, set ¢/ = co. By

(1.13) (resp. (1.16)) pé = pgi)l = 0 so that as a consequence of (1.1)

(1.19) m*) =0 for0 < i</
(1.20) p§k> =0 for 0 <i </
(1.21) mF = ) = g for ¢ <i< /('

andm”) =0for{<i</{andk=n-—2.

If ¢/ = oo, then /(¥) = {(*) = o0 and, by (1.1) and (1.15) m{**™") = 0 for i > ¢, also
(k41 = g(k+1) = 56 50 that Case L(¢b)(3) holds.

Hence assume ¢/ < co. Assume that (1.11) holds. Since mék) = 1 and mz(-k) = 0 for
¢ < i < ¢ certainly ) > ¢/ and 5%) > ¢'. First assume that é(k)~> A and 5k > ¢
or mgc) > 1. By the same arguments as in type A it follows that /() = /() = ¢/ <
é(k“), ((k+1) g0 that Case L.(/b)(3) holgs. Up to small modifications these arguments also
go through for k = n — 1, n and yield () = (%) < 5(n=2) 5(n-2)

Next consider the case §*) = ¢/, §() > ¢" and m(k) = 1. This can only occur for
k < n—2. We focus hereon k < n — 2~ The case k =n—-2 1s~0btalned by minor
notational changes. By induction we have /(*=1) < ¢(¥) — ¢ Since (%) > ¢, ml(-k) =0
for £ < i < ¢ and pl(f) = 0 it follows that /() = ¢/. Furthermore by (1.15) and (1.21) we

also have ((F+1D) = k+1) — (k) — ¢/ — Z(k). This is the second string of equalities in

case L.(¢s)(1”). By (1.1) the conditions méfc) = 1and p%) = 0 imply

k k k
(1.22) P 4P+ mi T <,
But since /(A1) = 5(k+1) — ¢/ we have m(kﬂ) > 2, so that by (1.22) m(kﬂ) = 9,
mék Y=, pE,) = p%) pgﬁ)rl = 0. Let ¢ > ¢’ be minimal such that mé{c,) > 0.

Then by (1.1) p{*) = 0 for ¢/ < i < ¢ and m{¥) = m{F+V)

7
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L(¢b)(1) we must have /*) > ¢ and since mék) — 1 actually /*) > ¢. Hence o) — g,
The condition m(kﬂ) = 0 for £ < i < £’ implies that k41 > g
Assume that E(kH) > /'. Since m(kH) 0 for ¢/ < i < ¢ we obtain /(k+1) > ¢ —

o, By induction case I.(fa) and L(sa) holds at k + 1, so that s(*+1) = 5(k+1) — ¢/ and
§0+1) — 5 Since m{F = 1, m™ = 0 for / < i < ¢ and p{}) = 0, it follows that
$(k) = ¢ unless $() = ¢ and mgﬁ) = 1. This case can be dealt with in the same way as
in the proof of case L.(¢b)(2). Also §*) = §()_ Since m(k YD~ 0for ¢ <i< /!l we
have §*=1 > ¢ = 5(k) Hence Case L(¢s)(1°) holds.

Otherwise ¢(*+1) = ¢/. In this case by induction case 1.(¢s)(1’) holds at k 4 1 since
(D) = £<’<+1> = fD) = g+ = JkH2) — ¢ and ¢ < 07 = [0) < {0+ By
A1) m* = mF — 0 for ¢ < i < ¢ and m%),mgﬁﬂ) > 0. Hence 3% = () =
§H1) — p(k+1) — ¢ unless again §*) = ¢” and mgc,) = 1. Furthermore, by induction
$(k+1) = §(k+1) 50 that also $(*) = §(*) by the definition of 4. Since m(k D = 0 for
0 << 0", wehave 5¢-1 > ¢ = (k) Hence Case L(¢s)(1°) holds.

Now let %) = 5(%) = ¢/ and mg“) = 1. We will show that case I.(¢s)(2) holds. By
(1.15) and (1.21) we have ¢(*+1) (k+1) > ¢/ Since on the other hand §*) = §*) = ¢/,
we must have ((*+1) = ¢(k+1) — ¢/ This yields the second string of equalities in case
I.(¢s)(2). Let " > ¢ be minimal such that méfi) > 0. If no such ¢” exists set £ = oo.
Inequality (1.22) holds again, and since mgﬁl) > 2 due to the fact that (k1) = f(k+1) —

2, it follows that myﬁ 2 =0, mgH_U = 2and p§,) = pgﬁl = 0. By the usual arguments

(-k D _ (k) = (k“) =0for? < i< ¥ and p(k) = 0 for ¢ < i< /¢". Since case
I(Es)(Z) cannot hold at £ — 1 since this would imply mé/) > 2, we have ((*—1) < (k)
and é(k D < ), Since mék) ( ) = = 1,00 = k) — g k) — 5(k) — ¢/ and

P = 0, we must have /(K) = 0 = ¢ Recall that m**Y = 0 for ¢ < i < "
Also mgk) =1, ékﬂ) = 2, so that by (1.1) with i = ¢/ and @ = k + 1 we have

(mi2 —9) 4 ptD 4 D < 1. Note that pif T (7) = piF1) — 1 which implies

that pEkH) > 1. Hence together with the previous inequality m( +2) — 2.and pgcrll ) =o.
By the usual arguments involving (1.1) it follows that pgkﬂ) = 0for ¢ < < (. Hence
(0+1) — (k+1) — ¢ and case 1.((s)(2) holds at k+1. By induction §(k+1) = 3(k+1) — g7/,
so that §%) = §(k) = ¢/ if m(k) > 2. If m%) =1, then let ¢/ > ¢ be minimal such that

miy) > 0. Since myy) = 1and my; ™ = 2 it follows by (1.1) that mil " = p{i). | = 0.
Hence p( ) = O for ¢ < ¢ < ¢" and m( D = 0for ¢ < i < ¢". This implies
that 58) = §(®) = ¢/ Furthermore, since mgkfl) = 0 for ¢ < i < " it follows that

=1 > g — §(k) and $(5=1) > ¢ = §(F)_This concludes the proof that case L(£s)(2)
holds.

Finally assume that (1. 12) holds Suppose that case 1.(¢5)(2) does not hold atk—1. Then
by induction §h=1) < (k) and (=1 < §(0) and by (1.19) and (1.20) () = £<k> =/,
If case 1.(¢s)(2) holds at & — 1, then Z(k b= € (E=1) — ¢/ 50 that also K(k) = € =/,
Note that by the restrictions imposed by (1.1) we also have Z(’““) = Z(kﬂ) =/ so
that case I.(¢s)(2) holds at k + 1. By induction §(:t1) = §(+1) — ¢ which implies

5K = §(k) = ¢ ynless m( ) — = 1. First assume that mgf) > 2. If é(kfl),g(k’l) < £, then
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(k=1 — 0, so that =D, (k=1 > ¢/ = §() = 5% and case

p®, > 2 and by (1.17) m}

L(¢s)(2) holds. If {*=1) < ¢and 7(:~1) = ¢, then p\™| > 1 and by (1.17) m{" ™V < 1.
Hence 55=1 > ¢, If §,~1 > ¢ then as before sk~ k=1 > g — 5k — (k)
and case 1.(¢s)(2) holds. If sk=1 = ¢ then case II.(1’-3’) holds at £ — 1. Note that

pék)l( ) = p§k)1 1 = 0, so that we need E(k 1) > ¢. Since case IL.(3") does not hold at
k, we must have E(k D < /(k) — ¢ 50 that case I1.(2’) holds at k — 1. However, this means
mF > 2 which contradicts 5%~ > ¢ since p{* " = 0. The case £~ = ¢ and
(1) < ¢ is similar. Finally let (=1 — p(k=1) — ¢ Then case L(¢s)(2) holds at k — 1

orm{" " = 1 and 5=1 5(k=1) > ¢ In cither case all conditions of case L(£s)(2) hold
at k.

If mgc) 1, then by (1.1) m(k Vim (k+1) + pgc)l + pﬂl < 2. By induction
case L.(¢s)(2) holds at & + 1 so that mékﬂ) > 2. This implies that mék D = 0and

pgﬁl = 0. Let £’ > ¢’ be minimal such that mé,,) > 0. Then pl(- ) — 0 for ¢ <3< /" and

5§ = 5(k) = ¢” Furthermore, by the same arguments as before $(5~1 §*:=1) > ¢ and

since m(k D — 0 for £ < i < ¢” we have =1 gk=1) > g — (k) — (k) Hence case
L (Es)(Z) holds at k.
Case ({s)(1). In the proof of case 1.(¢b)(2,3) we already showed that case I.(¢s)(1) can
occur at k& when 1.(¢s)(1) does not occur at k£ — 1. In addition we saw that then either
k) < g(k+1) or case L(¢s)(1) holds at k + 1 with the same values of £/ = £and ¢. Hence
we are left to show that if case I.(¢s)(1) holds at £ — 1 and k, then either (k) < pk+1) op
case I.(¢s)(1) holds at k + 1 with the same values of ¢/ = £ and ¢”.

Since case 1.(¢s)(1) holds at £ — 1 and k with the same values of ¢/ and ¢”, we have
by (1.1) mF=D = m(k) = m(k+1) =0forl < i < (', mé/,) > 0 and p( ) =0
for ¢/ < i < ¢”. By induction we have m( ) — 9 (see proof of case I.(¢b)(2,3)). Since
k) — 5(k) — ¢/ \we must also have /(F+1) = g(k+1) — ¢/ o that mgﬁl) > 2. Since case
I.(¢s)(1) holds at k — 1 we must have 1 < mg,{c_l) < 2. The case mﬁ_l) = 1 can only
occur if case L(£s)(1) occurs at k — 1 for the first time and /(*—1) = ¢(*=1) < ¢’ By the
change of vacancy numbers this implies that péﬁl > 1 so that by

D a4 48, — 2589 1 58, <0
mgﬁl) = 2. We obtain the same conclusion if m%*l) = 2. If ((k+1) > ¢/ then ((k+1) >
¢" since m( D _ 0for ¢ < i < ¢, In this case /) = ¢ < (1) a5 claimed. If
¢+ — ¢/ then p(kH) = 0 since (F+D) = ¢(+D) — ¢/ By (1.1) witha = k + 1
and ¢ = ¢ it follows that m(k+2) = 2 and pff_tll) = (. Hence again by (1.1) we have

(Hl) = 0 for £ < 4 < £” which implies that Jk+1) — g7, Note that by similar

arguments as before it follows that mEkH) = 2. By induction either 572 = ¢ if case

L(¢s)(1) holds at k + 2 or §k+2) < 5(-+1) — ¢/ Hence 51 = ¢” (even if s*+1) = ¢
then §*t1) = ¢” since mé,fr ) = 2). Similarly §#+1 = §(*+1) 43 claimed.
Case (¢s)(1’). This case is analogous to case I.(¢s)(1).
Case (¢s)(2). In the proof of case I.(/b)(3) we already showed that case I.(¢s)(2) can occur
at k when 1.(¢s)(2) does not occur at kK — 1. In addition we saw that then case 1.(¢s)(2)
holds at k + 1 with £ = ¢/ and ¢ = ¢”. Hence we are left to show that case 1.(¢s)(2) holds
at k + 1 if the same case holds at k£ with the same values of £ = ¢’ and ¢ = ¢"".
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Let £ < n — 2. By induction we will show that mga) =2fork <a<n-—2and
mgn_l) = mﬁn) =1, mga) =0forl <i< ¢ andk < a < n, and pgu) = 0 for
¢ < i </{"and k < a < n. By induction hypothesis (see proof of case L.(¢b)(3)) the
statements are true for a = k. By (1.1) we have

mE Y 1 (D _9) 4 p®) 4 pF <o fork <n—2
m{*™ 4 (m{"” 1)+m(k) 2)+p§7112)+p§+12) <2 fork=n-2

Since (%) = 7) = () — 5(k) = ¢, we must have m{" ") > 2 and m{" ™" m{" > 1.

If m (k Y > 2 then these inequalities prove that m(kH) = 2or mE”fl) = mén) =1
If mgk b _ 1, then case I.(¢/s)(2) must have occurred at k — 1 for the first time and

(=1 = ¢(k=1) < ¢ Hence by the change in vacancy numbers this implies that pyi)l > 1,
so that again mgkﬂ) =2or mén_l) = mgn) = 1. Then by (1.1) witha = k + 1 and

1 = £ it follows that pyjjl) =0, so that pz(.kH) =0 for £ <i < {". Note that by (1.1) also

m* — 0 for £ < i < ¢ and m{i™ > 0. Hence {U+1) = flet1) — g,
Note that m%il), m%), m%H) > (0 since by assumption case 1.(/s)(2) holds at k — 1.

Assume that mgﬁ) = 1. Then by (1.1)

mﬁf/ 1) _~_mék+1) +p§5)+1 <2

(k=1) _ (k) _  (k+1)

which shows that my,, = my,, = my, ' = 1. Continuing this by induction one finds
by (I.1) with a = k,k +1,...n — 2 that m\&) = 1 fork — 1 < a < n — 2 and either
gff Y = 1 and mg,,,) =0or méff_l) = 0 and m%) = 1. Suppose the latter case holds.

Then by (1.1) witha = n — 1 and i = £” we have

mi ) —2m{ Y 4 pin ! +p§,,+l) <0,
which yields a contradiction since mgf*z) =1and m%*l) = 0. Hence mgc,) = 2 and by
induction using (1.1) in fact m\%) = 2fork < a <n—2, miy " = m%) = 1. Hence

@) = jl@) = §(a) = 3(@) — ¢/ for k <a< n —2and {1 = () = j(n=1) — j(n) —
2.

II. Twisted case. Note that this case can only occur for 1 < k < n — 2. The proof that
0k) = g(k) goes through as for the generic case of type A in [1, Appendix A].

Case (1). Suppose that £(*) < ¢. By induction {(*) > ¢(*=1) > ¢(*=1) _ 1 First assume
that /(+=1) < lz(k) < £. Then § must select a string shortened by § in the transformation
(v,J) — (#,J). By the same arguments as for the generic case in [1, Appendix Al, &
does not pick the string of length %) —1in (7, j)(k) shortened by 6.Hence /(F) = ¢ —1.
The label of the corresponding string in (7, J )(®) must be zero since it was shortened by
& and singular since it is selected by §. This implies that pyi)l(f/) = (. Next assume

that #:=1) — 1 — /) < ¢. Then case TL(1) or L(fb)(1) must hold at k — 1, so that by

induction hypothesis méﬁjfl)_l =0or m%il)_l(ﬂ) = 0. For /=) —1 = (%) one
needs méfgfl)il(f/) > 0, so that £ = £*=1) Hence /*) = ¢ — 1 and PP (7) = 0 as

before.
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The goal is to show that §(*) = ¢ — 1. Since /(*) = ¢, it follows that myi)l (¥) > 1.
Also 6#%) = F) 5o that m{*) () > 2if #() = ¢ — 1. Hence it suffices to show that

01D < ¢ — 1 and p( ) 1 () = 0, since then 5() < ¢ and by similar arguments as before
k) =¢—1.
Note that

P () = p () + X (05D <0 - 1)

(1.23) . ) )
= p1({_)1(17) + x(g(k+1) <{-1)-— X(g(k) </l-1< g(k+1)).

Since péli)l(ﬁ) =0, (k) < g(k+1) < 5(k+1) < 5(k) — ¢ and by construction pgli)l(u) >0,
this simplifies to

124y pPw) =P ) + x((F D <0 —1) = x (3D < —1).

Suppose thatp( ) () > 1. Then by (1.24) we must have 5*+1) < ¢—1 and /(*=1) > ¢,
Since £+~ < 51 < ¢ — 1, case L.(¢a) or IL(1-3) must hold at & — 1. If /(F~1 =
¢=1) > ¢ this contradicts /(*=1) < ¢(*¥) = ¢ — 1. Hence case IL.(1) or (3) must hold
at k — 1 and (k=1 — 5(k=1) > ¢ go that /(*—D) = §(k) = 5(k=1) = 5(k) — ¢ Since
(=1 < §(k) = ¢ — 1 case I.(1) must hold at £k — 1. But then by (1.24) with k replaced
by k — 1, it follows that (k=2) = ¢ 50 that one of case L(¢a) and IL(1-3) holds at k — 2.
Since ¢(F=2) < k=1 = p 1, case II.(1) must hold at & — 2. Repeating this argument
we find that 1 = /(© = /1) = ... = /() = ¢ which contradicts the condition that
(%) = ¢ —1> 0. Hence pi”, () = 0.

Suppose that $*t1) > ¢ and 5§+ < ¢. Then the doubly singular case 1.(sb) or the
mixed case L.(£s) cannot occur at k + 1 since 1) > (%) = ¢ put s+ < 7. Also
the generic case I.(sa) cannot occur since then s("”l) = 5(k*+1) which contradicts our
assumptions. Case II. also cannot occur since /k+t1) > ¢ > §k+1) gpd sk+1) > ¢ >
041 Hence $-+t1) > ¢ and §++1) < ¢ is impossible.

Next suppose that 5(*+1) > £ and 5*1) = ¢. By (1.24) this implies that (=1 =g,
Case .(fa) cannot hold at k — 1 since then Pk=1) = glk=1) — = { which contradicts € (k-1) <
K(k) = ¢ — 1. Similarly for cases 1.(¢b)(2-3) and II.(2-3) ¢ k 1) > ¢ which contradicts

=) < ok — g1, Similarly, for the mixed case I.(¢s) we have =) > ¢ = =1
which contradicts our assumptions. If case I.(¢b)(1) holds at k£ — 1, then 1) = (k) g0
that case 1.(¢b)(1) and case I1.(1) holds at & which contradicts our assumption. Hence case
I1.(1) must hold at k& — 1. Since by definition $(*) > (1) > ¢ the same arguments
yield that case IL(1) holds at k — 2 with £(*~2) = ¢. Repeating this argument we find that
1 =100 = ¢® = ... = §(*) = ¢ which contradicts the condition that /*) = ¢ —1 > 0.
Hence 55T < ¢,

This completes the proof that ) = ¢ —1.

Next we will show that §(*) = 5(*) By induction §%) > §(k+1) > g(h+1) _ 1 o
that by the definition of the algorithm for & also §%) > §®)_ If s*0) = §() we are
done. First assume that §() > §() > 5(k+1) " Since by the definition of § there are no
singular strings of length 5 > i > §(*+1) in (1, J)(*), this is only possible if the string
shortened by 4 is the one selected by § to obtain §(*). However, this is impossible since
by the definitions and assumptions §*+1) > (%) — () > ¢(k)  Hence assume that
k) > §(k) — g(k+1) _ 1 Then case L.(sb)(1) or IL.(1") must hold at k + 1. If case L.(sb)(1)
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holds, then mé]i)l = 0 and 5%+1) = §(+1) Since by assumption case II.(1) holds at %,
we must have §(Ft1) = §k+1) — j(k+1) — ¢ Similarly for case IL(1’) we must have
Ut — 5(k+1) — 01 — ¢ and either m{™, = 0 or m{™,(#) = 0. Since we already
showed that Z(k) = ¢ — 1 we must have m( ) 1(#) > 0. Hence both cases yield m(k)1 =0
which implies that mé’i)l (7) <1 (note that (k) < ¢ since otherwise case 1.(¢b) holds at k).
But /) = ¢ — 150 that $(9) > 5(K) — 5(k+1) 1 — ¢ _ 1 s impossible

It remains to showthatmEkH) = Oormg,ktl)( ) =0, andme 1 - OormEk 11)( )=

With pé’i)l () = 0 equation (1.24) becomes
(1.25) PP (v) = x (0D <0 — 1) = x(3*HD <0 —1).

First assume that p( ) (1) = 0. Then /(=1 = 5(*+1) = ¢ Since /(k=1) < I < ¢ case
L.(%a) or II. must hold at k — 1. Since in addition k=1 < ) — g 1, case IL.(1) must
hold at k — 1. Certainly mEk)lf) > 0 because 5*) = £. Hence by induction hypothesis
m® =0, so that by (1.1) m{* 7 = m{F+1 — 0.

Next assume that p( ) ,(v) = 1. Then by (1.25) /(*=1) < ¢ — 1 and 5++D < ¢ — 1,
Since p( ) 1(v) =1, there is either a string with label O or a singular string of length ¢ — 1
in (v, J)(’“) it m{"), > 0. But then /(¥) < ¢ or 5¥) < ¢ which contradicts our assumptions.
Hence me 1 =0. By (1.1)

pyﬂé—i—mé 11)+ ( 1) <2

If pik)g = 2, then mék 11) mffi“) = 0 and we are done.
If pék)g = 1, we have myc D + (ktl) < 1. Let r < ¢ — 1 be maximal such that
( ) If no such r exists, set » = 0. Then by (1. l)wehavep( ) —1forr <i< L,

p£k> < 1and m(k Y= mgkﬂ) =0forr+1<i</{—1 pr(k) = 1, then m(ill)

mgkjll) = 0. Suppose that m* 1" = 0. Then ¢(*~1) < r. Since by assumption /(¥) =
¢ > r the string of length r in (y J)*) must have label 0. This implies that §*+1) > 7
and, since m(kﬂ) =0forr <i < ¢—1, we have §¥*1) = ¢ — 1. Since mék Y=o
implies that m(kH) = 1, this shows that m(kH)( ) = 0. Similarly, if mgktl) = 0, then
mékll)( ) = 0. Hence suppose that p{*) = 0. Then ¢*~1) > 7 and 5*+1) > 7 since

otherwise £(%) < r < for3® <y < ¢ which contradicts our assumptions. Also by

(1.1) mﬁi}l) + mffil) < 1. Hence either mffH )=, D) — g1, m(kH) =1,

50 = ¢ — 1 or mEHY = 1, 30D = ¢ 41, MY = 1, (kD = ¢ — 1. This

r+1
implies that either mﬁk Y = 0and m(kH)( )=0,o0r mgk 1)( ) =0and m(kH) =0as

claimed.
Finally assume that p{*, = 0. It m{", = 0, then by (1.1) —p{", — p{¥, > m{FJV 4

mgk'gl) which yields a contradiction since pyi)l = 1. Hence myi)z > 1. If (k=1 <{—-2

or §F+1) < ¢ — 92 then /%) < ¢ —20or 5 < ¢ — 2 since pé]i)z = 0 which contradicts

our assumptions. Hence (=1 — gk+1) — ¢ _ 1. This requires my:l) > 1 and
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mgktl) > 1. Since m(k D (ktl) < 2 this implies mgk_ll) = 1 and m(kH) 1,

so that mfz 11)( )=0 and mgkﬂ)( ) = 0 as claimed.

Case (2). First assume that $(*) > ¢. We will show that then §(*) = ¢. The assumption
O implies that m( )(I/) > 1. Since 5(*) = ¢, one part of size £ is shortened in
passing from v(*) to I/(k) so that m( ) > 2. Now p( ) = = 0, so there is at least one string
with label 0 in ©(*) that is not selected by § acting on (v,J). The label of this string
remains 0 in passing to #(¥). This shows that there is a string of label 0 and length ¢ in
). Thus to prove §(k) = (, it suffices to show that $*:+1) < ¢, If 5(k+1) < 5(k+1) thep

1) < 5(k+1) < 5(K) — ¢ a5 desired. Otherwise (11 > 5(k+1) g0 that case 1.(sb)(3),
L(¢s), IL.(3) or (3°) holds at k + 1. By induction §(*+1) < 5(k) = ¢,

Next assume that 5(*) < £. We will show that this is impossible. By the same arguments
as in the proof of case IL(1) the condition §(¥) < £ implies that %) = ¢—1 and p{™, () =
0. The goal is to show that (R =01 which contradicts the assumption that R =y,
Similar to the proof of case II.(1), to prove /(k) — ¢—1 it suffices to show that £/(k—1) </-1

and p(k) (r)=0.
Note that (1.23) becomes

PP () = x(f*D <0 1)

(1.26) ) _ _
= P (7) + x(FFHD <0 — 1) — x(I®) <0 — 1 < 7).

Suppose that p( ) (V) > 1. Since the top line can be at most one and (k) < ((k+1) <
5(k+1)(1.26) implies that 5511 = ¢. Note that $*+t1) < 5(k) = ¢ — 1, 50 that $(++1) <
E(k“) = (. This implies that case I.(sb)(1) or II.(1) holds at & + 1. In both cases ¢ =

() = §+1) = 5k = 5(k+1) gnd §*+D) = ¢ — 1. Hence p{*™ () = 0 and by (1.26)

with k replaced by k& + 1 also p§_1 —) Suppose that 5+ < ¢ and let r < £ be

maximal such that mg-kﬂ) > 0. Then by definition mg D —0forr < i< Cand by (1.1)

pEkH) =0forr <i¢ < {and m£k+2) = 0 for r < ¢ < £. However, since by assumption
5k+2) < ¢ this means that §5%2) < r. In addition, since png) = 0, there is a string
with label 0 of length r in (v, J)(**1). Hence §*+1) < 7 < ¢ which is a contradiction
to the previously shown fact that s(k“ = (. Therefore 5(*+2) = (. Repeating similar
arguments one finds that /(%) = f(k+1) — ... — j(n=1) — j(n) — g(k) — g(k+1) — ... —
§n=2) — ) — pn=1) — ... (k) — ¢ However this yields a contradiction since then

case 1.(¢b) holds at % instead of case I1.(2). Hence pﬁl (r)=0.

~ Next we need to show th_at Z(k*1)~§ ¢ — 1. Suppose that Z(kfl) > (. Now lg(kfl) <
(0 < 5 = g1, so that {*=1)  ((*=1)_ By induction case L(¢a), L(¢s)(1)(1"), IL(1-3)
or IL(1°-3) holds at k — 1. If case L.(¢s)(1) holds at k — 1, then §*~1) = 5% = /(k) = ¢
and ¢*=1) > ¢ which contradicts our assumptions. For case L.(¢s)(1") (k=1) — g(k=1) —

() = 5% = ¢ which again contradicts (=1 < 0. For all other cases we must have

(=1 — ¢, By (1.26) this implies that 5*+1) = ¢. By similar arguments as before
o) — é(kﬂ) = oo = =) = ) — k) — g+ — ... = 3(n-2) = p(n) —

(=1 = ... ¢(*) = ¢ which yields a contradiction since then case 1.(¢b) holds at & instead
of case IL(2). Hence £*~1) < ¢ — 1 which in turn implies together with PP, (7) = 0 that

6(’“) = { — 1. This contradicts our assumption that K(k) =/.
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The proof of 5(F) = 50k is very similar to the proof of this statement for case II.(1).
The case §) > 5(F) > §(k+1) ig the same as for I1.(1). For 50 > 5(k) = 4(k+1) _ 1 one
obtains as before that sk+1) — 5(k+1) — p(k+1) — ¢ However this yields the contradiction
0=k < 5k) — g(kt1) 1 —p_1,

Case (3). Assume that /(%) > ¢ First note that mgk) > 2 leads to a contradiction.
Namely, if Case II.(3) holds at & — 1, then by induction hypothesis m( )= 1. Otherwise,
(=1 < §(¥) by induction hypothesis (1.2). Since /(*) = 5(*) = ¢ we must have p§ ) =0.
The application of 0 leaves a singular string of length ¢ and label 0 in 7(*) since mék) > 2.

But ¢(*=1) < ¢(*) implies £(*) < ¢ which contradicts our assumptions. Hence we must

(k) (k)

have m,”” = 1 and p,” = 0. Note in particular that it was shown in the proof of case

IL.(2), that s*) < ¢ implies that %) < ¢ which contradicts our assumptions. The case

§) = ¢ s not possible due to m* = 1. Hence §*) > ¢.
With this, inequality (1.1) for ¢ = £ and a = k reads
p§)1+p§)+m(’“ Rt (k+1)<2 forl1<k<n-3

(n—2) (n—1)

(1.27) -
P +p§+12)+mé 3)+m

+m{™ <2 fork=n-2

We will show that

1oif k) =y
1.28 MW =0  and (1) —

( ) Per = e 0 otherwise.
In addition, if K = n — 2, then the same equation holds for mﬁn), and mf_l) = 1 implies
that mgn) = 0 and vice versa.

Letk <n—2.

If mgk b - = 2, then by (1.27) we have pgi)l = m(kH) = 0, so we are done.

If mék D = 1and pé )1 = 1, again by (1.27) we have pgi)l = mékﬂ) = 0. Hence
assume m(k Y= 1and pék)l = 0. Note thatp( ) (V) = pg )1( ) + x(3*+1) < ) which

implies that 5"+ = £ since p{*) (1) = 0 and pg ¥ (7) > 0. But 35+ = ¢ requires

gkﬂ) > 1 so that by (1.27) again p§+)1 = 0 and m(k+1) 1.

Finally suppose mékil) = 0. In this case /(*~1) < /—1and pyi)l (v) = pyi)l (r)+1,s0
that p(k) >1.1If pé’i)l > 2, then py_?l = mgkﬂ) 0 by (1.27) as claimed. Hence assume
PP = 1. 1f 55+ = ¢, then necessarily m{*™) > 1 and by (1.1) m{*™ = 1 and
pélj_)l = 0. Now assume that §*+1) < ¢, Recall thatp( ) (v) = p(g B (7) + x(3*+D < o),
which implies that p{", (7) = 0 since p{*’, (v) = 1 and 5*+D) < ¢. Since 5%} = ¢ this
implies that there is a singular string of length ¢—1in (7, J )(®). Since by assumption
E(k > {, we must have E(k D > ¢, so that (k=1 > ¢(*=1)  Hence by (1.2) case I1.(3)
must hold at & — 1. We show that this yields a contradiction. For case IL.(3) to hold we
must have /(*=1 = 5(=1) _Since ¢(*—1 < (k) = ¢ and 5*=1) > 5(5) = ¢ this requires
(=1 — 5(k=1) — ¢ However this contradicts our previous finding that /(*=1) < ¢.

For k = n — 2 the above arguments go through with minor modifications.

This proves (1.28).
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By almost identical arguments it follows that

(1.29) my" Tt = {1 it ey = ¢
0 otherwise.

Since pi® = p{*), = 0 it follows from (1.1), thatif ¢’ > ¢and m® = 0 forall ¢ < i <
/', then pg ) — 0 for < i < ¢. Moreover (1.1) implies that mgkfl) = mgkﬂ) = 0 for
t<i<l.

Suppose that (*) has a string longer than £. Let ¢ be minimal such that ¢ > ¢ and
mg,) > 1. Note that, since pg,) = 0, the string of length ¢ in (v, J)*) is singular and
has label 0. After the application of § this string remains singular with label 0 in (7, J )(k)
since ¢/ > ¢ = §¥) > ¢(F)_ After the application of d, a singular string with label 0 of
length ¢’ remains in (, J)*) unless mgc) =1lands® =7

First assume that not both méff) = 1 and $*) = ¢ hold. We will show that then case
II.(3)(1) holds. By induction we have Z(k’l) < / (resp. §(’f+1) < /), unless possibly
case 11.(3) holds at k — 1 (resp. case IL(3)(1) k + 1). If /(=1 > ¢ and case I1.(3)
holds at k& — 1, then by induction hypothesis £/(*=1) = (k) — g pk=1) — (k) ~
and m(k) 1. Note that m(k D= (k) =0forl <i </, mgc 2 mgf) >0
and =D — §) — g, Similarly, if s(kH) > /¢ and case I1.(3)(i) holds at k& + 1, then

FhD) g1 = k) = 7, so that $(*) = ¢/. Now assume that (k=) < /£ (resp.
s+ < ¢). Since by assumption U®) > ¢ and 3®) > ¢, it follows that /*) = ¢/
(resp. $(*) = ¢'). Moreover, if (D > p, by the previous paragraph m(k+ ) = 0 for
() — ¢ < i < 0 sothat f*+D) > ¢/ Tf {*+1) — ¢ we must have mgkﬂ) = 1 so that by
(1.28) 5k*+1) = ¢. Since in addition k1) > 7(k) > 0, case TL(3)(i) holds at k + 1 with
(0 = k1) k) — pk+1) gnd Y = 1. Similarly, if §*=2) > ¢, by the previous
paragraph ml(»kfl) =0forl < i < ¢, sothat 351 > ¢/ 1f k=1 = ¢, we must have

mékil) = 1 so that by (1.29) /*=1) = ¢. Since in addition ¥~ > ¢, case IL(3) must
hold at & — 1.

Next assume that m( ) = 1and $(k) = ¢'. We will show that then case IL. (3)@i) holds.
By (1.1) with @ = k and ¢ = ¢, using that p( ) = pé{g) = 0, we have
(130 P8 +mlD L <2 for1 <k<mn-—3

. ngHQ) + m(n R glil) + my) <2 fork=n-2.

Note that for k < n — 3, since 0 < m§k+1) < 1and m§k+1) =0forl < i<, we
must have §(*+1) = ¢/, which in turn implies that mgﬁl) > 1. Similarly for k = n — 2,
it follows that max{¢("~1 ¢("M} = ¢/ 5o that m(” D> qor m(”) > 1. Hence by (1.30)

0< m§, D < 1. We distinguish the two cases.

We will show that mgc Y = 1 leads to a contradiction. By (1.30) the assumption
mg€ Y = 1 implies that mng) 1fork <mn—3and m(" D= 1or mgfl) =1fork =

n —2. Since -1 = ¢/ and m{* Y = 0 for £ < i < £/, we must have ) = ¢ which
by (1.28) implies §*t1) = ¢ so that case I1.(3) holds at k + 1. Repeating the argument
we must have K(k) = é(k+1) = ... = é(n—Q) = g(k) = §(k+1) = ... = §(n—2) = f’
§B) — 1) — . s(n— 2) =/, mgf) - mgk’H) - = mgn—@ = mgﬂ =
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mgﬁ_l) . gl 2, By (1.30) and (1.27) for £ = n — 2 and the constraints
gn—l) (n) _ 1 m(n) mé;u—l) _ 0’ é(nfl) — /and
£(") = ¢’ or the same with n — 1 and n 1nterchanged. For concreteness let us assume that
the first conditions hold. By (1.1) witha = n — 1 and ¢ = £’ we have

(1.31) pir Y =2l pl ) e ml T —am(r Y <o

(n—1)

on ¢/("=1) and 6( ), we have m

Since m, = 1 it follows from (1.28) that /("= = ¢(n=1) — ¢ 5o that p(" D — .

By similar arguments as before it follows that p(" D = 0 for ¢ < ¢ < /¢'. But this with

(n—1) (n—2)

my, = 0 and my, = 1 yields a contradiction to (1.31).
Hence mgc_l) =0. Ifm (kH) = 1 we get a contradiction as in the previous case.

Hence by (1.30) mekﬂ) 2 and p( )1 = (. By induction we have Z(k_l) < /¢, unless
possibly case I1.(3) holds at k£ — 1. If case II.(3) holds at £ — 1, then by induction hypothesis

(k=1 = &) = ¢, But m{" ™" = 0 for £ < i < ¢ which would imply that mé/) =0
which contradicts our assumptions. Hence € (k=1) < ¢ and, since by assumption £(%) > ¢

we must have %) = ¢ = 5 a5 claimed in case II. (3)(ii). Let ¢ > ¢’ be minimal
such that mg,,) > 1. If no such ¢” exists, set £ = oo. Again by (1.1) we have p(k) =0
for ¢/ < i < . Atk + 1, either case IL(3)(i) holds with e+ = (k1) — g apd
1) — s(k+1) — S(kt1) — G(k+1) — ¢ or f(k+1) — ¢/ and the nontwisted generic case
holds. In both cases §*t1 = ¢/ 5o that s(*) = ¢, If case IL(3)(i) holds at k + 1, then
$+D) — ¢/ sothat $(F) = §(F) = ¢” as claimed for case I1.(3)(ii). Otherwise the untwisted
generic case holds at k£ + 1, so that §(kfr1) = 5(k+1) < 0. We already showed in the proof
of case I1.(2) that 5(%) < ¢ implies that (%) < ¢ which contradicts our assumptions. Hence,
since the strings of length ¢ and ¢ are already selected, $*) = §(*) = ¢”_ Finally, since
by assumption and (1.1) mgk_l) = 0for ¢ <i < ¢, wehave $*=1 > ¢ Hence case
IL.(3)(i) holds.

Otherwise there is no string in (*) longer than ¢ so that mgk) = 0 for ¢ > ¢. Then
k) — §(k) — oo, Moreover, mgk_l) = mgkﬂ) = 0 fori > ¢. Hence if /k+1) > ¢
(resp. §=1 > ¢), we must have /1) = oo (resp. 5+~1) = oo). If #(-T1) = ¢ (resp.
(=1 — ¢), then m§k+1) = 1 and 551D = ¢ by (1.28) (resp. mék_l) =land /(F=1) =y
by (1.29)), so that again Case II.(3) holds at k£ + 1 (resp. £ — 1).

Case (1’-3’). These cases follow from IL.(1-3) by the application of 6. (Il

Proof of Lemma 1.2. By Lemma 1.1 we have & = 1, whose proof will be used repeatedly.
We also rely on [1, Lemma A.3].
Selected strings. Consider a string in (v, J )(k) that is either selected by ¢ or 8, or is such
that its image under § (resp. &) is selected by ) (resp. 9). It is shown that the image of any
such string under both 508 and § o &, has the same label. The proof of these statements
for cases 1.(¢a), I.(¢b), I.(sa) and I.(sb) is the same as for the analogous cases in [1, Lemma
A3].
Selected strings, case 1.(¢s)(1). We need to distinguish the case whether case 1.(¢s)(1)
occurs for the first time at k or not. First assume that case 1.(¢s)(1) does not occur at k — 1.
The string (¢, 0) maps to a string of length ¢ — 1, with label zero under 6 o 6 and singular
label under & o . Hence we need to show that péli)l(ﬂ) = 0. By the change in vacancy
numbers we have

(1.32) P () = plF — (@D <0 —1) — x({%D < r—1)
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(k 1) (k—1)

By (1.9), (1.14) and (1.17), pi¥), = 2 — Hence if m

ativity of vacancy numbers, it follows that p( ) (D) = 0. If mé
pﬁk)l = 1. We need to show that either /(*=1) < ¢ or {(*=1) < ¢. Since by assumption
case I.(¢s)(1) does not hold at k£ — 1, we have (=1 < gk) = ¢ by (1.2) which proves the

assertion. Finally, if m&k) = 0, we must have (k=1 ¢(k=1) — ¢ Furthermore, pé )1 =2

= 2 and the nonneg-

k=1) 1, it follows that

and by the same arguments as before (=1) < ¢ Hence by (1.32), pé]i)l (1;) =0.

The string (¢/,0) is mapped to a singular string of length ¢/ — 1 under both § o 6 and
504..

If ((®) = () = ¢ the string (¢”",0) is mapped to a string of length ¢” — 1 of label zero
under 6 o § and of singular label under & o 6. Hence we need to show that pE,,,) (D) =o0.
Note that

pgi)_l(ﬁ) pg{i) 2 BERD < gy (e < B,

By the proof of Lemma 1.1 pé,;_l = 0. If case I.(¢s)(1) holds at k + 1, both other terms are
zero. If case 1.(¢s)(1) holds at k& + 1, the other two expressions yield -1 and 1 respectively,
which proves the assertion. The string (5%), 0) is mapped to a string of length 5%) — 1 of
label 0 under both § 0 4 and & o 6.

If /(%) = 5(K) = ¢ the string (£”,0) is mapped to a string of length ¢ — 1 of label 0
under both § 0§ and & o 8. The string (¢, 0) is mapped to a string of length £ — 1 of label

0 under § o § and singular label under & 0 §. Hence it needs to be shown that pwfl () = 0.
By the change in vacancy numbers

Pi—1(9) = Pl = x(@*D <) 4 x (347D = 7).

By the proof of Lemma 1.1 pgc,?fl = 0 and the value of the other two terms is -1 and 1,
respectively, which proves the assertion.

Now suppose that case I.(¢s)(1) holds at £ — 1. Then by the proof of Lemma 1.1 mék) =

mF =21 <mY < 2and pl® = pi*), = 0. Hence by (1.1) m{" ™ — 24 pi¥), <

0. I m{* ™ =2, then p{*, = 0 and by (1.32) also p!™, (&) = 0. 1f m{F~"

have K(k 1) < ¢ and by the change in vacancy numbers péjl > 1. Hence by the previous

inequality pyi)l = 1 and by (1.32) p(k) (v ) = 0. The same is true for the selected string

(¢/,0) since £ = ¢ in this case. The proof for the selected strings (¢”,0) and (5*), 0) goes
through as before.

Selected strings, case I.(¢s)(1°). This case is analogous to the proof of case I.(¢s)(1).
Selected strings, case 1.(¢s)(2). The proof for the string (¢, 0) is almost identical to the
proof for case 1.(¢s)(1). When ¢’ = ¢, the string (¢',0) also changes as required. If ¢/ > ¢,

it needs to be shown that pgczl (1;) = 0. By the change in vacancy number

= 1 we must

PP (0) = L 4 x(@® < ) — (D < ) =0+1-1=0

where we used that g(k_l) < (%) = ¢ since for ¢ < ¢ case 1.(£s)(2) does not hold at k—1.
The string (¢, 0) is mapped to a string of length ¢ — 1 with singular label by § o ¢ and

label zero by & o 8. Hence it needs to be shown that pE,,) (v ) = 0. The vacancy number
changes as
P (5) = P, = XD < ) x(GED 2 ),
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By the proof of Lemma 1.1 pgf,)_l = 0. Except for the first occurrence of case I.(¢s)(2) the

other two terms are zero as well. If case 1.(¢s)(2) occurs at k for the first time, (k=1 <
(™ = ¢ < ¢" and 55=1 > ¢, so that again ps)_, () = 0 as claimed.

Finally, if ¢/ > ¢" we need to show that pé,,? 1 () = 0. The vacancy numbers change
as pl¥)_ (5) = plk)_| - x(ﬁ(’”l) < O") 4 (D) > ") = 0 — 141 = 0 by the
details of the proof of Lemma 1.1.

Selected strings, case IL(1). The string (E(k ),0) is mapped to a string of length (k) —1
under both 6 0 § and § o 6. The singular string of length 5(k) is mapped to a singular string
of length $(*) — 1 under both § 0 § and & o 4. )

Finally, the string (¢, 0) is mapped to a singular string of length ¢ — 2 under § o § and a
string of label O of length £ — 2 under & o 8. Hence we need to show that p& )2( ) =0. By
the change in vacancy number p{*”, (7) = piM, — y(5(+1D) < ¢ —2) — X(é(k D <r-2).

1t p, = 0, then m{*, = 0 and hence by (1.1) p{*, = 0. Otherwise by (1.24)

piF =1, 55D < fand {5~V < ¢ Tn this case m{", = 0 since else § or § would pick
a string of length £ — 1 in (v, J)(®). Hence by (1.1)

(1.33) myE D+ m M, 4+ pl <2,

If pﬁk) = 0, then also p( ) ,(7) = 0 and we are done. Assume that py’cg = 1. We need to
show that either 5K+ < /—2 or /(*=1) < ¢—2, 50 that p{*), (%) = 0 as required. Suppose
that 1) > ¢ — 2 and ¢(*~1) > ¢ — 2, which implies that §*+D = ¢(:=1) — ¢ _ 1,

But by (1.33) either myc_ll) 0 or m (kﬁl) = 0 which yields a contradiction. Next
assume that p(k) = 2. In this case (1.33) implies that m(k R mélil) = 0, so that

gt g(k=1) < g9, Hencep( ) (V) = p§32—x(s(k+1) < E—Q)—x(g(kfl) <(-2)=0
as requlred

Selected strings, case IL.(2). The selected string (E( ),0) is mapped to a string of length
¢(%) — 1 with label 0 under both & o § and é o 8. The selected singular string of length (k)
is mapped to a singular string of length $() — 1 under both § o § and 6 o 8. The selected
singular string of length ¢(*) = ¢(%) is mapped to a singular string of length /(*) — 1, and
the selected string of length 5(*) = $(*) with label 0 is mapped to a string of length 5(*) — 1
with label 0 under both 6 o 6 and é o 4. ~
Selected strings, case IL(3)(i). The argument for the selected strings of length £(%) = ¢(*)
and $(*) = §(%) is the same as in the previous cases. To show that the selected strings of
length ¢ = /(&) — 5(*) obtain the same label under 6 o 6 and & o 0, it suffices to show that

pgk)l( ) = 0. By the change in vacancy numbers

(1.34) P () = piP) = x (@D < 0= 1) — y (3D < r - 1)
and by (1.1)
(1.35) p§k)1 "‘pé{% + m(k Rt mékﬂ) <2.

Hence p(k) <2.If p(k) = 0, then by (1.34) and the nonnegativity of the vacancy numbers
also p, () = 0. If p™, = 1, by (1.34) £:=1) = 7 or 51 = ¢ which requires
gk D= 1lor m(k+1) 1. By (1.35) this implies that m(k+1) 0 or m(k_l) = 0 so that

st < p— 10r€(’“ D </¢—1.By(l. 34)1nturnwehavep( ) (D) = 0. pr@k)l =2, we
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must have m* ™" = m{**Y = 0 by (1.35). Hence 5k+1) (k=) < ¢ — 1 and by (1.35)
P (7) = 0.

Let ¢/ = E = 5(®), To show that the selected strings of length ¢ obtain the same
label under § o 5 and & o 4, it suffices to show that pgﬂl(ﬁ) = 0. Since p,f,f“ll =0,
we have péfﬁil(ﬁ) = x(8¢+-1D > ¢y — X(é(kfl) < {'). Two cases can hold. Either
§k=1) > §(k) — ¢’ and case I1.(3)(i) does not hold at k& — 1 so that =) < {®) = ¢ In
this case p{t) | () = x (34— > ¢) —X(Z(’“_l) < (") = 1—1 = 0 as required. Otherwise
case I1.(3)(i) holds at £ — 1 so that sk=1) = (=1 — ¢ and 5*-1) = ¢ < ¢, so that
P (5) = x(EED > ) — x (0D < ¢y =0 -0 = 0.

Selected strings, case IL(3)(ii). The proof for the selected strings of length i) — §)
and /() = §() = ¢ is the same as for case IL(3)(i). The selected string of length 5) =

k) = ¢ s mapped to a singular string of length ¢ — 1 under both § 0 § and 6 o §. To
show that the selected string of length 5(*) = 5(*) —= ¢ obtains the same label under

04 and & o 4 it needs to be shown that pgﬁ) ,(#) = 0. Since péﬁ)_l = 0, we have

pgc,)_l(ﬂ) = x (8D > ¢y — x(5+1D < ). Since case IL(3) cannot occur before case
I1.(3)(ii), it follows from (1.3) that =1 > () = (k) — ¢” By induction either case
IL(3)(i) holds at k+1 in which case st = g(k+1) — g/ < 7 or k+D) < 5(B) — p < ¢,
Hence p{) | (5) = x(5*1 > £7) — x(5+1) < ") = 1 — 1 = 0 as required.
Unselected strings. For the rest of the proof, assume that (4, ) is a string in (v, J)(*) that
is not selected by & or 6, and is such that its image under 0 (resp. d) is not selected by &
(resp. 5).

Using the fact that § preserves labels and ) preserves colabels, it is enough to show that

(1.36) pF ) =P (@) = P () — P (),

which by the change in vacancy numbers is equivalent to

X(EED < < 1Ry — (00 < < g+
Fx(EFHD < < 50y — x (30 < i < 5D
(1.37) . . ~
=x ({1 < i < 4By - x (I < < E(k“))
Fx(EEY < < 50y — (50 < < 5D,
Consider the functions
AR = x(I® < i)~ x(1W <i) VP =x(G6® <i) - x(E® <)
bi—(k) X(m(k+1) > O)A(k) i_(k) X(m(k-i-l) > O)V(k)
b=~ (m® > 0)a® =9 Z (m® > 0)w®
b:'(k) = X(mz(k RS O)A(k) cj(k) = X(mgk RS O)ng).

For parts 4 that occur in »(*), (1.37) is implied by the following two equations:
(1.38) by B p= ) — =R D),
(1.39) e 7D s R) = =) )
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It will be shown that
(1.40) by ) = 5= = — ¢

(1.41) oW =™ = f® =g

for unselected strings in yE+D y(E) and 1/(’“*1), respectively. For cases 1.(¢a), 1.(¢b)(2),
11.(1-3) equation (1.40) is true since /) = ¢(¥)  Similarly for cases L(sa), 1.(sb)(2),
IL.(2), I1.(1°)(2°) and (3°)(i) equation (1.41) is true since §¥) = 3(¥) holds. Up to minor
modifications the proof of (1.40) for cases I.(¢b)(1) and I.(¢b)(3) and of (1.41) for cases
I. (sb)(l) and L.(sb)(3) is the same as in [1, Appendix A]. Also note that since p(-k) (ﬂ) =

( 7) (1.36) is equivalent to p( )( )— pgk)(v) = pgk)(ﬂ)—pgk) (#7), which, in terms of the
arguments just means interchanging dot and tilde everywhere. Hence the proof of (1.40)
for cases II.(1°-3) and 1.(¢s)(1’) follows from cases II.(1-3) and I.(¢s)(1). Similarly, the
proof of (1.41) for cases II.(1-3) and I.(¢s)(1’) follows from the proof for cases I1.(1°-3")
and L.(¢s)(1). Hence it remains to prove (1.40) for cases 1.(¢/s)(1),(2) and (1.41) for cases
L.(¢s)(1),(2) and IL.(3*)(ii).

Unselected strings, (1.40). Let us first focus on (1.40) in case L.(¢s)(1). Note that Agk) =

x(¢ < i < £") and by the proof of case L(£s)(1) m(k_l) = ;k) = mgkﬂ) = 0 for

{ < j</{and? < j < (. By the proof of case I.(¢s)(1) we have mE;H ) — 2 and
(41 — 5(k+1) — ¢/ 5o that both strings of length ¢’ are selected. Similarly, 1 < m(k) <
2, 5% = ¢ and IF) = ¢’ if m(k) = 2. Hence again all strings of length ¢’ are selected
in »®). Finally 0 < m{F™" < 2. it m{F™" = 2, then by the proof of lemma 1.1 case
L(s)(1) holds at k — 1 and £(5=1) = 5(=1) — ¢ Tt m ) = 1, then case L(¢s)(1) holds

at k — 1 for the first time and $(*~1) = ¢’. Hence agam, all strings of length ¢/ in (v, J)(*)
are selected. This implies that

b, % = x(i = O)x(m{*V > 0)
(1.42) by ™ = x(i = Ox(m* > 0)
b7 ™ = x(i = Ox(m{* Y > 0).

Note that either £ = ¢/, in which case the above arguments already show that all strings
are selected, or ¢ < ¢ and case 1.(¢s)(1) occurs at k for the first time. In the latter case
mék) = 1 and /*) = ¢(*) = ¢ 50 that the string of length ¢ in () is selected. If ¢ < ¢’ and
case L.(¢s)(1) holds at k for the first time, equation (1.11) must hold and hence by (1.15)
mEkH) = 0 so that b, (!} — 0 for all unselected strings 7. The proof that bj(k) = 0 for all
unselected strings ¢ is very similar to the proof [1, Appendix A, Unselected strings, case
3].

Next consider (1.40) for the case 1.(¢s)(2). In this case Agk) =x(l <i<{") and
mg-k*l) = m§-k) = m§-k+1) =0forl < j < and ¢ < j < {”. By the same arguments as
in case I.(¢s)(1) all existing strings of length ¢’ are selected. Hence (1.42) holds. Again ei-

ther £ = ¢, in which case the previous arguments already show that all strings are selected,

or £ < ¢ and case I.(¢s)(2) occurs at k for the first time. In the latter case mgk) = 1and

£) = (k) = ¢ 50 that the string of length ¢ in v(¥) is selected. If £ < ¢ and case 1.(£s)(2)

holds at k for the first time, equation (1.11) must hold and hence by (1.15) m(k+1) =0

so that b, (¥} — 0 for all unselected strings ¢. The proof that b:r(k) = 0 for all unselected

strings ¢ is very similar to the proof [1, Appendix A, Unselected strings, case 3].
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Unselected strings, (1.41). Consider (1.41) for the case L(¢s)(1). We have §*) = §(¥)
so that V(-k) = 0 unless /(%) = 5F) = glk+1) — g k) = 3(k) — g, mgcfl) =0,
mgfc,) = 1and mg”l) = 2if case I.(¢s)(1) does not hold at k — 1. In the former case (1.41)

holds. In the latter case v§ =x(" <i</0")and m(k R mg-k) = mg-kﬂ) = 0 for
0" < j < £". Hence

e; ™ = x(i = ")x(mp > 0)

¢ k) = x(i =1 )x(mé,,) > 0)

C;"‘(k) =x(i=1" )X(mgﬁ 1) > 0) = 0.
Since mg,,) = 1 and 5%} = ¢ the string of length ¢ is selected. Similarly mé,,) =2,

s+ — ¢ and either TV = ¢ if case L(¢s)(1) holds at k + 1 or ((k+1) = ¢~
otherwise. In either case both strings of length ¢ are selected in »(**t1). This proves
(1.41).

Next consider (1.41) for the case 1.(¢s)(2). In this case ng) = x(¢ <i < ¢") and by
the proof of lemma 1.1 mgk_l) = mgk) = m§k+1) =0forl <j< ¢ and?" <j< ",
The strings of lengths ¢’ and ¢” in v**1) are all selected since by the proof of lemma 1.1
mgil) = mgﬁl,) 2fork < a < n-—2 mgl_l) = mg,") = mg}_l) = m%) =1
and (D) = k41 — ¢/ apd ¢+ = S*+1) — ¢/ Similarly, either mﬁ,) = 2 and
1) = (k) or mgc) = 1and /(*¥) = ¢'. This shows that all strings of lengths ¢’ are selected
in v(%) Also, either mgc,) =2and /®) = k) or mgfc,) = 1 and ¢®) = ¢’. This shows that
all strings of lengths ¢ are selected in (¥). To show that all strings of length ¢/ in v(*=1)
are selected, observe that either m(k R my—l) =1land 5*~Y = ¢ or mgfc e
and ((*=1) = 3+=1 = ¢_ Similarly, to show that all strings of length ¢” in v*=1) are
selected, observe that either mgc, - =0, g’f D = 1and {=D = ¢" or m(fc, Y = 2and
J=1) — F(k=1) — g1 ~

Finally consider (1.41) for the case IL(3")(ii). Set £ = (%) = §®) ¢/ = 5(k) — ¢(¥) and

0" = §%) = 5¥) From the proof of lemma 1.1 it follows that mge_l) 0, m (k) =

mktD _ (k=1) _ (k) _
my, = 2 and m; m; =

i < 0") we have

>

m§k+1) = 0for ¢ < j < {". Since VE ) = X <

—(k k
e ™ = x(i = )x(mlET > 0)
=(k k
<>=x<:emm¢>>m
e ® = (i = )x(ml > 0)=o.
The single string of length ¢ in v(*) is selected, so that cZ:(k)

i. Furthermore, if case I1.(3")(i) holds at k + 1, then ¢/ = §(*+1) = S = 4D g6 that
both strings of length ¢/ in v(*+1) are selected. Otherwise £(*+1) = ¢/ = 5(*+1) and again
both strings of length ¢ in v*+1) are selected. (]

= 0 for all unselected strings
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