SUPPLEMENTARY NOTES ON "A BIJECTION BETWEEN TYPE $D_{n}^{(1)}$ CRYSTALS AND RIGGED CONFIGURATIONS"

ANNE SCHILLING

These notes supplement [2, Appendix C].

$$
\text { 1. Proof of }[\delta, \tilde{\delta}]=0
$$

One may easily verify that (see also [1, Eq. (3.10)])

$$
\begin{align*}
-p_{i-1}^{(a)}+2 p_{i}^{(a)}-p_{i+1}^{(a)} & =-\sum_{b \in J}\left(\alpha_{a} \mid \alpha_{b}\right) m_{i}^{(b)}+L_{i}^{a} \\
& \geq-\sum_{b \in J}\left(\alpha_{a} \mid \alpha_{b}\right) m_{i}^{(b)} \tag{1.1}
\end{align*}
$$

The proof of $[\delta, \tilde{\delta}]=0$ is given here by Lemmas 1.1 and 1.2 below. We rely here heavily on [1, Appendix A].

Let $(\nu, J) \in \operatorname{RC}(\lambda, B)$ where $B=\left(B^{1,1}\right)^{\otimes 2} \otimes B^{\prime}$. The following notation is used:

$$
\begin{aligned}
\delta(\nu, J) & =(\dot{\nu}, \dot{J}) \\
\tilde{\delta}(\nu, J) & =(\tilde{\nu}, \tilde{J}) \\
\tilde{\delta} \circ \delta(\nu, J) & =(\tilde{\tilde{\nu}}, \tilde{\tilde{J}}) \\
\delta \circ \tilde{\delta}(\nu, J) & =(\dot{\tilde{\nu}}, \dot{\tilde{J}}) .
\end{aligned}
$$

Furthermore, let $\left\{\dot{\ell}^{(k)}, \dot{s}^{(k)}\right\},\left\{\tilde{\ell}^{(k)}, \tilde{s}^{(k)}\right\},\left\{\tilde{\dot{\ell}}^{(k)}, \tilde{s}^{(k)}\right\}$ and $\left\{\dot{\tilde{\ell}}^{(k)}, \dot{\tilde{s}}^{(k)}\right\}$ be the lengths of the strings that are shortened in the transformations $(\nu, J) \mapsto(\dot{\nu}, \dot{J}),(\nu, J) \mapsto(\tilde{\nu}, \tilde{J})$, $(\dot{\nu}, \dot{J}) \mapsto(\tilde{\dot{\nu}}, \tilde{\tilde{J}})$ and $(\tilde{\nu}, \tilde{J}) \mapsto(\dot{\tilde{\nu}}, \dot{\tilde{J}})$, respectively. We call the strings, whose lengths are labeled by an ℓ, ℓ-strings and those labeled by an s, s-strings.

Lemma 1.1. The following cases occur at $(\nu, J)^{(k)}$:
I. Nontwisted case. In this case the ℓ-string selected by $\delta($ resp. $\tilde{\delta})$ in $(\nu, J)^{(k)}$ is different from the s-string selected by $\tilde{\delta}\left(\right.$ resp. δ) in $(\nu, J)^{(k)}$. For the ℓ-strings one of the following must hold:
(ℓ a) Generic case. If δ and $\tilde{\delta}$ do not select the same ℓ-string, then $\dot{\tilde{\ell}}^{(k)}=\dot{\ell}^{(k)}$ and $\tilde{\ell}^{(k)}=\tilde{\ell}^{(k)}$.
(ℓ b) Doubly singular case. In this case δ and $\tilde{\delta}$ select the same ℓ-string, so that $\dot{\ell}^{(k)}=\tilde{\ell}_{\sim}^{(k)}=: \ell$. Then
(1) If $\tilde{\dot{\ell}}^{(k)}<\ell\left(\right.$ or $\left.\tilde{\tilde{\ell}}^{(k)}<\ell\right)$ then $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell-1$ and $m_{\ell-1}^{(k+1)}=0$ for $k<n-2, m_{\ell-1}^{(n-1)}=m_{\ell-1}^{(n)}=0$ for $k=n-2$ and $m_{\ell-1}^{(n-2)}=0$ for $k \underset{\sim}{=} n-1, n$.
(2) If $\tilde{\dot{\ell}}^{(k)}=\ell\left(\right.$ or $\left.\dot{\tilde{\ell}}^{(k)}=\ell\right)$ then case I.($\left.\ell s\right)\left(l^{\prime}\right)($ or I.($\left.\ell s)(1)\right)$ holds or $\tilde{\ell}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell$.
(3) If $\tilde{\dot{\ell}}^{(k)}>\ell\left(\right.$ or $\left.\dot{\tilde{\ell}}^{(k)}>\ell\right)$ then case I.($\left.\ell s\right)\left(I^{\prime}, 2\right)($ or I.($\left.\ell s)(1,2)\right)$ holds or $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}$ and $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)}, \dot{\tilde{\ell}}^{(k)} \leq \dot{\ell}^{(k+1)}$ for $k<n-2, \tilde{\dot{\ell}}^{(n-2)} \leq$ $\underset{\sim}{\min }\left\{\tilde{\ell}^{(n-1)}, \tilde{\ell}^{(n)}\right\}, \dot{\tilde{\ell}}(n-2) \leq \min \left\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\right\}$ for $k=n-2$, and $\tilde{\dot{\ell}}^{(k)} \leq \tilde{s}^{(n-2)}, \dot{\tilde{\ell}}(k) \leq \dot{s}^{(n-2)}$ for $k=n-1, n$.
For the s-strings, case I.(ℓs) holds or one the following must hold:
(sa) Generic case. If δ and $\tilde{\delta}$ do not select the same s-string, then $\dot{\tilde{s}}^{(k)}=\dot{s}^{(k)}$ and $\tilde{\dot{s}}^{(k)}=\tilde{s}^{(k)}$.
(sb) Doubly singular case. In this case δ and $\tilde{\delta}$ select the same s-string, so that $\dot{s}^{(k)}=\tilde{s}^{(k)}=: s$. Then
(1) If $\tilde{\dot{s}}^{(k)}<s\left(\right.$ or $\dot{\tilde{s}}^{(k)}<s$) then $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=s-1$ and $m_{s-1}^{(k-1)}=0$.
(2) If $\tilde{\tilde{S}}^{(k)}=s\left(\right.$ or $\dot{\tilde{s}}^{(k)}=s$) then $\tilde{\dot{S}}^{(k)}=\dot{\tilde{s}}^{(k)}=s$.
(3) If $\tilde{\dot{s}}^{(k)}>s\left(\right.$ or $\dot{\tilde{s}}^{(k)}>$ s) then $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}, \tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)}$ and $\dot{\tilde{s}}^{(k)} \leq$ $\dot{s}^{(k-1)}$.
(ℓs) Mixed case. One of the following holds:
(1) $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=: \ell, \dot{\tilde{\ell}}^{(k)}=\dot{s}^{(k)}=\dot{\ell}^{(k+1)}=: \ell^{\prime}, \tilde{\dot{\ell}}^{(k)}=\dot{\tilde{s}}^{(k)}=: \ell^{\prime \prime}$, $\tilde{s}^{(k)}=\tilde{s}^{(k)}$ or possibly the same conditions for ℓ and $\ell^{\prime}, \tilde{\dot{\ell}}^{(k)}=\tilde{s}^{(k)}=$ $\tilde{s}^{(k+1)}=\ell^{\prime \prime}, \dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime \prime}, m_{\ell^{\prime \prime}}^{(k-1)}=0, m_{\ell^{\prime \prime}}^{(k)}=1, m_{\chi^{\prime \prime}}^{(k+1)}=2$ if case $I .(\ell s)(1)$ does not hold at $k-1$. Furthermore, either $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or case $I .(\ell s)(1)$ holds at $k+1$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$. Similarly, either $\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)}$ or case I.($\left.\ell s\right)(1)$ holds at $k-1$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$.
$\left(1^{\prime}\right) \dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=: \ell, \tilde{\tilde{\ell}}^{(k)}=\tilde{s}^{(k)}=\tilde{\ell}^{(k+1)}=: \ell^{\prime}, \dot{\tilde{\ell}}^{(k)}=\tilde{\dot{s}}^{(k)}=: \ell^{\prime \prime}$, $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ or possibly the same conditions for ℓ and $\ell^{\prime}, \dot{\tilde{\ell}}^{(k)}=\dot{s}^{(k)}=$ $\dot{s}^{(k+1)}=\ell^{\prime \prime}, \tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime \prime}, m_{\ell^{\prime \prime}}^{(k-1)}=0, m_{\ell^{\prime \prime}}^{(k)}=1, m_{\ell^{\prime \prime}}^{(k+1)}=2$ if case I. $(\ell s)\left(l^{\prime}\right)$ does not hold at $k-1$. Furthermore, either $\dot{\tilde{\ell}}^{(k)} \leq \dot{\ell}^{(k+1)}$ or case $I .(\ell s)\left(l^{\prime}\right)$ holds at $k+1$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$. Similarly, either $\tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)}$ or case I. $(\ell s)\left(l^{\prime}\right)$ holds at $k-1$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$.
(2) For $k<n-2$ (resp. $k=n-2$) $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=: \ell, \dot{s}^{(k)}=\tilde{s}^{(k)}=$ $\dot{s}^{(k+1)}=\tilde{s}^{(k+1)}=: \ell^{\prime}\left(\right.$ resp. $\dot{s}^{(k)}=\tilde{s}^{(k)}=\dot{\ell}^{(n-1)}=\dot{\ell}^{(n)}=\tilde{\ell}^{(n-1)}=$ $\left.\tilde{\ell}^{(n)}=\ell^{\prime}\right), \dot{\tilde{\ell}}^{(k)}=\tilde{\dot{\ell}}^{(k)}=\ell^{\prime \prime}, \dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}:=\ell^{\prime \prime \prime}$ and case I.($\left.\ell s\right)(2)$ holds at $k+1$ (resp. $n-1$ and n) with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$ and $\ell=\ell^{\prime}, \ell^{\prime \prime \prime}=\ell^{\prime \prime}$. Also, either $\tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)}$ and $\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)}$ or case I.($\ell s)(2)$ holds at $k-1$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$. For $k=$ $n-1, n, \dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\dot{s}^{(n-2)}=\tilde{s}^{(n-2)}=\ell^{\prime}$ and $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell^{\prime \prime}$. In addition case I.($\ell s)(2)$ holds at $n-2$ with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$.
II. Twisted case. In this case the ℓ-string in $(\nu, J)^{(k)}$ selected by δ is the same as the s-string selected by $\tilde{\delta}$ or vice versa. In the first case $\dot{\ell}^{(k)}=\tilde{s}^{(k)}=:$. Then $\tilde{\ell}^{(k)}=\tilde{\dot{\ell}}^{(k)}$ and one of the following holds:
(1) If $\dot{\tilde{\ell}^{(k)}}<\ell$, then $\dot{\tilde{\ell}}^{(k)}=\tilde{\tilde{s}}^{(k)}=\ell-1, m_{\ell-1}^{(k+1)}=0$ or $m_{\ell-1}^{(k+1)}(\tilde{\nu})=0$, and $m_{\ell-1}^{(k-1)}=0$ or $m_{\ell-1}^{(k-1)}(\dot{\nu})=0$. Furthermore $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$.
(2) If $\dot{\tilde{\ell}} \dot{(}^{(k)}=\ell$, then $\dot{\tilde{\ell}}(k)=\tilde{\dot{s}}^{(k)}=\ell$ and $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$.
(3) If $\dot{\tilde{\ell}}^{(k)}>\ell$, then
(i) $\dot{\tilde{\ell}}^{(k)}=\tilde{\dot{s}}^{(k)}$ and $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$, or
(ii) $\dot{\tilde{\ell}}^{(k)}=\dot{s}^{(k)}$ and $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)}$.

Furthermore, either $\dot{\tilde{\ell}}^{(k)} \leq \dot{\ell}^{(k+1)}$ or $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}, \dot{\tilde{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k+1)}, m_{\ell}^{(k+1)}=$ 1 and Case II.(3)(i) holds at $k+1$. Similarly, either $\tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)}$ or $\dot{\ell}^{(k)}=$ $\dot{\ell}^{(k-1)}, \dot{\tilde{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k-1)}, m_{\ell}^{(k-1)}=1$ and Case II.(3) holds at $k-1$.
If the ℓ-string in $(\nu, J)^{(k)}$ selected by $\tilde{\delta}$ is the same as the s-string selected by δ, then $\tilde{\ell}^{(k)}=\dot{s}^{(k)}=$: ℓ. In this case $\dot{\ell}^{(k)}=\dot{\tilde{\ell}}^{(k)}$ and one of the following holds:
(1') If $\tilde{\dot{\ell}}^{(k)}<\ell$, then $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell-1, m_{\ell-1}^{(k+1)}=0$ or $m_{\ell-1}^{(k+1)}(\dot{\nu})=0$, and $m_{\ell-1}^{(k-1)}=0$ or $m_{\ell-1}^{(k-1)}(\tilde{\nu})=0$. Furthermore $\tilde{s}^{(k)}=\tilde{s}^{(k)}$.
(2') If $\tilde{\dot{\ell}}^{(k)}=\ell$, then $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell$ and $\tilde{s}^{(k)}=\tilde{\dot{s}}^{(k)}$.
(3') If $\tilde{\dot{\ell}}^{(k)}>\ell$, then
(i) $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{s}}^{(k)}$ and $\tilde{s}^{(k)}=\tilde{\dot{s}}^{(k)}$, or
(ii) $\tilde{\dot{\ell}}^{(k)}=\tilde{s}^{(k)}$ and $\tilde{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)} \leq \tilde{\ell}^{(k-1)}$.

Furthermore, either $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or $\tilde{\ell}^{(k)}=\tilde{\ell}^{(k+1)}, \tilde{\dot{\ell}}^{(k)}=\tilde{\dot{\ell}}^{(k+1)}, m_{\ell}^{(k+1)}=$ 1 and Case II.($\left.\tilde{\tilde{N}}^{\prime}\right)(i)$ holds at $k+1$. Similarly, either $\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)}$ or $\tilde{\ell}^{(k)}=$ $\tilde{\ell}^{(k-1)}, \tilde{\dot{\ell}}^{(k)}=\tilde{\dot{\ell}}^{(k-1)}, m_{\ell}^{(k-1)}=1$ and Case II.(3') holds at $k-1$.

Lemma 1.2. $\tilde{\dot{J}}=\dot{\tilde{J}}$.
Proof of Lemma 1.1. The proof proceeds by induction on k in the following way. For $k=$ $0,1,2, \ldots, n$ the statements about the ℓ-strings are proved assuming that the statements about the ℓ-strings hold for $i=1,2, \ldots, k-1$. The statements about the s-strings are proved by induction on $k=n-2, n-3, \ldots, 1$ assuming that the statements for all ℓ strings and the s-strings for $i=n-2, n-3, \ldots, k+1$ hold.

For the base case $k=0$ we have $\dot{\ell}^{(0)}=\tilde{\ell}^{(0)}=\tilde{\check{\ell}}^{(0)}=\dot{\tilde{\ell}}^{(0)}=1$.
Note that

$$
\begin{array}{ll}
\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)} & \quad \text { for } 1 \leq k<n-2, \tag{1.2}\\
\dot{\tilde{\ell}}^{(n)} \leq \dot{\ell}^{(k+1)} & \dot{\tilde{\ell}}^{(n-2)} \leq \min \left\{\tilde{\ell}^{(n-1)}, \tilde{\ell}^{(n)}\right\} \\
& \\
\left.\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\right\}
\end{array}
$$

unless case I.($\ell s)(1),\left(1^{\prime}\right),(2)$ or II.(3),(3') holds at k and $k+1$. Similarly,

$$
\begin{array}{ll}
\tilde{s}^{(k)} \leq \tilde{s}^{(k-1)} & \operatorname{for} 1<k \leq n-2, \tag{1.3}\\
\dot{\tilde{s}}^{(k)} \leq \dot{s}^{(k-1)} & \max \left\{\tilde{\ell}^{(n-1)}, \tilde{\ell}^{(n)}\right\} \leq \tilde{s}^{(n-2)} \\
\max \left\{\dot{\ell}^{(n-1)}, \dot{\tilde{\ell}}^{(n)}\right\} \leq \dot{s}^{(n-2)}
\end{array}
$$

unless case I . $(\ell s)(1),\left(1^{\prime}\right),(2)$ or II.(3),(3') holds at k and $k-1$.
I. Nontwisted case. For this case many arguments go through as in the proof for type A as in [1, Appendix A]. Here we mainly point out the differences.
Case ($\ell \mathbf{a}$). The proof of the generic case is very similar to the proof of the generic case for type A [1, Appendix A]. We focus here on $k \leq n-2$. Observe that $\tilde{\ell}^{(k)}=\tilde{\dot{\ell}}^{(k)}$ is obtained from $\dot{\ell}^{(k)}=\dot{\tilde{\ell}}^{(k)}$ by the involution θ. Hence we only prove the latter. The singular string in $(\nu, J)^{(k)}$ of length $\dot{\ell}^{(k)}$ remains singular in passing to $(\tilde{\nu}, \tilde{J})^{(k)}$. Since $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ by (1.2), it follows that $\dot{\tilde{\ell}}^{(k)} \leq \dot{\ell}^{(k)}$.

If $\dot{\tilde{\ell}}^{(k)}=\dot{\ell}^{(k)}$ we are done. By induction hypothesis, $\dot{\tilde{\ell}}^{(k)} \geq \dot{\tilde{\ell}}^{(k-1)} \geq \dot{\ell}^{(k-1)}-1$. If $\dot{\ell}^{(k-1)} \leq \dot{\tilde{\ell}}^{(k)}<\dot{\ell}^{(k)}$, this is only possible if the string selected by δ acting on $(\tilde{\nu}, \tilde{J})^{(k)}$ is a
string shortened by $\tilde{\delta}$ acting on $(\nu, J)^{(k)}$. This string in $(\tilde{\nu}, \tilde{J})^{(k)}$ has length either $\tilde{\ell}^{(k)}-1$ or $\tilde{s}^{(k)}-1$ and label 0 . We show that this cannot occur. For this it suffices to show that

$$
\begin{array}{ll}
p_{\tilde{\ell}^{(k)}-1}^{(k)}(\tilde{\nu})>0 & \text { if } \dot{\ell}^{(k-1)}<\tilde{\ell}^{(k)} \leq \dot{\ell}^{(k)} \text { and } \dot{\tilde{\ell}}^{(k-1)}<\tilde{\ell}^{(k)} \\
p_{\tilde{S}^{(k)}-1}^{(k)}(\tilde{\nu})>0 & \text { if } \dot{\ell}^{(k-1)}<\tilde{s}^{(k)} \leq \dot{\ell}^{(k)} \text { and } \dot{\ell^{(k-1)}}<\tilde{s}^{(k)} \tag{1.5}
\end{array}
$$

If $\dot{\ell}^{(k-1)}-1=\dot{\tilde{\ell}}^{(k)}<\dot{\ell}^{(k)}$, case I.(ℓ b)(1) or II.(1) occurs at $k-1$, so that $m_{\dot{\ell}(k-1)-1}^{(k)}=0$ or $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu})=0$. Hence $\dot{\tilde{\ell}}^{(k)}=\dot{\ell}^{(k-1)}-1$ can only occur if $\tilde{\ell}^{(k)}=\tilde{\ell}^{(k-1)}=\dot{\ell}^{(k-1)}$ if case I. $(\ell \mathrm{b})(1)$ holds at $k-1$ or $\tilde{s}^{(k)}=\tilde{s}^{(k-1)}=\dot{\ell}^{(k-1)}$ if case II.(1) holds at $k-1$. To prove that this cannot happen it suffices to show that

$$
\begin{array}{ll}
p_{\tilde{\ell}^{(k)}-1}^{(k)}(\tilde{\nu})>0 & \text { if } m_{\tilde{\ell}^{(k-1)}-1}^{(k)}=0 \text { and } \dot{\ell}^{(k-1)}=\tilde{\ell}^{(k-1)}=\tilde{\ell}^{(k)} \leq \dot{\ell}^{(k)} \\
p_{\tilde{S}^{(k)}-1}^{(k)}(\tilde{\nu})>0 & \text { if } m_{\tilde{S}^{(k-1)}-1}^{(k)}=0 \text { and } \dot{\ell}^{(k-1)}=\tilde{s}^{(k-1)}=\tilde{s}^{(k)} \leq \dot{\ell}^{(k)} \tag{1.7}
\end{array}
$$

Up to minor modifications, the proofs of (1.4)-(1.7) go through as the proofs of [1, (A.2) and (A.3)].

The cases $k=n-1$ and $k=n$ can be proven in a similar fashion.
Case ($\ell \mathbf{b})(\mathbf{1})$. The proof follows very closely the doubly singular case (1) in [1, Appendix A]. Again we assume that $k \leq n-2$. The cases $k=n-1, n$ go through up to minor modifications. By assumption $\tilde{\tilde{\ell}}(k)<\ell$. By the same arguments as in [1, Appendix A] it follows that $\tilde{\dot{\ell}}^{(k)}=\ell-1$ and $p_{\ell-1}^{(k)}(\dot{\nu})=0$.

First we show that the cases I.($\ell s)(1),\left(1^{\prime}\right),(2)$, II.(1'-3') cannot occur at $k-1$. If II.(1'-3') holds at $k-1$ and the conditions of I . $(\ell \mathrm{b})(1)$ at k, then $\tilde{\ell}^{(k-1)}=\dot{s}^{(k-1)}=\tilde{\ell}^{(k)}=\dot{\ell}^{(k)}=\ell$. For case II.(1') at $k-1$, we have $\tilde{\tilde{\ell}}^{(k-1)}=\ell-1$ so that $p_{\ell-1}^{(k-1)}(\dot{\nu})=0$. Otherwise this yields a contradiction to the fact that $\tilde{\ell}^{(k-1)}=\ell$. But $p_{\ell-1}^{(k-1)}(\dot{\nu})=p_{\ell-1}^{(k-1)}+\chi\left(\dot{\ell}^{(k-1)} \leq\right.$ $\left.\ell-1<\dot{\ell}^{(k)}\right)=p_{\ell-1}^{(k-1)}+1 \geq 1$. On the other hand for case II. $\left(2^{\prime}-3^{\prime}\right) \tilde{\ell}^{(k)} \geq \tilde{\ell}^{(k-1)} \geq$ $\tilde{\ell}^{(k-1)}=\ell$ which contradicts our assumptions that $\tilde{\dot{\ell}}^{(k)}<\ell$. Case I. $(\ell s)(2)$ at $k-1$ requires case I . $(\ell s)(2)$ at k which contradicts our assumption. If I. $(\ell s)(1)$ holds at $k-1$, then $\tilde{\ell}^{(k-1)}=\dot{\ell}^{(k-1)} \leq \ell$ and $\tilde{\dot{\ell}}^{(k-1)} \geq \ell$ which contradicts our assumption that $\tilde{\dot{\ell}}^{(k)}<\ell$ since $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\dot{\ell}}^{(k)}$. Similarly, for I. $(\ell s)\left(1^{\prime}\right) \tilde{\dot{\ell}}^{(k-1)}=\ell$ which contradicts $\tilde{\dot{\tilde{~}}}^{(k)}<\ell$.

The goal is to show that $\tilde{\tilde{\ell}}^{(k)}=\ell-1$. Since $\tilde{\ell}^{(k)}=\ell$, it follows that $m_{\ell-1}^{(k)}(\tilde{\nu}) \geq 1$. It suffices to show that $\dot{\tilde{\ell}}^{(k-1)} \leq \ell-1$ and $p_{\ell-1}^{(k)}(\tilde{\nu})=0$. By the same arguments as in [1, Appendix A] this implies that $\dot{\tilde{\ell}}(k)=\ell-1$. Note that, since $p_{\ell-1}^{(k)}(\dot{\nu})=0$,

$$
\begin{equation*}
p_{\ell-1}^{(k)}=p_{\ell-1}^{(k)}(\tilde{\nu})+\chi\left(\tilde{\ell}^{(k-1)}<\ell\right)=\chi\left(\dot{\ell}^{(k-1)}<\ell\right) \tag{1.8}
\end{equation*}
$$

Suppose that $\dot{\tilde{\ell}}^{(k-1)} \geq \ell$. Now $\tilde{\dot{\ell}^{(k-1)}} \leq \tilde{\dot{\chi}}^{(k)}=\ell-1$ so $\tilde{\dot{\ell}}^{(k-1)} \neq \dot{\tilde{\ell}}^{(k-1)}$. By induction case I.(ℓ a) or II.(1-3) has to hold at $k-1$ (since we showed before that cases I. $(\ell s)(1),\left(1^{\prime}\right),(2)$ and II.(1'-3') cannot occur). In case I.(ℓ a) this yields a contradiction by the same reasoning as in $\left[1\right.$, Appendix A]. In case II.(1-3) we have $\dot{\ell}^{(k-1)}=\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\tilde{s}^{(k-1)}=\ell$ and $\tilde{\mathscr{\ell}}^{(k-1)}=\tilde{\ell}^{(k-1)}<\ell$ which yields a contradiction in the evaluation of (1.8). Hence $\dot{\tilde{\ell}}^{(k-1)}<\ell$.

Next suppose that $p_{\ell-1}^{(k)}(\tilde{\nu}) \geq 1$. Then by (1.8), $\tilde{\ell}^{(k-1)} \geq \ell$ and $\dot{\ell}^{(k-1)} \leq \ell-1$. Since $\tilde{\ell}^{(k-1)} \neq \dot{\ell}^{(k-1)}$, by induction case I.(ℓ a) or II.(1-3) holds at $k-1$. As before, cases II.(13) yield a contradiction in evaluating (1.8). For cases I.(ℓ a) one obtains a contradiction as in [1, Appendix A]. Hence $\dot{\tilde{\ell}}(k-1)<\ell$ and $p_{\ell-1}^{(k)}(\tilde{\nu})=0$ which implies $\dot{\tilde{\ell}}^{(k)}=\tilde{\tilde{\ell}}^{(k)}=\ell-1$.

The proof that $m_{\ell-1}^{(k+1)}=0$ is the same as in [1, Appendix A].
The case $\dot{\tilde{\ell}}^{(k)}<\ell$ is obtained by the application by θ.
Case ($\ell \mathbf{b}$)(2). By assumption $\tilde{\tilde{\ell}}^{(k)}=\ell$, so that by case I . $(\ell \mathbf{b})(1) \dot{\tilde{\ell}}^{(k)} \geq \ell$. In addition $m_{\ell}^{(k)} \geq 2$ and $p_{\ell}^{(k)}=0$. By (1.2) $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$ unless case I . $(\ell s)\left(1^{\prime}\right)$ holds at $k-1$ and k. Since $m_{\ell}^{(k)} \geq 2$ and $p_{\ell}^{(k)}=0$, we have $\dot{\tilde{\ell}}{ }^{(k)}=\ell$ so that case I. $(\ell \mathbf{b})(2)$ holds, unless $\tilde{s}^{(k)}=\ell$ and $m_{\ell}^{(k)}=2$.

Hence let us from now on assume that $\tilde{s}^{(k)}=\ell$ and $m_{\ell}^{(k)}=2$. Note that in this case $k \leq n-2$. We will show that case I. $(\ell s)\left(1^{\prime}\right)$ holds with $\ell=\ell^{\prime}$. Note that $\dot{s}^{(k)}>\ell$, since by assumption $\tilde{\tilde{\ell}}^{(k)}=\ell$. Note that $m_{\ell}^{(k+1)} \geq 2$ since $\tilde{\ell}^{(k+1)}=\tilde{s}^{(k+1)}=\ell$, and by (1.1)

$$
\begin{aligned}
p_{\ell-1}^{(k)}+p_{\ell+1}^{(k)}+m_{\ell}^{(k-1)}+\left(m_{\ell}^{(k+1)}-2\right) & \leq 2 \quad \text { for } k<n-2 \\
p_{\ell-1}^{(n-2)}+p_{\ell+1}^{(n-2)}+m_{\ell}^{(n-3)}+\left(m_{\ell}^{(n-1)}+m_{\ell}^{(n)}-2\right) & \leq 2
\end{aligned}
$$

By similar arguments as in the proof [1, Appendix A case (3)] of type A it follows that

$$
\begin{align*}
p_{\ell+1}^{(k)} & =0 \\
p_{\ell-1}^{(k)} & =2-m_{\ell}^{(k-1)} \tag{1.9}\\
m_{\ell}^{(k+1)} & =2 \quad \text { for } k<n-2 \text { or } \quad m_{\ell}^{(n-1)}=m_{\ell}^{(n)}=1 \quad \text { for } k=n-2 .
\end{align*}
$$

Let $\ell^{\prime \prime}>\ell$ be minimal such that $m_{\ell^{\prime \prime}}^{(k)}>0$. If no such $\ell^{\prime \prime}$ exists, set $\ell^{\prime \prime}=\infty$. By (1.1) it follows that $p_{i}^{(k)}=0$ for $\ell \leq i \leq \ell^{\prime \prime}$ and $m_{i}^{(k-1)}=m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime \prime}$. Hence $\dot{\tilde{\ell}}(k)=\ell^{\prime \prime}$.

First assume that $\dot{\ell}^{(k+1)}>\ell$. We write down the arguments for $k<n-2$. The case $k=n-2$ is analogous. Note that then case I .($\ell \mathrm{a})$ and I . ($s \mathrm{a}$) holds at $k+1$ so that by induction $\tilde{s}^{(k+1)} \leq \tilde{s}^{(k)}=\ell$. Since on the other hand $\ell=\tilde{\ell}^{(k)} \leq \tilde{s}^{(k+1)}$, it follows that $\tilde{\dot{\ell}}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}=\ell$. Since $\tilde{\dot{s}}^{(k+1)}=\ell$ and $\dot{\ell}^{(k)}=\tilde{\dot{\ell}}^{(k)}=\ell$ and $m_{\ell}^{(k)}=2$, it follows that $\tilde{s}^{(k)}>\ell$. Since $m_{i}^{(k)}=0$ for $\ell<i<\ell^{\prime \prime}$ and $p_{\ell^{\prime \prime}}^{(k)}=0$, we have $\tilde{s}^{(k)}=\ell^{\prime \prime}$ unless $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$. We deal with this case later. In addition, since $m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime \prime}$, it follows that $\dot{\tilde{\ell}}^{(k)}=\ell^{\prime \prime} \leq \dot{\ell}^{(k+1)}$.

If $\dot{\ell}^{(k+1)}=\ell$, then $\tilde{\dot{\ell}}^{(k+1)}=\ell$. (Note that in this case $k<n-2$, since for $k=n-2$ we have $\dot{\ell}^{(n-1)}=\dot{\ell}^{(n)}=\ell$, which would imply that $\dot{s}^{(n-2)}=\ell$. However this contradicts $\tilde{\dot{\ell}}^{(n-2)}=\ell$ since $m_{\ell}^{(n-2)}=2$). Furthermore by (1.1), $m_{i}^{(k)}=m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}, m_{\ell^{\prime \prime}}^{(k+1)}>0$. By the same arguments as above $p_{i}^{(k+1)}=0$ for $\ell \leq i \leq \ell^{\prime \prime}$, so that $\dot{\tilde{\ell}}^{(k+1)}=\ell^{\prime \prime}$. Hence case I. $(\ell s)\left(1^{\prime}\right)$ holds at $k+1$ with the same values for $\ell=\ell^{\prime}$ and $\ell^{\prime \prime}$. By induction $\tilde{\dot{s}}^{(k+1)}=\ell^{\prime \prime}$, so that $\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime}$ as claimed unless again $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$.

By (1.3) we have $\dot{\tilde{s}}^{(k+1)} \leq \dot{s}^{(k)}$ unless possibly case I . $(\ell s)\left(1^{\prime}\right)$ holds at k and $k+1$. However, if case I. $(\ell s)\left(1^{\prime}\right)$ holds at $k+1$ by induction $\dot{\tilde{s}}^{(k+1)}=\dot{s}^{(k+1)} \leq \dot{s}^{(k)}$. Hence by the definition of δ also $\dot{\tilde{s}}^{(k)}=\dot{s}^{(k)}$ unless $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$.

Suppose $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$. Then $\dot{\tilde{\ell}}^{(k)}=\dot{s}^{(k)}=\ell^{\prime \prime}$ and $\tilde{\dot{\ell}}^{(k)}>\ell^{\prime \prime}$. Let $\ell^{\prime \prime \prime}>\ell^{\prime \prime}$ be minimal such that $m_{\ell^{\prime \prime \prime}}^{(k)}>0$. By (1.1) with $p_{\ell^{\prime \prime}-1}^{(k)}=p_{\ell^{\prime \prime}}^{(k)}=0$

$$
\begin{equation*}
m_{\ell^{\prime \prime}}^{(k-1)}+\left(m_{\ell^{\prime \prime}}^{(k+1)}-2\right)+p_{\ell^{\prime \prime}+1}^{(k)} \leq 2 \tag{1.10}
\end{equation*}
$$

Note that $m_{\ell^{\prime \prime}}^{(k+1)} \geq 2$. Assume that $m_{\ell^{\prime \prime}}^{(k+1)}=1$ (since $\dot{s}^{(k)}=\ell^{\prime \prime}$ we must have $m_{\ell^{\prime \prime}}^{(k+1)} \geq$ 1). Then by (1.1) $m_{\ell^{\prime \prime}}^{(a)}=1$ for all $k \leq a \leq n-2$. However this is a contradiction to the fact that $\dot{\ell}^{(a)}=\dot{s}^{(a)}=\ell^{\prime \prime}$ for some $a \geq k$. This proves in particular that case I. $(\ell s)\left(1^{\prime}\right)$ cannot hold at $k-1$. Furthermore, by (1.10) $m_{\ell^{\prime \prime}}^{(k-1}=0, m_{\ell^{\prime \prime}}^{(k+1)}=2$ and $p_{\ell^{\prime \prime}+1}^{(k)}=0$. Using (1.1) once again this implies $p_{i}^{(k)}=0$ for $\ell^{\prime \prime} \leq i \leq \ell^{\prime \prime \prime}$, so that $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime \prime}$. Note that $m_{i}^{(k-1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime \prime}$ in this case.

It remains to show that $\tilde{\dot{s}}^{(k)} \leq \tilde{s}^{(k-1)}$ or case I . $(\ell s)\left(1^{\prime}\right)$ holds at $k-1$ with the same values of $\ell=\ell^{\prime}$ and $\ell^{\prime \prime}$. Since $m_{i}^{(k-1)}=0$ for $\ell<i<\ell^{\prime \prime}$ (resp. for $\ell<i<\ell^{\prime \prime \prime}$ in the special case that $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$), it follows that $\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}=\tilde{s}^{(k)}$ (resp. $\left.\tilde{s}^{(k-1)} \geq \ell^{\prime \prime \prime}=\tilde{s}^{(k)}\right)$ if $\tilde{s}^{(k-1)}>\ell$. Hence assume that $\tilde{s}^{(k-1)}=\ell$.

If $\tilde{\ell}^{(k-1)}=\ell$, then $m_{\ell}^{(k-1)} \geq 2$ and by (1.9) $m_{\ell}^{(k-1)}=2$ and $p_{\ell-1}^{(k)}=0$. Let $v<\ell$ be maximal such that $m_{v}^{(k)}>0$. Then by (1.1) $m_{i}^{(k-1)}=m_{i}^{(k+1)}=0$ for $v<i<\ell$ and $p_{i}^{(k)}=0$ for $v \leq i \leq \ell$. Hence, if $\dot{\ell}^{(k-1)}<\ell$, then $\dot{\ell}^{(k-1)} \leq v$ and $\dot{\ell}^{(k)}=v<\ell$ since $p_{v}^{(k)}=0$ which is a contradiction to our definition $\dot{\ell}^{(k)}=\ell$. Hence $\dot{\ell}^{(k-1)}=\ell$ and case I . $(\ell s)\left(1^{\prime}\right)$ holds at $k-1$ with the same value for $\ell=\ell^{\prime}$. Also $\ell^{\prime \prime}$ is the same by (1.1).

Next assume $\tilde{\ell}^{(k-1)}<\ell$. Then $m_{\ell}^{(k-1)} \geq 1$ and $0 \leq p_{\ell-1}^{(k)} \leq 1$ by (1.9). Note that $p_{\ell-1}^{(k)}(\dot{\nu})=p_{\ell-1}^{(k)}-\chi\left(\dot{\ell}^{(k-1)}<\ell\right)$. If $\dot{\ell}^{(k-1)}<\ell$, this implies that $p_{\ell-1}^{(k)}=1$ and $p_{\ell-1}^{(k)}(\dot{\nu})=$ 0 . By induction case I. must hold at $k-1$ and $\tilde{\tilde{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}=\ell$. If $\tilde{\tilde{\ell}}^{(k-1)}<\ell$ this implies that $\tilde{\dot{\ell}}^{(k)} \leq \ell-1$ which contradicts our assumption that $\tilde{\dot{\ell}}^{(k)}=\ell$. The condition $\tilde{\dot{\ell}}^{(k-1)}=\ell$ can only occur for case I. $(\ell \mathbf{b})(3)$ at $k-1$. However, then $\dot{\tilde{\ell}}^{(k-1)}=\tilde{\dot{\ell}}^{(k-1)}=\ell$ which contradicts $m_{\ell}^{(k-1)}=1$. Hence $\dot{\ell}^{(k-1)}=\ell$. The case $p_{\ell-1}^{(k)}=0$ yields a contradiction as before. Therefore $p_{\ell-1}^{(k)}=1$ and $m_{\ell}^{(k-1)}=1$ by (1.9), so that case II.(1-3) must hold at $k-1$. Note that $p_{\ell-1}^{(k)}(\tilde{\nu})=p_{\ell-1}^{(k)}-1=0$. Hence if case II.(1) holds at $k-1, \dot{\tilde{\ell}}^{(k-1)}=\ell-1$ so that $\dot{\tilde{\tilde{\ell}}}^{(k)}=\ell-1$ which contradicts our assumptions. For case II.(2) at $k-1$ we must have $\dot{\tilde{\ell}}^{(k-1)}=\ell$ which however contradicts $m_{\ell}^{(k-1)}=1$ and $\tilde{s}^{(k-1)}=\ell$. In case II.(3) we have $\dot{\tilde{\ell}}^{(k-1)}>\dot{\chi}^{(k-1)}=\ell$ which contradicts $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\tilde{\ell}}(k)=\ell$.

The case $\dot{\tilde{\ell}}(k)=\ell$ follows from the above by the application of θ.
Case ($\ell \mathbf{b})(3)$. By (1.2) either $\tilde{\tilde{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ or case I.($\left.\ell s\right)$ holds at $k-1$ and k. The latter case will be dealt with in the proof of case I . (ℓs), hence we assume that $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\dot{\tilde{\ell}}\left({ }^{(k-1)} \leq \dot{\ell}^{(k)}\right.$. We follow the proof for type $A_{n}^{(1)}$ in [1, Appendix A]. By the same arguments as for type A the assumption $m_{\ell}^{(k)}>1$ leads to a contradiction unless $m_{\ell}^{(k)}=2$ and $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\dot{s}^{(k)}=\tilde{s}^{(k)}=\ell$. Hence either

$$
\begin{array}{ll}
m_{\ell}^{(k)}=1 \quad \text { for } k \leq n \text { or } \\
m_{\ell}^{(k)}=2 \quad \text { and } \quad \dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\dot{s}^{(k)}=\tilde{s}^{(k)}=\ell \quad \text { for } k \leq n-2 \tag{1.12}
\end{array}
$$

If (1.11) holds, up to small modifications the arguments for type A yield:
for $k \leq n$
(1.15) $m_{\ell}^{(k+1)}=0$
for $k \leq n-1, \quad p_{\ell-1}^{(n)}=2-m_{\ell}^{(n-2)} \quad$ for $k=n$

If (1.12) holds, then by (1.1) we have

$$
\begin{aligned}
p_{\ell-1}^{(k)}+p_{\ell+1}^{(k)}+m_{\ell}^{(k-1)}+\left(m_{\ell}^{(k+1)}-2\right) \leq 2 & \text { for } k<n-2 \\
p_{\ell-1}^{(n-2)}+p_{\ell+1}^{(n-2)}+m_{\ell}^{(n-3)}+\left(m_{\ell}^{(n-1)}+m_{\ell}^{(n)}-2\right) \leq 2 & \text { for } k=n-2
\end{aligned}
$$

since $p_{\ell}^{(k)}=0$. Up to small modifications, the type A proof yields that in this case

$$
\begin{align*}
p_{\ell+1}^{(k)} & =0 \tag{1.16}\\
p_{\ell-1}^{(k)} & =2-m_{\ell}^{(k-1)} \tag{1.17}\\
m_{\ell}^{(k+1)} & =2 \quad \text { for } k<n-2, \quad m_{\ell}^{(n-1)}=m_{\ell}^{(n)}=1 \quad \text { for } k=n-2 \tag{1.18}
\end{align*}
$$

Let ℓ^{\prime} be minimal such that $\ell^{\prime}>\ell$ and $m_{\ell^{\prime}}^{(k)}>0$. If no such ℓ^{\prime} exists, set $\ell^{\prime}=\infty$. By (1.13) (resp. (1.16)) $p_{\ell}^{(k)}=p_{\ell+1}^{(k)}=0$ so that as a consequence of (1.1)

$$
\begin{align*}
m_{i}^{(k)} & =0 & & \text { for } \ell<i<\ell^{\prime} \tag{1.19}\\
p_{i}^{(k)} & =0 & & \text { for } \ell \leq i \leq \ell^{\prime} \tag{1.20}\\
m_{i}^{(k-1)} & =m_{i}^{(k+1)}=0 & & \text { for } \ell<i<\ell^{\prime} \tag{1.21}
\end{align*}
$$

and $m_{i}^{(n)}=0$ for $\ell \underset{\sim}{<} i<\ell^{\prime}$ and $k=n-2$.
If $\ell^{\prime}=\infty$, then $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}(k)=\infty$ and, by (1.1) and (1.15) $m_{i}^{(k+1)}=0$ for $i \geq \ell$, also $\dot{\ell}^{(k+1)}=\tilde{\ell}^{(k+1)}=\infty$ so that Case I.($\left.\ell \mathrm{b}\right)(3)$ holds.

Hence assume $\ell^{\prime}<\infty$. Assume that (1.11) holds. Since $m_{\ell}^{(k)}=1$ and $m_{i}^{(k)}=0$ for $\ell<i<\ell^{\prime}$ certainly $\dot{s}^{(k)} \geq \ell^{\prime}$ and $\tilde{s}^{(k)} \geq \ell^{\prime}$. First assume that $\dot{s}^{(k)}>\ell^{\prime}$ and $\tilde{s}^{(k)}>\ell^{\prime}$ or $m_{\ell^{\prime}}^{(k)}>1$. By the same arguments as in type A it follows that $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell^{\prime} \leq$ $\dot{\ell}^{(k+1)}, \tilde{\ell}^{(k+1)}$ so that Case I. $(\ell \mathrm{b})(3)$ holds. Up to small modifications these arguments also go through for $k=n-1, n$ and yield $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)} \leq \dot{s}^{(n-2)}, \tilde{s}^{(n-2)}$.

Next consider the case $\tilde{s}^{(k)}=\ell^{\prime}, \dot{s}^{(k)}>\ell^{\prime}$ and $m_{\ell^{\prime}}^{(k)}=1$. This can only occur for $k \leq n-2$. We focus here on $k<n-2$. The case $k=n-2$ is obtained by minor notational changes. By induction we have $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}=\ell$. Since $\tilde{\dot{\ell}}^{(k)}>\ell, m_{i}^{(k)}=0$ for $\ell<i<\ell^{\prime}$ and $p_{\ell^{\prime}}^{(k)}=0$ it follows that $\tilde{\tilde{\ell}^{(k)}}=\ell^{\prime}$. Furthermore by (1.15) and (1.21) we also have $\tilde{\ell}^{(k+1)}=\tilde{s}^{(k+1)}=\tilde{s}^{(k)}=\ell^{\prime}=\tilde{\dot{\ell}}^{(k)}$. This is the second string of equalities in case I. $(\ell s)\left(1^{\prime}\right)$. By (1.1) the conditions $m_{\ell^{\prime}}^{(k)}=1$ and $p_{\ell^{\prime}}^{(k)}=0$ imply

$$
\begin{equation*}
p_{\ell^{\prime}-1}^{(k)}+p_{\ell^{\prime}+1}^{(k)}+m_{\ell^{\prime}}^{(k-1)}+m_{\ell^{\prime}}^{(k+1)} \leq 2 . \tag{1.22}
\end{equation*}
$$

But since $\tilde{\ell}^{(k+1)}=\tilde{s}^{(k+1)}=\ell^{\prime}$ we have $m_{\ell^{\prime}}^{(k+1)} \geq 2$, so that by (1.22) $m_{\ell^{\prime}}^{(k+1)}=2$, $m_{\ell^{\prime}}^{(k-1)}=0, p_{\ell^{\prime}-1}^{(k)}=p_{\ell^{\prime}}^{(k)}=p_{\ell^{\prime}+1}^{(k)}=0$. Let $\ell^{\prime \prime}>\ell^{\prime}$ be minimal such that $m_{\ell^{\prime \prime}}^{(k)}>0$. Then by (1.1) $p_{i}^{(k)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$ and $m_{i}^{(k)}=m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$. By case
I.(ℓ b)(1) we must have $\dot{\tilde{\ell}}^{(k)} \geq \ell$ and since $m_{\ell}^{(k)}=1$ actually $\dot{\tilde{\ell}}^{(k)}>\ell$. Hence $\dot{\tilde{\ell}}^{(k)}=\ell^{\prime \prime}$. The condition $m_{i}^{(k+1)}=0$ for $\ell \leq i<\ell^{\prime}$ implies that $\dot{\ell}^{(k+1)} \geq \ell^{\prime}$.

Assume that $\dot{\ell}^{(k+1)}>\ell^{\prime}$. Since $m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$ we obtain $\dot{\ell}^{(k+1)} \geq \ell^{\prime \prime}=$ $\dot{\tilde{\ell}}^{(k)}$. By induction case I.(ℓ a) and I.(sa) holds at $k+1$, so that $\tilde{s}^{(k+1)}=\tilde{s}^{(k+1)}=\ell^{\prime}$ and $\dot{\tilde{s}}^{(k+1)}=\dot{s}^{(k+1)}$. Since $m_{\ell^{\prime}}^{(k)}=1, m_{i}^{(k)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$ and $p_{\ell^{\prime \prime}}^{(k)}=0$, it follows that $\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime}$ unless $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$. This case can be dealt with in the same way as in the proof of case $\mathrm{I} .(\ell \mathrm{b})(2)$. Also $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$. Since $m_{i}^{(k-1)}=0$ for $\ell^{\prime} \leq i<\ell^{\prime \prime}$, we have $\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}=\tilde{\tilde{s}}^{(k)}$. Hence Case I. $(\ell s)\left(1^{\prime}\right)$ holds.

Otherwise $\dot{\ell}^{(k+1)}=\ell^{\prime}$. In this case by induction case $\mathrm{I} .(\ell s)\left(1^{\prime}\right)$ holds at $k+1$ since $\dot{\ell}^{(k+1)}=\tilde{\ell}^{(k+1)}=\tilde{\dot{\ell}}^{(k+1)}=\tilde{s}^{(k+1)}=\tilde{\ell}^{(k+2)}=\ell^{\prime}$ and $\ell^{\prime}<\ell^{\prime \prime}=\dot{\tilde{\ell}}^{(k)} \leq \dot{\tilde{\ell}}^{(k+1)}$. By (1.1) $m_{i}^{(k)}=m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}, m_{\ell^{\prime \prime}}^{(k+1)}>0$. Hence $\tilde{s}^{(k)}=\dot{\tilde{\ell}}^{(k)}=$ $\tilde{\dot{s}}^{(k+1)}=\dot{\tilde{\ell}}^{(k+1)}=\ell^{\prime \prime}$ unless again $\dot{s}^{(k)}=\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k)}=1$. Furthermore, by induction $\dot{s}^{(k+1)}=\dot{\tilde{s}}^{(k+1)}$, so that also $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ by the definition of δ. Since $m_{i}^{(k-1)}=0$ for $\ell^{\prime} \leq i<\ell^{\prime \prime}$, we have $\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}=\tilde{s}^{(k)}$. Hence Case I. $(\ell s)\left(1^{\prime}\right)$ holds.

Now let $\dot{s}^{(k)}=\tilde{s}^{(k)}=\ell^{\prime}$ and $m_{\ell^{\prime}}^{(k)}=1$. We will show that case I. $(\ell s)(2)$ holds. By (1.15) and (1.21) we have $\tilde{\ell}^{(k+1)}, \dot{\ell}^{(k+1)} \geq \ell^{\prime}$. Since on the other hand $\dot{s}^{(k)}=\tilde{s}^{(k)}=\ell^{\prime}$, we must have $\tilde{\ell}^{(k+1)}=\dot{\ell}^{(k+1)}=\ell^{\prime}$. This yields the second string of equalities in case I. $(\ell s)(2)$. Let $\ell^{\prime \prime}>\ell^{\prime}$ be minimal such that $m_{\ell^{\prime \prime}}^{(k)}>0$. If no such $\ell^{\prime \prime}$ exists set $\ell^{\prime \prime}=\infty$. Inequality (1.22) holds again, and since $m_{\ell^{\prime}}^{(k+1)} \geq 2$ due to the fact that $\tilde{s}^{(k+1)}=\tilde{\ell}^{(k+1)}=$ ℓ^{\prime}, it follows that $m_{\ell^{\prime}}^{(k-1)}=0, m_{\ell^{\prime}}^{(k+1)}=2$ and $p_{\ell^{\prime}}^{(k)}=p_{\ell^{\prime}+1}^{(k)}=0$. By the usual arguments $m_{i}^{(k-1)}=m_{i}^{(k)}=m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$ and $p_{i}^{(k)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$. Since case I. $(\ell s)(2)$ cannot hold at $k-1$ since this would imply $m_{\ell^{\prime}}^{(k)} \geq 2$, we have $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ and $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}$. Since $m_{\ell}^{(k)}=m_{\ell^{\prime}}^{(k)}=1, \tilde{\ell}^{(k)}=\dot{\ell}^{(k)}=\ell, \tilde{s}^{(k)}=\dot{s}^{(k)}=\ell^{\prime}$ and $p_{\ell^{\prime \prime}}^{(k)}=0$, we must have $\dot{\tilde{\ell}}^{(k)}=\tilde{\dot{\ell}}^{(k)}=\ell^{\prime \prime}$. Recall that $m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$. Also $m_{\ell^{\prime}}^{(k)}=1, m_{\ell^{\prime}}^{(k+1)}=2$, so that by (1.1) with $i=\ell^{\prime}$ and $a=k+1$ we have $\left(m_{\ell^{\prime}}^{(k+2)}-2\right)+p_{\ell^{\prime}-1}^{(k+1)}+p_{\ell^{\prime}+1}^{(k+1)} \leq 1$. Note that $p_{\ell^{\prime}-1}^{(k+1)}(\tilde{\nu})=p_{\ell^{\prime}-1}^{(k+1)}-1$ which implies that $p_{\ell^{\prime}-1}^{(k+1)} \geq 1$. Hence together with the previous inequality $m_{\ell^{\prime}}^{(k+2)}=2$ and $p_{\ell^{\prime}+1}^{(k+1)}=0$. By the usual arguments involving (1.1) it follows that $p_{i}^{(k+1)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$. Hence $\dot{\tilde{\ell}}^{(k+1)}=\tilde{\tilde{\ell}}^{(k+1)}=\ell^{\prime \prime}$ and case I. $(\ell s)(2)$ holds at $k+1$. By induction $\dot{\tilde{s}}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}=\ell^{\prime \prime}$, so that $\dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime}$ if $m_{\ell^{\prime \prime}}^{(k)} \geq 2$. If $m_{\ell^{\prime \prime}}^{(k)}=1$, then let $\ell^{\prime \prime \prime}>\ell^{\prime \prime}$ be minimal such that $m_{\ell^{\prime \prime \prime}}^{(k)}>0$. Since $m_{\ell^{\prime \prime}}^{(k)}=1$ and $m_{\ell^{\prime \prime}}^{(k+1)}=2$ it follows by (1.1) that $m_{\ell^{\prime \prime}}^{(k-1)}=p_{\ell^{\prime \prime}+1}^{(k)}=0$. Hence $p_{i}^{(k)}=0$ for $\ell^{\prime \prime} \leq i \leq \ell^{\prime \prime \prime}$ and $m_{i}^{(k-1)}=0$ for $\ell^{\prime \prime}<i<\ell^{\prime \prime \prime}$. This implies that $\dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime \prime}$. Furthermore, since $m_{i}^{(k-1)}=0$ for $\ell^{\prime} \leq i<\ell^{\prime \prime \prime}$ it follows that $\tilde{s}^{(k-1)} \geq \ell^{\prime \prime \prime}=\tilde{\dot{s}}^{(k)}$ and $\dot{s}^{(k-1)} \geq \ell^{\prime \prime \prime}=\dot{\tilde{s}}^{(k)}$. This concludes the proof that case I. $(\ell s)(2)$ holds.

Finally assume that (1.12) holds. Suppose that case I. $(\ell s)(2)$ does not hold at $k-1$. Then by induction $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}$ and $\dot{\tilde{\ell}^{(k-1)}} \leq \dot{\ell}^{(k)}$ and by (1.19) and (1.20) $\tilde{\tilde{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}$. If case I. $(\ell s)(2)$ holds at $k-1$, then $\dot{\tilde{\ell}}^{(k-1)}=\tilde{\dot{\ell}}^{(k-1)}=\ell^{\prime}$, so that also $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}$. Note that by the restrictions imposed by (1.1) we also have $\tilde{\tilde{\ell}}^{(k+1)}=\dot{\tilde{\ell}}^{(k+1)}=\ell^{\prime}$ so that case I. $(\ell s)(2)$ holds at $k+1$. By induction $\tilde{\dot{s}}^{(k+1)}=\dot{\tilde{s}}^{(k+1)}=\ell^{\prime}$ which implies $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime}$ unless $m_{\ell^{\prime}}^{(k)}=1$. First assume that $m_{\ell^{\prime}}^{(k)} \geq 2$. If $\dot{\ell}^{(k-1)}, \tilde{\ell}^{(k-1)}<\ell$, then
$p_{\ell-1}^{(k)} \geq 2$ and by (1.17) $m_{\ell}^{(k-1)}=0$, so that $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)} \geq \ell^{\prime}=\tilde{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ and case I . $(\ell s)(2)$ holds. If $\dot{\ell}^{(k-1)}<\ell$ and $\tilde{\ell}^{(k-1)}=\ell$, then $p_{\ell-1}^{(k)} \geq 1$ and by (1.17) $m_{\ell}^{(k-1)} \leq 1$. Hence $\tilde{s}^{(k-1)}>\ell$. If $\dot{s}^{(k-1)}>\ell$ then as before $\tilde{s}^{(k-1)}, \dot{s}^{(k-1)} \geq \ell^{\prime}=\dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}$ and case I. $(\ell s)(2)$ holds. If $\dot{s}^{(k-1)}=\ell$ then case II. (1'-3') holds at $k-1$. Note that $p_{\ell-1}^{(k)}(\dot{\nu})=p_{\ell-1}^{(k)}-1=0$, so that we need $\tilde{\dot{\ell}}^{(k-1)} \geq \ell$. Since case II.(3') does not hold at k, we must have $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}=\ell$ so that case II.(2') holds at $k-1$. However, this means ${\underset{\sim}{\chi}}^{(k-1)} \geq 2$ which contradicts $\tilde{s}^{(k-1)}>\ell$ since $p_{\ell}^{(k-1)}=0$. The case $\dot{\ell}^{(k-1)}=\ell$ and $\tilde{\ell}^{(k-1)}<\ell$ is similar. Finally let $\dot{\ell}^{(k-1)}=\tilde{\ell}^{(k-1)}=\ell$. Then case I. $(\ell s)(2)$ holds at $k-1$ or $m_{\ell}^{(k-1)}=1$ and $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)}>\ell$. In either case all conditions of case I. $(\ell s)(2)$ hold at k.

If $m_{\ell^{\prime}}^{(k)}=1$, then by (1.1) $m_{\ell^{\prime}}^{(k-1)}+m_{\ell^{\prime}}^{(k+1)}+p_{\ell^{\prime}-1}^{(k)}+p_{\ell^{\prime}+1}^{(k)} \leq 2$. By induction case I. $(\ell s)(2)$ holds at $k+1$ so that $m_{\ell^{\prime}}^{(k+1)} \geq 2$. This implies that $m_{\ell^{\prime}}^{(k-1)}=0$ and $p_{\ell^{\prime}+1}^{(k)}=0$. Let $\ell^{\prime \prime}>\ell^{\prime}$ be minimal such that $m_{\ell^{\prime \prime}}^{(k)}>0$. Then $p_{i}^{(k)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$ and $\dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime}$. Furthermore, by the same arguments as before $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)}>\ell$ and since $m_{i}^{(k-1)}=0$ for $\ell<i<\ell^{\prime \prime}$ we have $\dot{s}^{(k-1)}, \tilde{s}^{(k-1)} \geq \ell^{\prime \prime}=\dot{\tilde{s}}^{(k)}=\tilde{\tilde{s}}^{(k)}$. Hence case I. $(\ell s)(2)$ holds at k.

Case $(\ell s)(\mathbf{1})$. In the proof of case $\mathrm{I} .(\ell \mathrm{b})(2,3)$ we already showed that case $\mathrm{I} .(\ell s)(1)$ can occur at k when I . $(\ell s)(1)$ does not occur at $k-1$. In addition we saw that then either $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or case I. $(\ell s)(1)$ holds at $k+1$ with the same values of $\ell^{\prime}=\underset{\tilde{\ell}}{ }$ and $\ell^{\prime \prime}$. Hence we are left to show that if case I. $(\ell s)(1)$ holds at $k-1$ and k, then either $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\ell}^{(k+1)}$ or case $\mathrm{I} .(\ell s)(1)$ holds at $k+1$ with the same values of $\ell^{\prime}=\ell$ and $\ell^{\prime \prime}$.

Since case I . $(\ell s)(1)$ holds at $k-1$ and k with the same values of ℓ^{\prime} and $\ell^{\prime \prime}$, we have by (1.1) $m_{i}^{(k-1)}=m_{i}^{(k)}=m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}, m_{\ell^{\prime \prime}}^{(k)}>0$ and $p_{i}^{(k)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$. By induction we have $m_{\ell^{\prime}}^{(k)}=2$ (see proof of case I. $(\ell \mathrm{b})(2,3)$). Since $\dot{\ell}^{(k)}=\dot{s}^{(k)}=\ell^{\prime}$, we must also have $\dot{\ell}^{(k+1)}=\dot{s}^{(k+1)}=\ell^{\prime}$, so that $m_{\ell^{\prime}}^{(k+1)} \geq 2$. Since case I. $(\ell s)(1)$ holds at $k-1$ we must have $1 \leq m_{\ell^{\prime}}^{(k-1)} \leq 2$. The case $m_{\ell^{\prime}}^{(k-1)}=1$ can only occur if case I. $(\ell s)(1)$ occurs at $k-1$ for the first time and $\dot{\ell}^{(k-1)}=\tilde{\ell}^{(k-1)}<\ell^{\prime}$. By the change of vacancy numbers this implies that $p_{\ell^{\prime}-1}^{(k)} \geq 1$ so that by

$$
m_{\ell^{\prime}}^{(k-1)}-2 m_{\ell^{\prime}}^{(k)}+m_{\ell^{\prime}}^{(k+1)}+p_{\ell^{\prime}-1}^{(k)}-2 p_{\ell^{\prime}}^{(k)}+p_{\ell^{\prime}+1}^{(k)} \leq 0
$$

$m_{\ell^{\prime}}^{(k+1)}=2$. We obtain the same conclusion if $m_{\ell^{\prime}}^{(k-1)}=2$. If $\tilde{\ell}^{(k+1)}>\ell^{\prime}$, then $\tilde{\ell}^{(k+1)} \geq$ $\ell^{\prime \prime}$ since $m_{i}^{(k+1)}=0$ for $\ell^{\prime}<i<\ell^{\prime \prime}$. In this case $\tilde{\dot{\ell}}^{(k)}=\ell^{\prime \prime} \leq \tilde{\ell}^{(k+1)}$ as claimed. If $\tilde{\ell}^{(k+1)}=\ell^{\prime}$, then $p_{\ell^{\prime}}^{(k+1)}=0$ since $\tilde{\ell}^{(k+1)}=\dot{\ell}^{(k+1)}=\ell^{\prime}$. By (1.1) with $a=k+1$ and $i=\ell^{\prime}$ it follows that $m_{\ell^{\prime}}^{(k+2)}=2$ and $p_{\ell^{\prime}+1}^{(k+1)}=0$. Hence again by (1.1) we have $p_{i}^{(k+1)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$ which implies that $\tilde{\ell}^{(k+1)}=\ell^{\prime \prime}$. Note that by similar arguments as before it follows that $m_{\ell^{\prime \prime}}^{(k+1)}=2$. By induction either $\dot{\tilde{s}}^{(k+2)}=\ell^{\prime \prime}$ if case I. $(\ell s)(1)$ holds at $k+2$ or $\dot{\tilde{s}}^{(k+2)} \leq \dot{s}^{(k+1)}=\ell^{\prime}$. Hence $\dot{\tilde{s}}^{(k+1)}=\ell^{\prime \prime}$ (even if $\tilde{s}^{(k+1)}=\ell^{\prime \prime}$ then $\dot{\tilde{s}}^{(k+1)}=\ell^{\prime \prime}$ since $m_{\ell^{\prime \prime}}^{(k+1)}=2$). Similarly $\tilde{s}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}$ as claimed.
Case $(\ell s)\left(\mathbf{1}^{\prime}\right)$. This case is analogous to case I. $(\ell s)(1)$.
Case $(\ell s)(\mathbf{2})$. In the proof of case I.(ℓ b)(3) we already showed that case I. $(\ell s)(2)$ can occur at k when $\mathrm{I} .(\ell s)(2)$ does not occur at $k-1$. In addition we saw that then case I . $(\ell s)(2)$ holds at $k+1$ with $\ell=\ell^{\prime}$ and $\ell^{\prime \prime \prime}=\ell^{\prime \prime}$. Hence we are left to show that case I. $(\ell s)(2)$ holds at $k+1$ if the same case holds at k with the same values of $\ell=\ell^{\prime}$ and $\ell^{\prime \prime}=\ell^{\prime \prime \prime}$.

Let $k \leq n-2$. By induction we will show that $m_{\ell}^{(a)}=2$ for $k \leq a \leq n-2$ and $m_{\ell}^{(n-1)}=m_{\ell}^{(n)}=1, m_{i}^{(a)}=0$ for $\ell<i<\ell^{\prime \prime}$ and $k \leq a \leq n$, and $p_{i}^{(a)}=0$ for $\ell \leq i \leq \ell^{\prime \prime}$ and $k \leq a \leq n$. By induction hypothesis (see proof of case I .($\ell \mathbf{b}$)(3)) the statements are true for $a=k$. By (1.1) we have

$$
\begin{array}{rlr}
m_{\ell}^{(k-1)}+\left(m_{\ell}^{(k+1)}-2\right)+p_{\ell-1}^{(k)}+p_{\ell+1}^{(k)} \leq 2 & \text { for } k<n-2 \\
m_{\ell}^{(n-3)}+\left(m_{\ell}^{(n-1)}+m_{\ell}^{(k)}-2\right)+p_{\ell-1}^{(n-2)}+p_{\ell+1}^{(n-2)} \leq 2 & \text { for } k=n-2
\end{array}
$$

Since $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\dot{s}^{(k)}=\tilde{s}^{(k)}=\ell$, we must have $m_{\ell}^{(k+1)} \geq 2$ and $m_{\ell}^{(n-1)}, m_{\ell}^{(n)} \geq 1$. If $m_{\ell}^{(k-1)} \geq 2$, then these inequalities prove that $m_{\ell}^{(k+1)}=2$ or $m_{\ell}^{(n-1)}=m_{\ell}^{(n)}=1$. If $m_{\ell}^{(k-1)}=1$, then case $\mathrm{I} .(\ell s)(2)$ must have occurred at $k-1$ for the first time and $\dot{\ell}^{(k-1)}=\tilde{\ell}^{(k-1)}<\ell$. Hence by the change in vacancy numbers this implies that $p_{\ell-1}^{(k)} \geq 1$, so that again $m_{\ell}^{(k+1)}=2$ or $m_{\ell}^{(n-1)}=m_{\ell}^{(n)}=1$. Then by (1.1) with $a=k+1$ and $i=\ell$ it follows that $p_{\ell+1}^{(k+1)}=0$, so that $p_{i}^{(k+1)}=0$ for $\ell \leq i \leq \ell^{\prime \prime}$. Note that by (1.1) also $m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime \prime}$ and $m_{\ell^{\prime \prime}}^{(k+1)}>0$. Hence $\dot{\tilde{\ell}}^{(k+1)}=\tilde{\tilde{\ell}}^{(k+1)}=\ell^{\prime \prime}$.

Note that $m_{\ell^{\prime \prime}}^{(k-1)}, m_{\ell^{\prime \prime}}^{(k)}, m_{\ell^{\prime \prime}}^{(k+1)}>0$ since by assumption case I . $(\ell s)(2)$ holds at $k-1$. Assume that $m_{\ell^{\prime \prime}}^{(k)}=1$. Then by (1.1)

$$
m_{\ell^{\prime \prime}}^{(k-1)}+m_{\ell^{\prime \prime}}^{(k+1)}+p_{\ell^{\prime \prime}+1}^{(k)} \leq 2
$$

which shows that $m_{\ell^{\prime \prime}}^{(k-1)}=m_{\ell^{\prime \prime}}^{(k)}=m_{\ell^{\prime \prime}}^{(k+1)}=1$. Continuing this by induction one finds by (1.1) with $a=k, k+1, \ldots n-2$ that $m_{\ell^{\prime \prime}}^{(a)}=1$ for $k-1 \leq a \leq n-2$ and either $m_{\ell^{\prime \prime}}^{(n-1)}=1$ and $m_{\ell^{\prime \prime}}^{(n)}=0$ or $m_{\ell^{\prime \prime}}^{(n-1)}=0$ and $m_{\ell^{\prime \prime}}^{(n)}=1$. Suppose the latter case holds. Then by (1.1) with $a=n-1$ and $i=\ell^{\prime \prime}$ we have

$$
m_{\ell^{\prime \prime}}^{(n-2)}-2 m_{\ell^{\prime \prime}}^{(n-1)}+p_{\ell^{\prime \prime}-1}^{(n-1)}+p_{\ell^{\prime \prime}+1}^{(n-1)} \leq 0
$$

which yields a contradiction since $m_{\ell^{\prime \prime}}^{(n-2)}=1$ and $m_{\ell^{\prime \prime}}^{(n-1)}=0$. Hence $m_{\ell^{\prime \prime}}^{(k)}=2$ and by induction using (1.1) in fact $m_{\ell^{\prime \prime}}^{(a)}=2$ for $k \leq a \leq n-2, m_{\ell^{\prime \prime}}^{(n-1)}=m_{\ell^{\prime \prime}}^{(n)}=1$. Hence $\dot{\tilde{\ell}}^{(a)}=\dot{\tilde{\ell}}^{(a)}=\dot{\tilde{s}}^{(a)}=\tilde{\dot{s}}^{(a)}=\ell^{\prime \prime}$ for $k \leq a \leq n-2$ and $\dot{\tilde{\ell}}^{(n-1)}=\dot{\tilde{\ell}}^{(n)}=\tilde{\tilde{\ell}}^{(n-1)}=\tilde{\tilde{\ell}}^{(n)}=$ $\ell^{\prime \prime}$.
II. Twisted case. Note that this case can only occur for $1 \leq k \leq n-2$. The proof that $\tilde{\dot{\ell}}^{(k)}=\tilde{\ell}^{(k)}$ goes through as for the generic case of type A in [1, Appendix A].
Case (1). Suppose that $\dot{\tilde{\ell}}^{(k)}<\ell$. By induction $\dot{\tilde{\ell}}^{(k)} \geq \dot{\tilde{\ell}}^{(k-1)} \geq \dot{\ell}^{(k-1)}-1$. First assume that $\dot{\ell}^{(k-1)} \leq \tilde{\tilde{\ell}}^{(k)}<\ell$. Then δ must select a string shortened by $\tilde{\delta}$ in the transformation $(\nu, J) \rightarrow(\tilde{\nu}, \tilde{J})$. By the same arguments as for the generic case in [1, Appendix A], δ does not pick the string of length $\tilde{\ell}^{(k)}-1$ in $(\tilde{\nu}, \tilde{J})^{(k)}$ shortened by $\tilde{\delta}$.Hence $\dot{\tilde{\ell}}{ }^{(k)}=\ell-1$. The label of the corresponding string in $(\tilde{\nu}, \tilde{J})^{(k)}$ must be zero since it was shortened by $\tilde{\delta}$ and singular since it is selected by δ. This implies that $p_{\ell-1}^{(k)}(\tilde{\nu})=0$. Next assume that $\dot{\ell}^{(k-1)}-1=\dot{\tilde{\ell}}^{(k)}<\ell$. Then case II.(1) or I.(ℓ b)(1) must hold at $k-1$, so that by induction hypothesis $m_{\dot{\ell}^{(k-1)}-1}^{(k)}=0$ or $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu})=0$. For $\dot{\ell}^{(k-1)}-1=\dot{\tilde{\ell}}^{(k)}$ one needs $m_{\dot{\ell}^{(k-1)}-1}^{(k)}(\tilde{\nu})>0$, so that $\ell=\dot{\ell}^{(k-1)}$. Hence $\dot{\tilde{\ell}}^{(k)}=\ell-1$ and $p_{\ell-1}^{(k)}(\tilde{\nu})=0$ as before.

The goal is to show that $\tilde{S}^{(k)}=\ell-1$. Since $\dot{\ell}^{(k)}=\ell$, it follows that $m_{\ell-1}^{(k)}(\dot{\nu}) \geq 1$. Also $\tilde{\ell}^{(k)}=\tilde{\ell}^{(k)}$, so that $m_{\ell-1}^{(k)}(\dot{\nu}) \geq 2$ if $\tilde{\dot{\ell}}^{(k)}=\ell-1$. Hence it suffices to show that $\tilde{\dot{s}}^{(k+1)} \leq \ell-1$ and $p_{\ell-1}^{(k)}(\dot{\nu})=0$, since then $\tilde{\dot{s}}^{(k)}<\ell$ and by similar arguments as before $\tilde{s}^{(k)}=\ell-1$.

Note that

$$
\begin{align*}
p_{\ell-1}^{(k)}(\nu) & =p_{\ell-1}^{(k)}(\dot{\nu})+\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right) \tag{1.23}\\
& =p_{\ell-1}^{(k)}(\tilde{\nu})+\chi\left(\tilde{s}^{(k+1)} \leq \ell-1\right)-\chi\left(\tilde{\ell}^{(k)} \leq \ell-1<\tilde{\ell}^{(k+1)}\right) .
\end{align*}
$$

Since $p_{\ell-1}^{(k)}(\tilde{\nu})=0, \tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)} \leq \tilde{s}^{(k+1)} \leq \tilde{s}^{(k)}=\ell$ and by construction $p_{\ell-1}^{(k)}(\nu) \geq 0$, this simplifies to

$$
\begin{equation*}
p_{\ell-1}^{(k)}(\nu)=p_{\ell-1}^{(k)}(\dot{\nu})+\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right)=\chi\left(\tilde{s}^{(k+1)} \leq \ell-1\right) \tag{1.24}
\end{equation*}
$$

Suppose that $p_{\ell-1}^{(k)}(\dot{\nu}) \geq 1$. Then by (1.24) we must have $\tilde{s}^{(k+1)} \leq \ell-1$ and $\dot{\ell}^{(k-1)} \geq \ell$. Since $\tilde{\ell}^{(k-1)} \leq \tilde{s}^{(k+1)} \leq \ell-1$, case I.(ℓ a $)$ or II.(1-3) must hold at $k-1$. If $\dot{\tilde{\ell}}^{(k-1)}=$ $\dot{\ell}^{(k-1)} \geq \ell$, this contradicts $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\tilde{\ell}}^{(k)}=\ell-1$. Hence case II.(1) or (3) must hold at $k-1$ and $\dot{\ell}^{(k-1)}=\tilde{s}^{(k-1)} \geq \ell$, so that $\dot{\ell}^{(k-1)}=\dot{\ell}^{(k)}=\tilde{s}^{(k-1)}=\tilde{s}^{(k)}=\ell$. Since $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\tilde{\ell}}^{(k)}=\ell-1$ case II.(1) must hold at $k-1$. But then by (1.24) with k replaced by $k-1$, it follows that $\dot{\ell}^{(k-2)}=\ell$, so that one of case I. (ℓ a) and II.(1-3) holds at $k-2$. Since $\dot{\tilde{\ell}}^{(k-2)} \leq \dot{\tilde{\ell}}^{(k-1)}=\ell-1$, case II.(1) must hold at $k-2$. Repeating this argument we find that $1=\dot{\ell}^{(0)}=\dot{\ell}^{(1)}=\cdots=\dot{\ell}^{(k)}=\ell$ which contradicts the condition that $\tilde{\ell}^{(k)}=\ell-1>0$. Hence $p_{\ell-1}^{(k)}(\dot{\nu})=0$.

Suppose that $\tilde{s}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)}<\ell$. Then the doubly singular case I.($s \mathrm{~b}$) or the mixed case I. (ℓs) cannot occur at $k+1$ since $\dot{s}^{(k+1)} \geq \dot{\ell}^{(k)}=\ell$, but $\tilde{s}^{(k+1)}<\ell$. Also the generic case I.(sa) cannot occur since then $\tilde{s}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}$ which contradicts our assumptions. Case II. also cannot occur since $\dot{\ell}^{(k+1)} \geq \ell>\tilde{s}^{(k+1)}$ and $\dot{s}^{(k+1)} \geq \ell>$ $\tilde{\ell}^{(k+1)}$. Hence $\tilde{\dot{s}}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)}<\ell$ is impossible.

Next suppose that $\tilde{\tilde{s}}^{(k+1)} \geq \ell$ and $\tilde{s}^{(k+1)}=\ell$. By (1.24) this implies that $\dot{\ell}^{(k-1)}=\ell$. Case I. $(\ell$ a $)$ cannot hold at $k-1$ since then $\dot{\ell}^{(k-1)}=\dot{\tilde{\ell}}^{(k-1)}=\ell$ which contradicts $\dot{\tilde{\ell}}^{(k-1)} \leq$ $\dot{\tilde{\ell}}^{(k)}=\ell-1$. Similarly for cases I.($(\mathrm{b})(2-3)$ and II.(2-3) $\dot{\tilde{\ell}}^{(k-1)} \geq \ell$ which contradicts $\dot{\tilde{\ell}}\left(\begin{array}{l}(k-1)\end{array} \dot{\tilde{\ell}}^{(k)}=\ell-1\right.$. Similarly, for the mixed case I. (ℓs) we have $\dot{\tilde{\ell}}^{(k-1)} \geq \ell=\dot{\ell}^{(k-1)}$ which contradicts our assumptions. If case I.($\ell \mathrm{b})(1)$ holds at $k-1$, then $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}$ so that case I.(ℓ b)(1) and case II.(1) holds at k which contradicts our assumption. Hence case II.(1) must hold at $k-1$. Since by definition $\tilde{\dot{s}}^{(k)} \geq \tilde{\dot{s}}^{(k+1)} \geq \ell$, the same arguments yield that case II.(1) holds at $k-2$ with $\dot{\ell}^{(k-2)}=\ell$. Repeating this argument we find that $1=\dot{\ell}^{(0)}=\dot{\ell}^{(1)}=\cdots=\dot{\ell}^{(k)}=\ell$ which contradicts the condition that $\dot{\tilde{\ell}}^{(k)}=\ell-1>0$. Hence $\tilde{s}^{(k+1)}<\ell$.

This completes the proof that $\tilde{\dot{s}}^{(k)}=\ell-1$.
Next we will show that $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$. By induction $\dot{s}^{(k)} \geq \dot{\tilde{s}}^{(k+1)} \geq \dot{s}^{(k+1)}-1$, so that by the definition of the algorithm for δ also $\dot{s}^{(k)} \geq \dot{\tilde{s}}^{(k)}$. If $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ we are done. First assume that $\dot{s}^{(k)}>\dot{\tilde{s}}^{(k)} \geq \dot{s}^{(k+1)}$. Since by the definition of δ there are no singular strings of length $\dot{s}^{(k)}>i \geq \overline{\dot{s}}^{(k+1)}$ in $(\nu, J)^{(k)}$, this is only possible if the string shortened by $\tilde{\delta}$ is the one selected by δ to obtain $\dot{\tilde{s}}^{(k)}$. However, this is impossible since by the definitions and assumptions $\dot{s}^{(k+1)} \geq \dot{\ell}^{(k)}=\tilde{s}^{(k)} \geq \tilde{\ell}^{(k)}$. Hence assume that $\dot{s}^{(k)}>\dot{\tilde{s}}^{(k)}=\dot{s}^{(k+1)}-1$. Then case I.(sb)(1) or II.(1') must hold at $k+1$. If case I.($\left.s \mathrm{~b}\right)(1)$
holds, then $m_{\ell-1}^{(k)}=0$ and $\tilde{s}^{(k+1)}=\dot{s}^{(k+1)}$. Since by assumption case II.(1) holds at k, we must have $\tilde{s}^{(k+1)}=\dot{s}^{(k+1)}=\dot{\ell}^{(k+1)}=\ell$. Similarly for case II.(1') we must have $\tilde{s}^{(k+1)}=\dot{s}^{(k+1)}=\dot{\ell}^{(k+1)}=\ell$ and either $m_{\ell-1}^{(k)}=0$ or $m_{\ell-1}^{(k)}(\tilde{\nu})=0$. Since we already showed that $\dot{\tilde{\ell}}^{(k)}=\ell-1$ we must have $m_{\ell-1}^{(k)}(\tilde{\nu})>0$. Hence both cases yield $m_{\ell-1}^{(k)}=0$ which implies that $m_{\ell-1}^{(k)}(\tilde{\nu}) \leq 1$ (note that $\tilde{\ell}^{(k)}<\ell$ since otherwise case I. (ℓ b) holds at k). But $\dot{\tilde{\ell}}^{(k)}=\ell-1$ so that $\dot{s}^{(k)}>\dot{\tilde{s}}^{(k)}=\dot{s}^{(k+1)}-1=\ell-1$ is impossible.

It remains to show that $m_{\ell-1}^{(k+1)}=0$ or $m_{\ell-1}^{(k+1)}(\tilde{\nu})=0$, and $m_{\ell-1}^{(k-1)}=0$ or $m_{\ell-1}^{(k-1)}(\dot{\nu})=$ 0.

With $p_{\ell-1}^{(k)}(\dot{\nu})=0$ equation (1.24) becomes

$$
\begin{equation*}
p_{\ell-1}^{(k)}(\nu)=\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right)=\chi\left(\tilde{s}^{(k+1)} \leq \ell-1\right) . \tag{1.25}
\end{equation*}
$$

First assume that $p_{\ell-1}^{(k)}(\nu)=0$. Then $\dot{\ell}^{(k-1)}=\tilde{s}^{(k+1)}=\ell$. Since $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}<\ell$ case I. (ℓ a) or II. must hold at $k-1$. Since in addition $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\tilde{\ell}}^{(k)}=\ell-1$, case II.(1) must hold at $k-1$. Certainly $m_{\ell-1}^{(k)}(\tilde{\nu})>0$ because $\tilde{s}^{(k)}=\ell$. Hence by induction hypothesis $m_{\ell-1}^{(k)}=0$, so that by (1.1) $m_{\ell-1}^{(k-1)}=m_{\ell-1}^{(k+1)}=0$.

Next assume that $p_{\ell-1}^{(k)}(\nu)=1$. Then by (1.25) $\dot{\ell}^{(k-1)} \leq \ell-1$ and $\tilde{s}^{(k+1)} \leq \ell-1$. Since $p_{\ell-1}^{(k)}(\nu)=1$, there is either a string with label 0 or a singular string of length $\ell-1$ in $(\nu, J)^{(k)}$ if $m_{\ell-1}^{(k)}>0$. But then $\dot{\ell}^{(k)}<\ell$ or $\tilde{s}^{(k)}<\ell$ which contradicts our assumptions. Hence $m_{\ell-1}^{(k)}=0$. By (1.1)

$$
p_{\ell-2}^{(k)}+m_{\ell-1}^{(k-1)}+m_{\ell-1}^{(k+1)} \leq 2
$$

If $p_{\ell-2}^{(k)}=2$, then $m_{\ell-1}^{(k-1)}=m_{\ell-1}^{(k+1)}=0$ and we are done.
If $p_{\ell-2}^{(k)}=1$, we have $m_{\ell-1}^{(k-1)}+m_{\ell-1}^{(k+1)} \leq 1$. Let $r<\ell-1$ be maximal such that $m_{r}^{(k)}>0$. If no such r exists, set $r=0$. Then by (1.1) we have $p_{i}^{(k)}=1$ for $r<i<\ell$, $p_{r}^{(k)} \leq 1$ and $m_{i}^{(k-1)}=m_{i}^{(k+1)}=0$ for $r+1<i<\ell-1$. If $p_{r}^{(k)}=1$, then $m_{r+1}^{(k-1)}=$ $m_{r+1}^{(k+1)}=0$. Suppose that $m_{\ell-1}^{(k-1)}=0$. Then $\dot{\ell}^{(k-1)} \leq r$. Since by assumption $\dot{\ell}^{(k)}=$ $\ell>r$ the string of length r in $(\nu, J)^{(k)}$ must have label 0 . This implies that $\tilde{s}^{(k+1)}>r$ and, since $m_{i}^{(k+1)}=0$ for $r<i<\ell-1$, we have $\tilde{s}^{(k+1)}=\ell-1$. Since $m_{\ell-1}^{(k-1)}=0$ implies that $m_{\ell-1}^{(k+1)}=1$, this shows that $m_{\ell-1}^{(k+1)}(\tilde{\nu})=0$. Similarly, if $m_{\ell-1}^{(k+1)}=0$, then $m_{\ell-1}^{(k-1)}(\dot{\nu})=0$. Hence suppose that $p_{r}^{(k)}=0$. Then $\dot{\ell}^{(k-1)}>r$ and $\tilde{s}^{(k+1)}>r$ since otherwise $\dot{\ell}^{(k)} \leq r<\ell$ or $\tilde{s}^{(k)} \leq r<\ell$ which contradicts our assumptions. Also by (1.1) $m_{r+1}^{(k-1)}+m_{r+1}^{(k+1)} \leq 1$. Hence either $m_{r+1}^{(k-1)}=1, \dot{\ell}^{(k-1)}=r+1, m_{\ell-1}^{(k+1)}=1$, $\tilde{s}^{(k+1)}=\ell-1$ or $m_{r+1}^{(k+1)}=1, \tilde{s}^{(k+1)}=r+1, m_{\ell-1}^{(k-1)}=1, \dot{\ell}^{(k-1)}=\ell-1$. This implies that either $m_{\ell-1}^{(k-1)}=0$ and $m_{\ell-1}^{(k+1)}(\tilde{\nu})=0$, or $m_{\ell-1}^{(k-1)}(\dot{\nu})=0$ and $m_{\ell-1}^{(k+1)}=0$ as claimed.

Finally assume that $p_{\ell-2}^{(k)}=0$. If $m_{\ell-2}^{(k)}=0$, then by (1.1) $-p_{\ell-1}^{(k)}-p_{\ell-3}^{(k)} \geq m_{\ell-2}^{(k-1)}+$ $m_{\ell-2}^{(k+1)}$ which yields a contradiction since $p_{\ell-1}^{(k)}=1$. Hence $m_{\ell-2}^{(k)} \geq 1$. If $\dot{\ell}^{(k-1)} \leq \ell-2$ or $\tilde{s}^{(k+1)} \leq \ell-2$, then $\dot{\ell}^{(k)} \leq \ell-2$ or $\tilde{s}^{(k)} \leq \ell-2$ since $p_{\ell-2}^{(k)}=0$ which contradicts our assumptions. Hence $\dot{\ell}^{(k-1)}=\tilde{s}^{(k+1)}=\ell-1$. This requires $m_{\ell-1}^{(k-1)} \geq 1$ and
$m_{\ell-1}^{(k+1)} \geq 1$. Since $m_{\ell-1}^{(k-1)}+m_{\ell-1}^{(k+1)} \leq 2$ this implies $m_{\ell-1}^{(k-1)}=1$ and $m_{\ell-1}^{(k+1)}=1$, so that $m_{\ell-1}^{(k-1)}(\dot{\nu})=0$ and $m_{\ell-1}^{(k+1)}(\tilde{\nu})=0$ as claimed.
Case (2). First assume that $\tilde{\dot{S}}^{(k)} \geq \ell$. We will show that then $\tilde{\dot{s}}^{(k)}=\ell$. The assumption $\dot{\tilde{\ell}}^{(k)}=\ell$ implies that $m_{\ell}^{(k)}(\tilde{\nu}) \geq 1$. Since $\tilde{s}^{(k)}=\ell$, one part of size ℓ is shortened in passing from $\nu^{(k)}$ to $\tilde{\nu}^{(k)}$, so that $m_{\ell}^{(k)} \geq 2$. Now $p_{\ell}^{(k)}=0$, so there is at least one string with label 0 in $\nu^{(k)}$ that is not selected by δ acting on (ν, J). The label of this string remains 0 in passing to $\dot{\nu}^{(k)}$. This shows that there is a string of label 0 and length ℓ in $\dot{\nu}^{(k)}$. Thus to prove $\tilde{\dot{s}}^{(k)}=\ell$, it suffices to show that $\tilde{\dot{s}}^{(k+1)} \leq \ell$. If $\tilde{\dot{s}}^{(k+1)} \leq \tilde{s}^{(k+1)}$ then $\tilde{\dot{s}}^{(k+1)} \leq \tilde{s}^{(k+1)} \leq \tilde{s}^{(k)}=\ell$ as desired. Otherwise $\tilde{\dot{s}}^{(k+1)}>\tilde{s}^{(k+1)}$, so that case I.(sb)(3), I. (ℓs), II.(3) or (3') holds at $k+1$. By induction $\tilde{\dot{s}}^{(k+1)} \leq \tilde{s}^{(k)}=\ell$.

Next assume that $\tilde{\dot{s}}^{(k)}<\ell$. We will show that this is impossible. By the same arguments as in the proof of case II.(1) the condition $\tilde{\dot{s}}^{(k)}<\ell$ implies that $\tilde{\dot{s}}^{(k)}=\ell-1$ and $p_{\ell-1}^{(k)}(\dot{\nu})=$ 0 . The goal is to show that $\dot{\tilde{\ell}}^{(k)}=\ell-1$ which contradicts the assumption that $\dot{\tilde{\ell}}^{(k)}=\ell$. Similar to the proof of case II.(1), to prove $\dot{\tilde{\tilde{\ell}}}^{(k)}=\ell-1$ it suffices to show that $\dot{\tilde{\ell}}^{(k-1)} \leq \ell-1$ and $p_{\ell-1}^{(k)}(\tilde{\nu})=0$.

Note that (1.23) becomes

$$
\begin{align*}
p_{\ell-1}^{(k)}(\nu) & =\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right) \\
& =p_{\ell-1}^{(k)}(\tilde{\nu})+\chi\left(\tilde{s}^{(k+1)} \leq \ell-1\right)-\chi\left(\tilde{\ell}^{(k)} \leq \ell-1<\tilde{\ell}^{(k+1)}\right) \tag{1.26}
\end{align*}
$$

Suppose that $p_{\ell-1}^{(k)}(\tilde{\nu}) \geq 1$. Since the top line can be at most one and $\tilde{\ell}^{(k)} \leq \tilde{\ell}^{(k+1)} \leq$ $\tilde{s}^{(k+1)}$, (1.26) implies that $\tilde{s}^{(k+1)}=\ell$. Note that $\tilde{\dot{s}}^{(k+1)} \leq \tilde{\dot{s}}^{(k)}=\ell-1$, so that $\tilde{\dot{s}}^{(k+1)}<$ $\tilde{s}^{(k+1)}=\ell$. This implies that case I. $(s \mathbf{b})(1)$ or II.(1) holds at $k+1$. In both cases $\ell=$ $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}=\tilde{s}^{(k)}=\tilde{s}^{(k+1)}$ and $\tilde{s}^{(k+1)}=\ell-1$. Hence $p_{\ell-1}^{(k+1)}(\dot{\nu})=0$ and by (1.26) with k replaced by $k+1$ also $p_{\ell-1}^{(k+1)}=0$. Suppose that $\tilde{s}^{(k+2)}<\ell$ and let $r<\ell$ be maximal such that $m_{r}^{(k+1)}>0$. Then by definition $m_{i}^{(k+1)}=0$ for $r<i<\ell$ and by (1.1) $p_{i}^{(k+1)}=0$ for $r \leq i \leq \ell$ and $m_{i}^{(k+2)}=0$ for $r<i<\ell$. However, since by assumption $\tilde{s}^{(k+2)}<\ell$, this means that $\tilde{s}^{(k+2)} \leq r$. In addition, since $p_{r}^{(k+1)}=0$, there is a string with label 0 of length r in $(\nu, J)^{(k+1)}$. Hence $\tilde{s}^{(k+1)} \leq r<\ell$ which is a contradiction to the previously shown fact that $\tilde{s}^{(k+1)}=\ell$. Therefore $\tilde{s}^{(k+2)}=\ell$. Repeating similar arguments one finds that $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}=\cdots=\dot{\ell}^{(n-1)}=\dot{\ell}^{(n)}=\tilde{s}^{(k)}=\tilde{s}^{(k+1)}=\cdots=$ $\tilde{s}^{(n-2)}=\tilde{\ell}^{(n)}=\tilde{\ell}^{(n-1)}=\cdots \tilde{\ell}^{(k)}=\ell$. However this yields a contradiction since then case I.(ℓ b) holds at k instead of case II.(2). Hence $p_{\ell-1}^{(k)}(\tilde{\nu})=0$.

Next we need to show that $\dot{\tilde{\ell}}^{(k-1)} \leq \ell-1$. Suppose that $\dot{\tilde{\ell}}^{(k-1)} \geq \ell$. Now $\tilde{\dot{\ell}}^{(k-1)} \leq$ $\tilde{\dot{\ell}}^{(k)} \leq \tilde{\dot{s}}^{(k)}=\ell-1$, so that $\dot{\tilde{\ell}}^{(k-1)} \neq \tilde{\dot{\ell}}^{(k-1)}$. By induction case I. $(\ell \mathrm{a}), \mathrm{I} .(\ell s)(1)\left(1^{\prime}\right)$, II.(1-3) or II. ($1^{\prime}-3^{\prime}$) holds at $k-1$. If case I. $(\ell s)(1)$ holds at $k-1$, then $\tilde{s}^{(k-1)}=\tilde{s}^{(k)}=\dot{\ell}^{(k)}=\ell$ and $\tilde{\dot{\ell}}^{(k-1)}>\ell$ which contradicts our assumptions. For case I . $(\ell s)\left(1^{\prime}\right) \tilde{\dot{\ell}}^{(k-1)}=\tilde{s}^{(k-1)}=$ $\dot{\ell}^{(k)}=\tilde{s}^{(k)}=\ell$ which again contradicts $\tilde{\dot{\ell}}^{(k-1)}<\ell$. For all other cases we must have $\dot{\ell}^{(k-1)}=\ell$. By (1.26) this implies that $\tilde{s}^{(k+1)}=\ell$. By similar arguments as before $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}=\cdots=\dot{\ell}^{(n-1)}=\dot{\ell}^{(n)}=\tilde{s}^{(k)}=\tilde{s}^{(k+1)}=\cdots=\tilde{s}^{(n-2)}=\tilde{\ell}^{(n)}=$ $\tilde{\ell}^{(n-1)}=\cdots \tilde{\ell}^{(k)}=\ell$, which yields a contradiction since then case I. $(\ell$ b) holds at k instead of case II.(2). Hence $\dot{\tilde{\ell}}^{(k-1)} \leq \ell-1$ which in turn implies together with $p_{\ell-1}^{(k)}(\tilde{\nu})=0$ that $\dot{\tilde{\ell}}^{(k)}=\ell-1$. This contradicts our assumption that $\dot{\tilde{\ell}}^{(k)}=\ell$.

The proof of $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ is very similar to the proof of this statement for case II.(1). The case $\dot{s}^{(k)}>\dot{\tilde{s}}^{(k)} \geq \dot{s}^{(k+1)}$ is the same as for II.(1). For $\dot{s}^{(k)}>\dot{\tilde{s}}^{(k)}=\dot{s}^{(k+1)}-1$ one obtains as before that $\tilde{s}^{(k+1)}=\dot{s}^{(k+1)}=\dot{\ell}^{(k+1)}=\ell$. However this yields the contradiction $\ell=\dot{\tilde{\ell}}^{(k)} \leq \dot{\tilde{s}}^{(k)}=\dot{s}^{(k+1)}-1=\ell-1$.
Case (3). Assume that $\dot{\tilde{\ell}}^{(k)}>\ell$. First note that $m_{\ell}^{(k)} \geq 2$ leads to a contradiction. Namely, if Case II.(3) holds at $k-1$, then by induction hypothesis $m_{\ell}^{(k)}=1$. Otherwise, $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}$ by induction hypothesis (1.2). Since $\dot{\ell}^{(k)}=\tilde{s}^{(k)}=\ell$ we must have $p_{\ell}^{(k)}=0$. The application of $\tilde{\delta}$ leaves a singular string of length ℓ and label 0 in $\tilde{\nu}^{(k)}$ since $m_{\ell}^{(k)} \geq 2$. But $\dot{\tilde{\ell}}(k-1) \leq \dot{\ell}^{(k)}$ implies $\dot{\tilde{\ell}}^{(k)} \leq \ell$ which contradicts our assumptions. Hence we must have $m_{\ell}^{(k)}=1$ and $p_{\ell}^{(k)}=0$. Note in particular that it was shown in the proof of case II.(2), that $\tilde{\dot{s}}^{(k)}<\ell$ implies that $\dot{\tilde{\ell}}^{(k)}<\ell$ which contradicts our assumptions. The case $\tilde{\dot{s}}^{(k)}=\ell$ is not possible due to $m_{\ell}^{(k)}=1$. Hence $\tilde{\dot{s}}^{(k)}>\ell$.

With this, inequality (1.1) for $i=\ell$ and $a=k$ reads

$$
\begin{array}{ll}
p_{\ell-1}^{(k)}+p_{\ell+1}^{(k)}+m_{\ell}^{(k-1)}+m_{\ell}^{(k+1)} \leq 2 & \text { for } 1 \leq k \leq n-3 \\
p_{\ell-1}^{(n-2)}+p_{\ell+1}^{(n-2)}+m_{\ell}^{(n-3)}+m_{\ell}^{(n-1)}+m_{\ell}^{(n)} \leq 2 & \text { for } k=n-2 . \tag{1.27}
\end{array}
$$

We will show that

$$
p_{\ell+1}^{(k)}=0 \quad \text { and } \quad m_{\ell}^{(k+1)}= \begin{cases}1 & \text { if } \tilde{s}^{(k+1)}=\ell \tag{1.28}\\ 0 & \text { otherwise }\end{cases}
$$

In addition, if $k=n-2$, then the same equation holds for $m_{\ell}^{(n)}$, and $m_{\ell}^{(n-1)}=1$ implies that $m_{\ell}^{(n)}=0$ and vice versa.

Let $k<n-2$.
If $m_{\ell}^{(k-1)}=2$, then by (1.27) we have $p_{\ell+1}^{(k)}=m_{\ell}^{(k+1)}=0$, so we are done.
If $m_{\ell}^{(k-1)}=1$ and $p_{\ell-1}^{(k)}=1$, again by (1.27) we have $p_{\ell+1}^{(k)}=m_{\ell}^{(k+1)}=0$. Hence assume $m_{\ell}^{(k-1)}=1$ and $p_{\ell-1}^{(k)}=0$. Note that $p_{\ell-1}^{(k)}(\nu)=p_{\ell-1}^{(k)}(\tilde{\nu})+\chi\left(\tilde{s}^{(k+1)}<\ell\right)$ which implies that $\tilde{s}^{(k+1)}=\ell$ since $p_{\ell-1}^{(k)}(\nu)=0$ and $p_{\ell-1}^{(k)}(\tilde{\nu}) \geq 0$. But $\tilde{s}^{(k+1)}=\ell$ requires $m_{\ell}^{(k+1)} \geq 1$ so that by (1.27) again $p_{\ell+1}^{(k)}=0$ and $m_{\ell}^{(k+1)}=1$.

Finally suppose $m_{\ell}^{(k-1)}=0$. In this case $\dot{\ell}^{(k-1)} \leq \ell-1$ and $p_{\ell-1}^{(k)}(\nu)=p_{\ell-1}^{(k)}(\dot{\nu})+1$, so that $p_{\ell-1}^{(k)} \geq 1$. If $p_{\ell-1}^{(k)} \geq 2$, then $p_{\ell+1}^{(k)}=m_{\ell}^{(k+1)}=0$ by (1.27) as claimed. Hence assume $p_{\ell-1}^{(k)}=1$. If $\tilde{s}^{(k+1)}=\ell$, then necessarily $m_{\ell}^{(k+1)} \geq 1$ and by (1.1) $m_{\ell}^{(k+1)}=1$ and $p_{\ell+1}^{(k)}=0$. Now assume that $\tilde{s}^{(k+1)}<\ell$. Recall that $p_{\ell-1}^{(k)}(\nu)=p_{\ell-1}^{(k)}(\tilde{\nu})+\chi\left(\tilde{s}^{(k+1)}<\ell\right)$, which implies that $p_{\ell-1}^{(k)}(\tilde{\nu})=0$ since $p_{\ell-1}^{(k)}(\nu)=1$ and $\tilde{s}^{(k+1)}<\ell$. Since $\tilde{s}^{(k)}=\ell$ this implies that there is a singular string of length $\ell-1$ in $(\tilde{\nu}, \tilde{J})^{(k)}$. Since by assumption $\dot{\tilde{\ell}}^{(k)}>\ell$, we must have $\dot{\tilde{\ell}}^{(k-1)} \geq \ell$, so that $\dot{\tilde{\ell}}^{(k-1)}>\dot{\ell}^{(k-1)}$. Hence by (1.2) case II.(3) must hold at $k-1$. We show that this yields a contradiction. For case II.(3) to hold we must have $\dot{\ell}^{(k-1)}=\tilde{s}^{(k-1)}$. Since $\dot{\ell}^{(k-1)} \leq \dot{\ell}^{(k)}=\ell$ and $\tilde{s}^{(k-1)} \geq \tilde{s}^{(k)}=\ell$ this requires $\dot{\ell}^{(k-1)}=\tilde{s}^{(k-1)}=\ell$. However this contradicts our previous finding that $\dot{\ell}^{(k-1)}<\ell$.

For $k=n-2$ the above arguments go through with minor modifications.
This proves (1.28).

By almost identical arguments it follows that

$$
m_{\ell}^{(k-1)}= \begin{cases}1 & \text { if } \dot{\ell}^{(k-1)}=\ell \tag{1.29}\\ 0 & \text { otherwise }\end{cases}
$$

Since $p_{\ell}^{(k)}=p_{\ell+1}^{(k)}=0$ it follows from (1.1), that if $\ell^{\prime}>\ell$ and $m_{i}^{(k)}=0$ for all $\ell<i<$ ℓ^{\prime}, then $p_{i}^{(k)}=0$ for $\ell \leq i \leq \ell^{\prime}$. Moreover (1.1) implies that $m_{i}^{(k-1)}=m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime}$.

Suppose that $\nu^{(k)}$ has a string longer than ℓ. Let ℓ^{\prime} be minimal such that $\ell^{\prime}>\ell$ and $m_{\ell^{\prime}}^{(k)} \geq 1$. Note that, since $p_{\ell^{\prime}}^{(k)}=0$, the string of length ℓ^{\prime} in $(\nu, J)^{(k)}$ is singular and has label 0 . After the application of $\tilde{\delta}$ this string remains singular with label 0 in $(\tilde{\nu}, \tilde{J})^{(k)}$ since $\ell^{\prime}>\ell=\tilde{s}^{(k)} \geq \tilde{\ell}^{(k)}$. After the application of δ, a singular string with label 0 of length ℓ^{\prime} remains in $(\dot{\nu}, \dot{J})^{(k)}$ unless $m_{\ell^{\prime}}^{(k)}=1$ and $\dot{s}^{(k)}=\ell^{\prime}$.

First assume that not both $m_{\ell^{\prime}}^{(k)}=1$ and $\dot{s}^{(k)}=\ell^{\prime}$ hold. We will show that then case II.(3)(i) holds. By induction we have $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$ (resp. $\tilde{\dot{s}}^{(k+1)} \leq \ell$), unless possibly case II.(3) holds at $k-1$ (resp. case II.(3)(1) $k+1$). If $\dot{\tilde{\ell}}^{(k-1)}>\ell$ and case II.(3) holds at $k-1$, then by induction hypothesis $\dot{\ell}^{(k-1)}=\dot{\ell}^{(k)}=\ell$, $\dot{\tilde{\ell}}^{(k-1)}=\dot{\tilde{\ell}}^{(k)}>\ell$ and $m_{\ell}^{(k)}=1$. Note that $m_{i}^{(k-1)}=m_{i}^{(k)}=0$ for $\ell<i<\ell^{\prime}, m_{\ell^{\prime}}^{(k-1)}, m_{\ell^{\prime}}^{(k)}>0$ and $\dot{\tilde{\ell}}(k-1)=\dot{\tilde{\ell}}{ }^{(k)}=\ell^{\prime}$. Similarly, if $\tilde{\dot{s}}^{(k+1)}>\ell$ and case II.(3)(i) holds at $k+1$, then $\tilde{\dot{s}}^{(k+1)}=\dot{\tilde{\ell}}^{(k+1)}=\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}$, so that $\tilde{\dot{s}}^{(k)}=\ell^{\prime}$. Now assume that $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$ (resp. $\tilde{\dot{s}}^{(k+1)} \leq \ell$). Since by assumption $\dot{\tilde{\ell}}^{(k)}>\ell$ and $\tilde{s}^{(k)}>\ell$, it follows that $\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}$ (resp. $\tilde{\dot{s}}^{(k)}=\ell^{\prime}$). Moreover, if $\dot{\ell}^{(k+1)}>\ell$, by the previous paragraph $m_{i}^{(k+1)}=0$ for $\dot{\ell}^{(k)}=\ell<i<\ell^{\prime}$, so that $\dot{\ell}^{(k+1)} \geq \ell^{\prime}$. If $\dot{\ell}^{(k+1)}=\ell$, we must have $m_{\ell}^{(k+1)}=1$ so that by (1.28) $\tilde{s}^{(k+1)}=\ell$. Since in addition $\dot{\tilde{\ell}}^{(k+1)} \geq \dot{\tilde{\ell}}^{(k)}>\ell$, case II.(3)(i) holds at $k+1$ with $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}, \dot{\tilde{\ell}}^{(k)}=\dot{\tilde{\ell}}^{(k+1)}$ and $m_{\ell}^{(k+1)}=1$. Similarly, if $\tilde{s}^{(k-1)}>\ell$, by the previous paragraph $m_{i}^{(k-1)}=0$ for $\ell<i<\ell^{\prime}$, so that $\tilde{s}^{(k-1)} \geq \ell^{\prime}$. If $\tilde{s}^{(k-1)}=\ell$, we must have $m_{\ell}^{(k-1)}=1$ so that by (1.29) $\dot{\ell}^{(k-1)}=\ell$. Since in addition $\tilde{\dot{s}}^{(k-1)}>\ell$, case II.(3) must hold at $k-1$.

Next assume that $m_{\ell^{\prime}}^{(k)}=1$ and $\dot{s}^{(k)}=\ell^{\prime}$. We will show that then case II.(3)(ii) holds. By (1.1) with $a=k$ and $i=\ell^{\prime}$, using that $p_{\ell^{\prime}-1}^{(k)}=p_{\ell^{\prime}}^{(k)}=0$, we have

$$
\begin{array}{ll}
p_{\ell^{\prime}+1}^{(k)}+m_{\ell^{\prime}}^{(k-1)}+m_{\ell^{\prime}}^{(k+1)} \leq 2 & \text { for } 1 \leq k \leq n-3 \\
p_{\ell^{\prime}+1}^{(n-2)}+m_{\ell^{\prime}}^{(n-3)}+m_{\ell^{\prime}}^{(n-1)}+m_{\ell^{\prime}}^{(n)} \leq 2 & \text { for } k=n-2 . \tag{1.30}
\end{array}
$$

Note that for $k \leq n-3$, since $0 \leq m_{\ell}^{(k+1)} \leq 1$ and $m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime}$, we must have $\dot{s}^{(k+1)}=\ell^{\prime}$, which in turn implies that $m_{\ell^{\prime}}^{(k+1)} \geq 1$. Similarly for $k=n-2$, it follows that $\max \left\{\dot{\ell}^{(n-1)}, \dot{\ell}^{(n)}\right\}=\ell^{\prime}$ so that $m_{\ell^{\prime}}^{(n-1)} \geq 1$ or $m_{\ell^{\prime}}^{(n)} \geq 1$. Hence by (1.30) $0 \leq m_{\ell^{\prime}}^{(k-1)} \leq 1$. We distinguish the two cases.

We will show that $m_{\ell^{\prime}}^{(k-1)}=1$ leads to a contradiction. By (1.30) the assumption $m_{\ell^{\prime}}^{(k-1)}=1$ implies that $m_{\ell^{\prime}}^{(k+1)}=1$ for $k \leq n-3$ and $m_{\ell^{\prime}}^{(n-1)}=1$ or $m_{\ell^{\prime}}^{(n)}=1$ for $k=$ $n-2$. Since $\dot{s}^{(k+1)}=\ell^{\prime}$ and $m_{i}^{(k+1)}=0$ for $\ell<i<\ell^{\prime}$, we must have $\dot{\ell}^{(k+1)}=\ell$ which by (1.28) implies $\tilde{s}^{(k+1)}=\ell$ so that case II.(3) holds at $k+1$. Repeating the argument we must have $\dot{\ell}^{(k)}=\dot{\ell}^{(k+1)}=\cdots=\dot{\ell}^{(n-2)}=\tilde{s}^{(k)}=\tilde{s}^{(k+1)}=\cdots=\tilde{s}^{(n-2)}=\ell$, $\dot{s}^{(k)}=\dot{s}^{(k+1)}=\cdots=\dot{s}^{(n-2)}=\ell^{\prime}, m_{\ell}^{(k)}=m_{\ell}^{(k+1)}=\cdots=m_{\ell}^{(n-2)}=m_{\ell^{\prime}}^{(k)}=$
$m_{\ell^{\prime}}^{(k+1)}=\cdots=m_{\ell^{\prime}}^{(n-2)}=1$. By (1.30) and (1.27) for $k=n-2$ and the constraints on $\dot{\ell}^{(n-1)}$ and $\dot{\ell}^{(n)}$, we have $m_{\ell}^{(n-1)}=m_{\ell^{\prime}}^{(n)}=1, m_{\ell}^{(n)}=m_{\ell^{\prime}}^{(n-1)}=0, \dot{\ell}^{(n-1)}=\ell$ and $\dot{\ell}^{(n)}=\ell^{\prime}$ or the same with $n-1$ and n interchanged. For concreteness let us assume that the first conditions hold. By (1.1) with $a=n-1$ and $i=\ell^{\prime}$ we have

$$
\begin{equation*}
p_{\ell^{\prime}-1}^{(n-1)}-2 p_{\ell^{\prime}}^{(n-1)}+p_{\ell^{\prime}+1}^{(n-1)}+m_{\ell^{\prime}}^{(n-2)}-2 m_{\ell^{\prime}}^{(n-1)} \leq 0 . \tag{1.31}
\end{equation*}
$$

Since $m_{\ell}^{(n-1)}=1$ it follows from (1.28) that $\dot{\ell}^{(n-1)}=\tilde{\ell}^{(n-1)}=\ell$, so that $p_{\ell}^{(n-1)}=0$. By similar arguments as before it follows that $p_{i}^{(n-1)}=0$ for $\ell \leq i \leq \ell^{\prime}$. But this with $m_{\ell^{\prime}}^{(n-1)}=0$ and $m_{\ell^{\prime}}^{(n-2)}=1$ yields a contradiction to (1.31).

Hence $m_{\ell^{\prime}}^{(k-1)}=0$. If $m_{\ell^{\prime}}^{(k+1)}=1$ we get a contradiction as in the previous case. Hence by (1.30) $m_{\ell^{\prime}}^{(k+1)}=2$ and $p_{\ell^{\prime}+1}^{(k)}=0$. By induction we have $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$, unless possibly case II.(3) holds at $k-1$. If case II.(3) holds at $k-1$, then by induction hypothesis $\dot{\ell}^{(k-1)}=\dot{\ell}^{(k)}=\ell$. But $m_{i}^{(k-1)}=0$ for $\ell<i \leq \ell^{\prime}$ which would imply that $m_{\ell^{\prime}}^{(k)}=0$ which contradicts our assumptions. Hence $\dot{\tilde{\ell}}^{(k-1)} \leq \ell$ and, since by assumption $\tilde{\ell}^{(k)}>\ell$ we must have $\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}=\dot{s}^{(k)}$ as claimed in case II.(3)(ii). Let $\ell^{\prime \prime}>\ell^{\prime}$ be minimal such that $m_{\ell^{\prime \prime}}^{(k)} \geq 1$. If no such $\ell^{\prime \prime}$ exists, set $\ell^{\prime \prime}=\infty$. Again by (1.1) we have $p_{i}^{(k)}=0$ for $\ell^{\prime} \leq i \leq \ell^{\prime \prime}$. At $k+1$, either case II.(3)(i) holds with $\dot{\ell}^{(k+1)}=\tilde{s}^{(k+1)}=\ell$ and $\dot{\tilde{\ell}}^{(k+1)}=\dot{s}^{(k+1)}=\dot{\tilde{s}}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}=\ell^{\prime}$, or $\dot{\ell}^{(k+1)}=\ell^{\prime}$ and the nontwisted generic case holds. In both cases $\dot{\tilde{s}}^{(k+1)}=\ell^{\prime}$ so that $\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$. If case II.(3)(i) holds at $k+1$, then $\tilde{\dot{s}}^{(k+1)}=\ell^{\prime}$, so that $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$ as claimed for case II.(3)(ii). Otherwise the untwisted generic case holds at $k+1$, so that $\tilde{\dot{s}}^{(k+1)}=\tilde{s}^{(k+1)} \leq \ell$. We already showed in the proof of case II.(2) that $\tilde{\tilde{s}}^{(k)}<\ell$ implies that $\tilde{\ell}^{(k)}<\ell$ which contradicts our assumptions. Hence, since the strings of length ℓ and ℓ^{\prime} are already selected, $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$. Finally, since by assumption and (1.1) $m_{i}^{(k-1)}=0$ for $\ell^{\prime} \leq i<\ell^{\prime \prime}$, we have $\dot{s}^{(k-1)} \geq \ell^{\prime \prime}$. Hence case II.(3)(ii) holds.

Otherwise there is no string in $\nu^{(k)}$ longer than ℓ so that $m_{i}^{(k)}=0$ for $i>\ell$. Then $\dot{\tilde{\ell}}^{(k)}=\tilde{\dot{s}}^{(k)}=\infty$. Moreover, $m_{i}^{(k-1)}=m_{i}^{(k+1)}=0$ for $i>\ell$. Hence if $\dot{\ell}^{(k+1)}>\ell$ (resp. $\tilde{s}^{(k-1)}>\ell$), we must have $\dot{\ell}^{(k+1)}=\infty$ (resp. $\tilde{s}^{(k-1)}=\infty$). If $\dot{\ell}^{(k+1)}=\ell$ (resp. $\tilde{s}^{(k-1)}=\ell$), then $m_{\ell}^{(k+1)}=1$ and $\tilde{s}^{(k+1)}=\ell$ by (1.28) (resp. $m_{\ell}^{(k-1)}=1$ and $\dot{\ell}^{(k-1)}=\ell$ by (1.29)), so that again Case II.(3) holds at $k+1$ (resp. $k-1$).
Case (1'-3'). These cases follow from II.(1-3) by the application of θ.
Proof of Lemma 1.2. By Lemma 1.1 we have $\dot{\tilde{\nu}}=\tilde{\dot{\nu}}$, whose proof will be used repeatedly. We also rely on [1, Lemma A.3].
Selected strings. Consider a string in $(\nu, J)^{(k)}$ that is either selected by δ or $\tilde{\delta}$, or is such that its image under δ (resp. $\tilde{\delta}$) is selected by $\tilde{\delta}$ (resp. δ). It is shown that the image of any such string under both $\tilde{\delta} \circ \delta$ and $\delta \circ \tilde{\delta}$, has the same label. The proof of these statements for cases I.(ℓ a), I.(ℓ b), I.(sa) and I.(sb) is the same as for the analogous cases in [1, Lemma A.3].

Selected strings, case I. $(\ell s)(\mathbf{1})$. We need to distinguish the case whether case I. $(\ell s)(1)$ occurs for the first time at k or not. First assume that case I . $(\ell s)(1)$ does not occur at $k-1$.

The string $(\ell, 0)$ maps to a string of length $\ell-1$, with label zero under $\delta \circ \tilde{\delta}$ and singular label under $\tilde{\delta} \circ \delta$. Hence we need to show that $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. By the change in vacancy numbers we have

$$
\begin{equation*}
p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=p_{\ell-1}^{(k)}-\chi\left(\tilde{\ell^{(k-1)}} \underset{16}{\leq \ell-1)-\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right)}\right. \tag{1.32}
\end{equation*}
$$

By (1.9), (1.14) and (1.17), $p_{\ell-1}^{(k)}=2-m_{\ell}^{(k-1)}$. Hence if $m_{\ell}^{(k-1)}=2$ and the nonnegativity of vacancy numbers, it follows that $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. If $m_{\ell}^{(k-1)}=1$, it follows that $p_{\ell-1}^{(k)}=1$. We need to show that either $\dot{\ell}^{(k-1)}<\ell$ or $\tilde{\dot{\ell}}^{(k-1)}<\ell$. Since by assumption case I. $(\ell s)(1)$ does not hold at $k-1$, we have $\tilde{\dot{\ell}}^{(k-1)} \leq \tilde{\ell}^{(k)}=\ell$ by (1.2) which proves the assertion. Finally, if $m_{\ell}^{(k)}=0$, we must have $\dot{\ell}^{(k-1)}, \tilde{\ell}^{(k-1)}<\ell$. Furthermore, $p_{\ell-1}^{(k)}=2$ and by the same arguments as before $\tilde{\dot{\ell}}^{(k-1)}<\ell$. Hence by (1.32), $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$.

The string $\left(\ell^{\prime}, 0\right)$ is mapped to a singular string of length $\ell^{\prime}-1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$.

If $\tilde{\dot{\ell}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$, the string $\left(\ell^{\prime \prime}, 0\right)$ is mapped to a string of length $\ell^{\prime \prime}-1$ of label zero under $\tilde{\delta} \circ \delta$ and of singular label under $\delta \circ \tilde{\delta}$. Hence we need to show that $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. Note that

$$
p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=p_{\ell^{\prime \prime}-1}^{(k)}-\chi\left(\dot{\tilde{s}}^{(k+1)}<\ell^{\prime \prime}\right)+\chi\left(\ell^{\prime \prime} \leq \tilde{\ell}^{(k+1)}\right)
$$

By the proof of Lemma $1.1 p_{\ell^{\prime \prime}-1}^{(k)}=0$. If case I. $(\ell s)(1)$ holds at $k+1$, both other terms are zero. If case I . $(\ell s)(1)$ holds at $k+1$, the other two expressions yield -1 and 1 respectively, which proves the assertion. The string $\left(\tilde{s}^{(k)}, 0\right)$ is mapped to a string of length $\tilde{s}^{(k)}-1$ of label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$.

If $\dot{\ell}^{(k)}=\tilde{s}^{(k)}=\ell^{\prime \prime}$, the string $\left(\ell^{\prime \prime}, 0\right)$ is mapped to a string of length $\ell^{\prime \prime}-1$ of label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The string ($\left.\ell^{\prime \prime \prime}, 0\right)$ is mapped to a string of length $\ell^{\prime \prime \prime}-1$ of label 0 under $\tilde{\delta} \circ \delta$ and singular label under $\delta \circ \tilde{\delta}$. Hence it needs to be shown that $p_{\ell^{\prime \prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. By the change in vacancy numbers

$$
p_{\ell^{\prime \prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=p_{\ell^{\prime \prime \prime}-1}^{(k)}-\chi\left(\dot{\tilde{\ell}}(k+1)<\ell^{\prime \prime \prime}\right)+\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime \prime \prime}\right) .
$$

By the proof of Lemma $1.1 p_{\ell^{\prime \prime \prime}-1}^{(k)}=0$ and the value of the other two terms is -1 and 1 , respectively, which proves the assertion.

Now suppose that case I. $(\ell s)(1)$ holds at $k-1$. Then by the proof of Lemma $1.1 m_{\ell}^{(k)}=$ $m_{\ell}^{(k+1)}=2,1 \leq m_{\ell}^{(k-1)} \leq 2$ and $p_{\ell}^{(k)}=p_{\ell+1}^{(k)}=0$. Hence by (1.1) $m_{\ell}^{(k-1)}-2+p_{\ell-1}^{(k)} \leq$ 0 . If $m_{\ell}^{(k-1)}=2$, then $p_{\ell-1}^{(k)}=0$ and by (1.32) also $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. If $m_{\ell}^{(k-1)}=1$ we must have $\dot{\ell}^{(k-1)}<\ell$ and by the change in vacancy numbers $p_{\ell-1}^{(k)} \geq 1$. Hence by the previous inequality $p_{\ell-1}^{(k)}=1$ and by (1.32) $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. The same is true for the selected string $\left(\ell^{\prime}, 0\right)$ since $\ell=\ell^{\prime}$ in this case. The proof for the selected strings $\left(\ell^{\prime \prime}, 0\right)$ and $\left(\tilde{s}^{(k)}, 0\right)$ goes through as before.
Selected strings, case $\mathbf{I}(\ell s)\left(\mathbf{1}^{\prime}\right)$. This case is analogous to the proof of case $\mathrm{I} .(\ell s)(1)$.
Selected strings, case \mathbf{I}. $(\ell s)(\mathbf{2})$. The proof for the string $(\ell, 0)$ is almost identical to the proof for case I. $(\ell s)(1)$. When $\ell^{\prime}=\ell$, the string $\left(\ell^{\prime}, 0\right)$ also changes as required. If $\ell^{\prime}>\ell$, it needs to be shown that $p_{\ell^{\prime}-1}^{(k)}(\tilde{\dot{\nu}})=0$. By the change in vacancy number

$$
p_{\ell^{\prime}-1}^{(k)}(\tilde{\dot{\nu}})=p_{\ell^{\prime}-1}^{(k)}+\chi\left(\dot{\ell}^{(k)}<\ell^{\prime}\right)-\chi\left(\tilde{\dot{\ell}}^{(k-1)}<\ell^{\prime}\right)=0+1-1=0
$$

where we used that $\tilde{\ell}^{(k-1)} \leq \tilde{\ell}^{(k)}=\ell$ since for $\ell<\ell^{\prime}$ case I. $(\ell s)(2)$ does not hold at $k-1$.
The string $\left(\ell^{\prime \prime}, 0\right)$ is mapped to a string of length $\ell^{\prime \prime}-1$ with singular label by $\delta \circ \tilde{\delta}$ and label zero by $\tilde{\delta} \circ \delta$. Hence it needs to be shown that $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. The vacancy number changes as

$$
p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=p_{\ell^{\prime \prime}-1}^{(k)}-\chi\left(\dot{\tilde{\ell^{\prime}}}{ }^{(k-1)}<\ell^{\prime \prime}\right)+\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}\right) .
$$

By the proof of Lemma $1.1 p_{\ell^{\prime \prime}-1}^{(k)}=0$. Except for the first occurrence of case I. $(\ell s)(2)$ the other two terms are zero as well. If case I. $(\ell s)(2)$ occurs at k for the first time, $\dot{\tilde{\ell}}{ }^{(k-1)} \leq$ $\dot{\ell}^{(k)}=\ell<\ell^{\prime \prime}$ and $\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}$, so that again $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$ as claimed.

Finally, if $\ell^{\prime \prime \prime}>\ell^{\prime \prime}$ we need to show that $p_{\ell^{\prime \prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. The vacancy numbers change as $p_{\ell^{\prime \prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=p_{\ell^{\prime \prime \prime}-1}^{(k)}-\chi\left(\dot{\tilde{\ell}}^{(k+1)}<\ell^{\prime \prime \prime}\right)+\chi\left(\tilde{\ell}^{(k-1)} \geq \ell^{\prime \prime \prime}\right)=0-1+1=0$ by the details of the proof of Lemma 1.1.
Selected strings, case II.(1). The string $\left(\tilde{\ell}^{(k)}, 0\right)$ is mapped to a string of length $\tilde{\ell}^{(k)}-1$ under both $\tilde{\delta} \circ \delta$ and $\delta \circ \tilde{\delta}$. The singular string of length $\dot{s}^{(k)}$ is mapped to a singular string of length $\dot{s}^{(k)}-1$ under both $\tilde{\delta} \circ \delta$ and $\delta \circ \tilde{\delta}$.

Finally, the string $(\ell, 0)$ is mapped to a singular string of length $\ell-2$ under $\delta \circ \tilde{\delta}$ and a string of label 0 of length $\ell-2$ under $\tilde{\delta} \circ \delta$. Hence we need to show that $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}})=0$. By the change in vacancy number $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}})=p_{\ell-2}^{(k)}-\chi\left(\tilde{s}^{(k+1)} \leq \ell-2\right)-\chi\left(\dot{\tilde{\ell}}^{(k-1)} \leq \ell-2\right)$.

If $p_{\ell-1}^{(k)}=0$, then $m_{\ell-1}^{(k)}=0$ and hence by (1.1) $p_{\ell-2}^{(k)}=0$. Otherwise by (1.24) $p_{\ell-1}^{(k)}=1, \tilde{s}^{(k+1)}<\ell$ and $\dot{\ell}^{(k-1)}<\ell$. In this case $m_{\ell-1}^{(k)}=0$ since else $\tilde{\delta}$ or δ would pick a string of length $\ell-1$ in $(\nu, J)^{(k)}$. Hence by (1.1)

$$
\begin{equation*}
m_{\ell-1}^{(k-1)}+m_{\ell-1}^{(k+1)}+p_{\ell-2}^{(k)}+p_{\ell}^{(k)} \leq 2 \tag{1.33}
\end{equation*}
$$

If $p_{\ell-2}^{(k)}=0$, then also $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}})=0$ and we are done. Assume that $p_{\ell-2}^{(k)}=1$. We need to show that either $\tilde{s}^{(k+1)} \leq \ell-2$ or $\dot{\ell}^{(k-1)} \leq \ell-2$, so that $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}})=0$ as required. Suppose that $\tilde{s}^{(k+1)}>\ell-2$ and $\dot{\ell}^{(k-1)}>\ell-2$, which implies that $\tilde{s}^{(k+1)}=\dot{\ell}^{(k-1)}=\ell-1$. But by (1.33) either $m_{\ell-1}^{(k-1)}=0$ or $m_{\ell-1}^{(k+1)}=0$ which yields a contradiction. Next assume that $p_{\ell-2}^{(k)}=2$. In this case (1.33) implies that $m_{\ell-1}^{(k-1)}=m_{\ell-1}^{(k+1)}=0$, so that $\tilde{s}^{(k+1)}, \dot{\ell}^{(k-1)} \leq \ell-2$. Hence $p_{\ell-2}^{(k)}(\dot{\tilde{\nu}})=p_{\ell-2}^{(k)}-\chi\left(\tilde{s}^{(k+1)} \leq \ell-2\right)-\chi\left(\dot{\tilde{\ell}}^{(k-1)} \leq \ell-2\right)=0$ as required.
Selected strings, case II.(2). The selected string $\left(\tilde{\ell}^{(k)}, 0\right)$ is mapped to a string of length $\tilde{\ell}^{(k)}-1$ with label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The selected singular string of length $\dot{s}^{(k)}$ is mapped to a singular string of length $\dot{s}^{(k)}-1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. The selected singular string of length $\dot{\ell}^{(k)}=\dot{\tilde{\ell}}^{(k)}$ is mapped to a singular string of length $\dot{\ell}^{(k)}-1$, and the selected string of length $\tilde{s}^{(k)}=\tilde{\tilde{s}}^{(k)}$ with label 0 is mapped to a string of length $\tilde{s}^{(k)}-1$ with label 0 under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$.
Selected strings, case II.(3)(i). The argument for the selected strings of length $\tilde{\ell}^{(k)}=\tilde{\dot{\ell}}^{(k)}$ and $\dot{s}^{(k)}=\dot{\tilde{s}}^{(k)}$ is the same as in the previous cases. To show that the selected strings of length $\ell=\dot{\ell}^{(k)}=\tilde{s}^{(k)}$ obtain the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$, it suffices to show that $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. By the change in vacancy numbers

$$
\begin{equation*}
p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=p_{\ell-1}^{(k)}-\chi\left(\dot{\ell}^{(k-1)} \leq \ell-1\right)-\chi\left(\tilde{\dot{s}}^{(k+1)} \leq \ell-1\right) \tag{1.34}
\end{equation*}
$$

and by (1.1)

$$
\begin{equation*}
p_{\ell-1}^{(k)}+p_{\ell+1}^{(k)}+m_{\ell}^{(k-1)}+m_{\ell}^{(k+1)} \leq 2 \tag{1.35}
\end{equation*}
$$

Hence $p_{\ell-1}^{(k)} \leq 2$. If $p_{\ell-1}^{(k)}=0$, then by (1.34) and the nonnegativity of the vacancy numbers also $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. If $p_{\ell-1}^{(k)}=1$, by (1.34) $\dot{\ell}^{(k-1)}=\ell$ or $\tilde{s}^{(k+1)}=\ell$ which requires $m_{\ell}^{(k-1)}=1$ or $m_{\ell}^{(k+1)}=1$. By (1.35) this implies that $m_{\ell}^{(k+1)}=0$ or $m_{\ell}^{(k-1)}=0$ so that $\tilde{s}^{(k+1)} \leq \ell-1$ or $\dot{\ell}^{(k-1)} \leq \ell-1$. By (1.34) in turn we have $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$. If $p_{\ell-1}^{(k)}=2$, we
must have $m_{\ell}^{(k-1)}=m_{\ell}^{(k+1)}=0$ by (1.35). Hence $\tilde{s}^{(k+1)}, \dot{\ell}^{(k-1)} \leq \ell-1$ and by (1.35) $p_{\ell-1}^{(k)}(\tilde{\dot{\nu}})=0$.

Let $\ell^{\prime}=\dot{\tilde{\ell}}^{(k)}=\tilde{\dot{s}}^{(k)}$. To show that the selected strings of length ℓ^{\prime} obtain the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$, it suffices to show that $p_{\ell^{\prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. Since $p_{\ell^{\prime}-1}^{(k)}=0$, we have $p_{\ell^{\prime}-1}^{(k)}(\dot{\tilde{\nu}})=\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime}\right)-\chi\left(\dot{\tilde{\ell}}(k-1)<\ell^{\prime}\right)$. Two cases can hold. Either $\tilde{s}^{(k-1)} \geq \tilde{\dot{s}}^{(k)}=\ell^{\prime}$ and case II.(3)(i) does not hold at $k-1$ so that $\dot{\tilde{\ell}}^{(k-1)} \leq \dot{\ell}^{(k)}=\ell$. In this case $p_{\ell^{\prime}-1}^{(k)}(\dot{\tilde{\nu}})=\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime}\right)-\chi\left(\dot{\tilde{\ell}}{ }^{(k-1)}<\ell^{\prime}\right)=1-1=0$ as required. Otherwise case II.(3)(i) holds at $k-1$ so that $\tilde{\dot{s}}^{(k-1)}=\dot{\tilde{\ell}}^{(k-1)}=\ell^{\prime}$ and $\tilde{s}^{(k-1)}=\ell<\ell^{\prime}$, so that $p_{\ell^{\prime}-1}^{(k)}(\dot{\tilde{\nu}})=\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime}\right)-\chi\left(\dot{\tilde{\ell}}(k-1)<\ell^{\prime}\right)=0-0=0$.
Selected strings, case II.(3)(ii). The proof for the selected strings of length $\tilde{\ell}^{(k)}=\tilde{\tilde{\ell}}^{(k)}$ and $\dot{\ell}^{(k)}=\tilde{s}^{(k)}=\ell$ is the same as for case II.(3)(i). The selected string of length $\dot{s}^{(k)}=$ $\dot{\tilde{\ell}}^{(k)}=\ell^{\prime}$ is mapped to a singular string of length $\ell^{\prime}-1$ under both $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$. To show that the selected string of length $\tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$ obtains the same label under $\delta \circ \tilde{\delta}$ and $\tilde{\delta} \circ \delta$ it needs to be shown that $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=0$. Since $p_{\ell^{\prime \prime}-1}^{(k)}=0$, we have $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}\right)-\chi\left(\dot{\tilde{s}}^{(k+1)}<\ell^{\prime \prime}\right)$. Since case II.(3) cannot occur before case II.(3)(ii), it follows from (1.3) that $\tilde{s}^{(k-1)} \geq \tilde{\dot{s}}^{(k)}=\dot{\tilde{s}}^{(k)}=\ell^{\prime \prime}$. By induction either case II.(3)(i) holds at $k+1$ in which case $\dot{\tilde{s}}^{(k+1)}=\dot{s}^{(k+1)}=\ell^{\prime}<\ell^{\prime \prime}$ or $\dot{\tilde{s}}^{(k+1)} \leq \dot{s}^{(k)}=\ell<\ell^{\prime \prime}$. Hence $p_{\ell^{\prime \prime}-1}^{(k)}(\dot{\tilde{\nu}})=\chi\left(\tilde{s}^{(k-1)} \geq \ell^{\prime \prime}\right)-\chi\left(\dot{\tilde{s}}^{(k+1)}<\ell^{\prime \prime}\right)=1-1=0$ as required.
Unselected strings. For the rest of the proof, assume that $\underset{\sim}{\sim}, x)$ is a string in $(\nu, J)^{(k)}$ that is not selected by δ or $\tilde{\delta}$, and is such that its image under $\tilde{\delta}$ (resp. δ) is not selected by δ (resp. $\tilde{\delta}$).

Using the fact that δ preserves labels and $\tilde{\delta}$ preserves colabels, it is enough to show that

$$
\begin{equation*}
p_{i}^{(k)}(\nu)-p_{i}^{(k)}(\tilde{\nu})=p_{i}^{(k)}(\dot{\nu})-p_{i}^{(k)}(\tilde{\dot{\nu}}), \tag{1.36}
\end{equation*}
$$

which by the change in vacancy numbers is equivalent to

$$
\begin{align*}
& \chi\left(\tilde{\ell}^{(k-1)} \leq i<\tilde{\ell}^{(k)}\right)-\chi\left(\tilde{\ell}^{(k)} \leq i<\tilde{\ell}^{(k+1)}\right) \\
+ & \chi\left(\tilde{s}^{(k+1)} \leq i<\tilde{s}^{(k)}\right)-\chi\left(\tilde{s}^{(k)} \leq i<\tilde{s}^{(k-1)}\right) \\
= & \chi\left(\tilde{\dot{\ell}}^{(k-1)} \leq i<\tilde{\dot{\ell}}^{(k)}\right)-\chi\left(\tilde{\dot{\ell}}^{(k)} \leq i<\tilde{\ell}^{(k+1)}\right) \tag{1.37}\\
+ & \chi\left(\tilde{\dot{s}}^{(k+1)} \leq i<\tilde{\dot{s}}^{(k)}\right)-\chi\left(\tilde{\dot{s}}^{(k)} \leq i<\tilde{\dot{s}}^{(k-1)}\right) .
\end{align*}
$$

Consider the functions

$$
\begin{array}{rlrl}
\Delta_{i}^{(k)} & =\chi\left(\tilde{\ell}^{(k)} \leq i\right)-\chi\left(\tilde{\ell}^{(k)} \leq i\right) & & \nabla_{i}^{(k)}=\chi\left(\tilde{s}^{(k)} \leq i\right)-\chi\left(\tilde{\tilde{s}}^{(k)} \leq i\right) \\
b_{i}^{-(k)} & =\chi\left(m_{i}^{(k+1)}>0\right) \Delta_{i}^{(k)} & & c_{i}^{-(k)}=\chi\left(m_{i}^{(k+1)}>0\right) \nabla_{i}^{(k)} \\
b_{i}^{=(k)} & =\chi\left(m_{i}^{(k)}>0\right) \Delta_{i}^{(k)} & & c_{i}^{=(k)}=\chi\left(m_{i}^{(k)}>0\right) \nabla_{i}^{(k)} \\
b_{i}^{+(k)} & =\chi\left(m_{i}^{(k-1)}>0\right) \Delta_{i}^{(k)} & c_{i}^{+(k)}=\chi\left(m_{i}^{(k-1)}>0\right) \nabla_{i}^{(k)} .
\end{array}
$$

For parts i that occur in $\nu^{(k)}$, (1.37) is implied by the following two equations:

$$
\begin{align*}
& b_{i}^{-(k-1)}-b_{i}^{=(k)}=b_{i}^{=(k)}-b_{i}^{+(k+1)} \tag{1.38}\\
& c_{i}^{-(k-1)}-c_{i}^{=(k)}=c_{i}^{=(k)}-c_{i}^{+(k+1)} \tag{1.39}
\end{align*}
$$

It will be shown that

$$
\begin{align*}
& b_{i}^{-(k)}=b_{i}^{=(k)}=b_{i}^{+(k)}=0 \tag{1.40}\\
& c_{i}^{-(k)}=c_{i}^{=(k)}=c_{i}^{+(k)}=0 \tag{1.41}
\end{align*}
$$

for unselected strings in $\nu^{(k+1)}, \nu^{(k)}$ and $\nu^{(k-1)}$, respectively. For cases I.($\left.\ell \mathbf{a}\right)$, I.($\left.\ell \mathbf{b}\right)(2)$, II.(1-3) equation (1.40) is true since $\tilde{\ell}^{(k)}=\tilde{\dot{\ell}}^{(k)}$. Similarly for cases I.($\left.s \mathbf{a}\right)$, I.($(s \mathbf{b})(2)$, II.(2), II. (1’)(2’) and (3’)(i) equation (1.41) is true since $\tilde{s}^{(k)}=\tilde{\dot{s}}^{(k)}$ holds. Up to minor modifications the proof of (1.40) for cases I. $(\ell \mathrm{b})(1)$ and $\mathrm{I} .(\ell \mathrm{b})(3)$ and of (1.41) for cases I. $(s \mathrm{~b})(1)$ and $\mathrm{I} .(s \mathrm{~b})(3)$ is the same as in [1, Appendix A]. Also note that since $p_{i}^{(k)}(\tilde{\dot{\nu}})=$ $p_{i}^{(k)}(\dot{\tilde{\nu}})(1.36)$ is equivalent to $p_{i}^{(k)}(\nu)-p_{i}^{(k)}(\dot{\nu})=p_{i}^{(k)}(\tilde{\nu})-p_{i}^{(k)}(\dot{\tilde{\nu}})$, which, in terms of the arguments, just means interchanging dot and tilde everywhere. Hence the proof of (1.40) for cases II. $\left(1^{\prime}-3^{\prime}\right)$ and $\mathrm{I} .(\ell s)\left(1^{\prime}\right)$ follows from cases II.(1-3) and I. $(\ell s)(1)$. Similarly, the proof of (1.41) for cases II.(1-3) and I. $(\ell s)\left(1^{\prime}\right)$ follows from the proof for cases II.($\left.1^{\prime}-3^{\prime}\right)$ and $\mathrm{I} .(\ell s)(1)$. Hence it remains to prove (1.40) for cases $\mathrm{I} .(\ell s)(1),(2)$ and (1.41) for cases I. $(\ell s)(1),(2)$ and II.(3')(ii).

Unselected strings, (1.40). Let us first focus on (1.40) in case I. ($\ell s)(1)$. Note that $\Delta_{i}^{(k)}=$ $\chi\left(\ell \leq i<\ell^{\prime \prime}\right)$ and by the proof of case I . $(\ell s)(1) m_{j}^{(k-1)}=m_{j}^{(k)}=m_{j}^{(k+1)}=0$ for $\ell<j<\ell^{\prime}$ and $\ell^{\prime}<j<\ell^{\prime \prime}$. By the proof of case I.($\left.\ell s\right)(1)$ we have $m_{\ell^{\prime}}^{(k+1)}=2$ and $\dot{\ell}^{(k+1)}=\dot{s}^{(k+1)}=\ell^{\prime}$ so that both strings of length ℓ^{\prime} are selected. Similarly, $1 \leq m_{\ell^{\prime}}^{(k)} \leq$ $2, \dot{s}^{(k)}=\ell^{\prime}$ and $\dot{\ell}^{(k)}=\ell^{\prime}$ if $m_{\ell^{\prime}}^{(k)}=2$. Hence again all strings of length ℓ^{\prime} are selected in $\nu^{(k)}$. Finally $0 \leq m_{\ell^{\prime}}^{(k-1)} \leq 2$. If $m_{\ell^{\prime}}^{(k-1)}=2$, then by the proof of lemma 1.1 case I. $(\ell s)(1)$ holds at $k-1$ and $\dot{\ell}^{(k-1)}=\dot{s}^{(k-1)}=\ell^{\prime}$. If $m_{\ell^{\prime}}^{(k-1)}=1$, then case I. $(\ell s)(1)$ holds at $k-1$ for the first time and $\dot{s}^{(k-1)}=\ell^{\prime}$. Hence again, all strings of length ℓ^{\prime} in $(\nu, J)^{(k)}$ are selected. This implies that

$$
\begin{align*}
& b_{i}^{-(k)}=\chi(i=\ell) \chi\left(m_{i}^{(k+1)}>0\right) \\
& b_{i}^{=(k)}=\chi(i=\ell) \chi\left(m_{i}^{(k)}>0\right) \tag{1.42}\\
& b_{i}^{+(k)}=\chi(i=\ell) \chi\left(m_{i}^{(k-1)}>0\right) .
\end{align*}
$$

Note that either $\ell=\ell^{\prime}$, in which case the above arguments already show that all strings are selected, or $\ell<\ell^{\prime}$ and case I . $(\ell s)(1)$ occurs at k for the first time. In the latter case $m_{\ell}^{(k)}=1$ and $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\ell$ so that the string of length ℓ in $\nu^{(k)}$ is selected. If $\ell<\ell^{\prime}$ and case I . $(\ell s)(1)$ holds at k for the first time, equation (1.11) must hold and hence by (1.15) $m_{\ell}^{(k+1)}=0$ so that $b_{i}^{-(k)}=0$ for all unselected strings i. The proof that $b_{i}^{+(k)}=0$ for all unselected strings i is very similar to the proof [1, Appendix A, Unselected strings, case $3]$.

Next consider (1.40) for the case I. $(\ell s)(2)$. In this case $\Delta_{i}^{(k)}=\chi\left(\ell \leq i<\ell^{\prime \prime}\right)$ and $m_{j}^{(k-1)}=m_{j}^{(k)}=m_{j}^{(k+1)}=0$ for $\ell<j<\ell^{\prime}$ and $\ell^{\prime}<j<\ell^{\prime \prime}$. By the same arguments as in case I. $(\ell s)(1)$ all existing strings of length ℓ^{\prime} are selected. Hence (1.42) holds. Again either $\ell=\ell^{\prime}$, in which case the previous arguments already show that all strings are selected, or $\ell<\ell^{\prime}$ and case I. $(\ell s)(2)$ occurs at k for the first time. In the latter case $m_{\ell}^{(k)}=1$ and $\dot{\ell}^{(k)}=\tilde{\ell}^{(k)}=\ell$ so that the string of length ℓ in $\nu^{(k)}$ is selected. If $\ell<\ell^{\prime}$ and case I . $(\ell s)(2)$ holds at k for the first time, equation (1.11) must hold and hence by (1.15) $m_{\ell}^{(k+1)}=0$ so that $b_{i}^{-(k)}=0$ for all unselected strings i. The proof that $b_{i}^{+(k)}=0$ for all unselected strings i is very similar to the proof [1, Appendix A, Unselected strings, case 3].

Unselected strings, (1.41). Consider (1.41) for the case I. $(\ell s)(1)$. We have $\tilde{s}^{(k)}=\tilde{\dot{s}}^{(k)}$ so that $\nabla_{i}^{(k)}=0$ unless $\tilde{\dot{\ell}}^{(k)}=\tilde{s}^{(k)}=\tilde{s}^{(k+1)}=\ell^{\prime \prime}, \dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}=\ell^{\prime \prime \prime}, m_{\ell^{\prime \prime}}^{(k-1)}=0$, $m_{\ell^{\prime \prime}}^{(k)}=1$ and $m_{\ell^{\prime \prime}}^{(k+1)}=2$ if case I. $(\ell s)(1)$ does not hold at $k-1$. In the former case (1.41) holds. In the latter case $\nabla_{i}^{(k)}=\chi\left(\ell^{\prime \prime} \leq i<\ell^{\prime \prime \prime}\right)$ and $m_{j}^{(k-1)}=m_{j}^{(k)}=m_{j}^{(k+1)}=0$ for $\ell^{\prime \prime}<j<\ell^{\prime \prime \prime}$. Hence

$$
\begin{aligned}
& c_{i}^{-(k)}=\chi\left(i=\ell^{\prime \prime}\right) \chi\left(m_{\ell^{\prime \prime}}^{(k+1)}>0\right) \\
& c_{i}^{=(k)}=\chi\left(i=\ell^{\prime \prime}\right) \chi\left(m_{\ell^{\prime \prime}}^{(k)}>0\right) \\
& c_{i}^{+(k)}=\chi\left(i=\ell^{\prime \prime}\right) \chi\left(m_{\ell^{\prime \prime}}^{(k-1)}>0\right)=0 .
\end{aligned}
$$

Since $m_{\ell^{\prime \prime}}^{(k)}=1$ and $\tilde{s}^{(k)}=\ell^{\prime \prime}$ the string of length $\ell^{\prime \prime}$ is selected. Similarly $m_{\ell^{\prime \prime}}^{(k)}=2$, $\tilde{s}^{(k+1)}=\ell^{\prime \prime}$ and either $\tilde{\dot{s}}^{(k+1)}=\ell^{\prime \prime}$ if case I. $(\ell s)(1)$ holds at $k+1$ or $\tilde{\ell}^{(k+1)}=\ell^{\prime \prime}$ otherwise. In either case both strings of length $\ell^{\prime \prime}$ are selected in $\nu^{(k+1)}$. This proves (1.41).

Next consider (1.41) for the case I. $(\ell s)(2)$. In this case $\nabla_{i}^{(k)}=\chi\left(\ell^{\prime} \leq i<\ell^{\prime \prime \prime}\right)$ and by the proof of lemma $1.1 m_{j}^{(k-1)}=m_{j}^{(k)}=m_{j}^{(k+1)}=0$ for $\ell^{\prime}<j<\ell^{\prime \prime}$ and $\ell^{\prime \prime}<j<\ell^{\prime \prime \prime}$. The strings of lengths ℓ^{\prime} and $\ell^{\prime \prime}$ in $\nu^{(k+1)}$ are all selected since by the proof of lemma 1.1 $m_{\ell^{\prime}}^{(a)}=m_{\ell^{\prime \prime}}^{(a)}=2$ for $k<a \leq n-2, m_{\ell^{\prime}}^{(n-1)}=m_{\ell^{\prime}}^{(n)}=m_{\ell^{\prime}}^{(n-1)}=m_{\ell^{\prime \prime}}^{(n)}=1$ and $\tilde{\ell}^{(k+1)}=\tilde{s}^{(k+1)}=\ell^{\prime}$ and $\tilde{\dot{\ell}}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}=\ell^{\prime \prime}$. Similarly, either $m_{\ell^{\prime}}^{(k)}=2$ and $\tilde{\ell}^{(k)}=\tilde{s}^{(k)}$ or $m_{\ell^{\prime}}^{(k)}=1$ and $\tilde{\ell}^{(k)}=\ell^{\prime}$. This shows that all strings of lengths ℓ^{\prime} are selected in $\nu^{(k)}$. Also, either $m_{\ell^{\prime \prime}}^{(k)}=2$ and $\tilde{\dot{\ell}}^{(k)}=\tilde{\dot{s}}^{(k)}$ or $m_{\ell^{\prime \prime}}^{(k)}=1$ and $\tilde{\dot{\ell}}^{(k)}=\ell^{\prime}$. This shows that all strings of lengths $\ell^{\prime \prime}$ are selected in $\nu^{(k)}$. To show that all strings of length ℓ^{\prime} in $\nu^{(k-1)}$ are selected, observe that either $m_{\ell^{\prime}}^{(k-1)}=0, m_{\ell^{\prime}}^{(k-1)}=1$ and $\tilde{s}^{(k-1)}=\ell^{\prime}$ or $m_{\ell^{\prime}}^{(k-1)}=2$ and $\tilde{\ell}^{(k-1)}=\tilde{s}^{(k-1)}=\ell^{\prime}$. Similarly, to show that all strings of length $\ell^{\prime \prime}$ in $\nu^{(k-1)}$ are selected, observe that either $m_{\ell^{\prime \prime}}^{(k-1)}=0, m_{\ell^{\prime \prime}}^{(k-1)}=1$ and $\tilde{\tilde{\ell}^{(k-1)}}=\ell^{\prime \prime}$ or $m_{\ell^{\prime \prime}}^{(k-1)}=2$ and $\tilde{\dot{\ell}}^{(k-1)}=\tilde{\dot{s}}^{(k-1)}=\ell^{\prime \prime}$.

Finally consider (1.41) for the case II.(3')(ii). Set $\ell=\tilde{\ell}^{(k)}=\dot{s}^{(k)}, \ell^{\prime}=\tilde{s}^{(k)}=\tilde{\dot{\ell}}^{(k)}$ and $\ell^{\prime \prime}=\dot{\tilde{s}}^{(k)}=\tilde{\dot{s}}^{(k)}$. From the proof of lemma 1.1 it follows that $m_{\ell^{\prime}}^{(k-1)}=0, m_{\ell^{\prime}}^{(k)}=1$, $m_{\ell^{\prime}}^{(k+1)}=2$ and $m_{j}^{(k-1)}=m_{j}^{(k)}=m_{j}^{(k+1)}=0$ for $\ell^{\prime}<j<\ell^{\prime \prime}$. Since $\nabla_{i}^{(k)}=\chi\left(\ell^{\prime} \leq\right.$ $\left.i<\ell^{\prime \prime}\right)$ we have

$$
\begin{aligned}
& c_{i}^{-(k)}=\chi\left(i=\ell^{\prime}\right) \chi\left(m_{\ell^{\prime}}^{(k+1)}>0\right) \\
& c_{i}^{=(k)}=\chi\left(i=\ell^{\prime}\right) \chi\left(m_{\ell^{\prime}}^{(k)}>0\right) \\
& c_{i}^{+(k)}=\chi\left(i=\ell^{\prime}\right) \chi\left(m_{\ell^{\prime}}^{(k-1)}>0\right)=0
\end{aligned}
$$

The single string of length ℓ^{\prime} in $\nu^{(k)}$ is selected, so that $c_{i}^{=(k)}=0$ for all unselected strings i. Furthermore, if case II.(3')(i) holds at $k+1$, then $\ell^{\prime}=\tilde{s}^{(k+1)}=\tilde{\dot{s}}^{(k+1)}=\tilde{\dot{\ell}}^{(k+1)}$ so that both strings of length ℓ^{\prime} in $\nu^{(k+1)}$ are selected. Otherwise $\tilde{\ell}^{(k+1)}=\ell^{\prime}=\tilde{s}^{(k+1)}$ and again both strings of length ℓ^{\prime} in $\nu^{(k+1)}$ are selected.

REFERENCES

[1] A. N. Kirillov, A. Schilling and M. Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Mathematica (N.S.) 8 (2002) 67-135.
[2] A. Schilling, A bijection between type $D_{n}^{(1)}$ crystals and rigged configurations, J. Algebra 285 (2005) 292334.

