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Virtual crystal structure on rigged configurations

Anne Schilling

ABSTRACT. Rigged configurations are combinatorial objects originating from the Bethe Ansatz, that label highest weight
crystal elements. In this note a new unrestricted set of rigged configurations is introduced by constructing a crystal structure
on the set of rigged configurations.

RÉSUMÉ. Les configurations gréées sont des objets combinatoires inspirés par l’ansatz de Bethe, et qui sont en correspon-
dence avec les éléments cristallins de plus haut poids. Dans cette note, nous introduisons le concept de ”configurations gréées
généralisées”, en construisant une structure cristalline dans l’espace des configurations gréées.

1. Introduction

This note is based on preprint [33] which gives a crystal structure on rigged configurations for all simply-laced
types. Here we use the virtual crystal method [29, 30] to extend these results to nonsimply-laced types.

There are (at least) two main approaches to solvable lattice models and their associated quantum spin chains: the
Bethe Ansatz [6] and the corner transfer matrix method [5].

In his 1931 paper [6], Bethe solved the Heisenberg spin chain based on the string hypothesis which asserts that
the eigenvalues of the Hamiltonian form certain strings in the complex plane as the size of the system tends to infinity.
The Bethe Ansatz has been applied to many models to prove completeness of the Bethe vectors. The eigenvalues and
eigenvectors of the Hamiltonian are indexed by rigged configurations. However, numerical studies indicate that the
string hypothesis is not always true [2].

The corner transfer matrix (CTM) method, introduced by Baxter [5], labels the eigenvectors by one-dimensional
lattice paths. These lattice paths have a natural interpretation in terms of Kashiwara’s crystal base theory [16, 17],
namely as highest weight crystal elements in a tensor product of finite-dimensional crystals.

Even though neither the Bethe Ansatz nor the corner transfer matrix method are mathematically rigorous, they
suggest the existence of a bijection between the two index sets, namely rigged configurations on the one hand and
highest weight crystal paths on the other (see Figure 1). For the special case when the spin chain is defined on
V(µ1) ⊗ V(µ2) ⊗ · · · ⊗ V(µk), where V(µi) is the irreducible GL(n) representation indexed by the partition (µi) for
µi ∈ N, a bijection between rigged configurations and semi-standard Young tableaux was given by Kerov, Kirillov
and Reshetikhin [21, 22]. This bijection was proven and extended to the case when the (µi) are any sequence of
rectangles in [25]. The bijection has many amazing properties. For example it takes the cocharge statistics cc defined
on rigged configurations to the coenergy statistics D defined on crystals.

Rigged configurations and crystal paths also exist for other types. In [14, 15] the existence of Kirillov–Reshetikhin
crystals Br,s was conjectured, which can be naturally associated with the dominant weight sΛr where s is a positive
integer and Λr is the r-th fundamental weight of the underlying algebra of finite type. For a tensor product of Kirillov–
Reshetikhin crystals B = Brk,sk ⊗ · · · ⊗ Br1,s1 and a dominant weight Λ let P(B, Λ) be the set of all highest
weight elements of weight Λ in B. In the same papers [14, 15], fermionic formulas M(L, Λ) for the one-dimensional
configuration sums X(B, Λ) :=

∑
b∈P(B,Λ) qD(b) were conjectured. The fermionic formulas admit a combinatorial

interpretation in terms of the set of rigged configurations RC(L, Λ), where L is the multiplicity array of B. A statistic
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FIGURE 1. Schematic origin of rigged configurations and crystal paths

preserving bijection Φ : P(B, Λ) → RC(L, Λ) has been proven in various cases [25, 28, 32, 35] which implies the
following identity

(1.1) X(B, Λ) :=
∑

b∈P(B,Λ)

qD(b) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J) =: M(L, Λ).

Since the sets in (1.1) are finite, these are polynomials in q. When B = B1,sk ⊗ · · · ⊗ B1,s1 of type A, they are none
other than the Kostka–Foulkes polynomials.

Rigged configurations corresponding to highest weight crystal paths are only the tip of an iceberg. In this note we
extend the definition of rigged configurations to all crystal elements by the explicit construction of a crystal structure
on the set of unrestricted rigged configurations (see Definition 4.1). For simply-laced types, the proof is given in [32]
and uses Stembridge’s local characterization of simply-laced crystals [37]. For nonsimply-laced algebras, we show
here how to apply the method of virtual crystals [29, 30] to construct the crystal operators on rigged configurations.

The equivalence of the crystal structures on rigged configurations and crystal paths together with the correspon-
dence for highest weight vectors yields the equality of generating functions in analogy to (1.1) (see Theorem 4.10 and
Corollary 4.11). Denote the unrestricted set of paths and rigged configurations by P(B, Λ) and RC(L, Λ), respec-
tively. The corresponding generating functions X(B, Λ) = M(L, Λ) are unrestricted generalized Kostka polynomials
or q-supernomial coefficients. A direct bijection Φ : P(B, Λ) → RC(L, Λ) for type A along the lines of [25] is
constructed in [7, 8].

Rigged configurations are closely tied to fermionic formulas. Fermionic formulas are explicit expressions for the
partition function of the underlying physical model which reflect their particle structure. For more details regarding
the background of fermionic formulas see [14, 19, 20]. For type A we obtain an explicit characterization of the
unrestricted rigged configurations in terms of lower bounds on quantum numbers which yields a new fermionic formula
for unrestricted Kostka polynomials of type A. Surprisingly, this formula is different from the fermionic formulas
in [13, 18] obtained in the special cases of B = B1,sk ⊗ · · · ⊗ B1,s1 and B = Brk,1 ⊗ · · · ⊗ Br1,1. The rigged
configurations corresponding to the fermionic formulas of [13, 18] were related to ribbon tableaux and the cospin
generating functions of Lascoux, Leclerc, Thibon [26, 27] in reference [31]. To distinguish these rigged configurations
from the ones introduced in this paper, let us call them ribbon rigged configurations.

The Lascoux–Leclerc–Thibon (LLT) polynomials [26, 27] have recently made their debut in the theory of Mac-
donald polynomials in the seminal paper by Haiman, Haglund, Loehr [9]. The main obstacle in obtaining a combina-
torial formula for the Macdonald–Kostka polynomials is the Schur positivity of certain LLT polynomials. A related
problem is the conjecture of Kirillov and Shimozono [24] that the cospin generating function of ribbon tableaux equals
the generalized Kostka polynomial. A possible avenue to prove this conjecture would be a direct bijection between
the unrestricted rigged configurations of this paper and ribbon rigged configurations.

One of the motivations for considering unrestricted rigged configurations was Takagi’s work [38] on the inverse
scattering transform, which provides a bijection between states in the sl2 box ball system and rigged configurations.
In this setting rigged configurations play the role of action-angle variables. Box ball systems can be produced from
crystals of solvable lattice models for algebras other than sl2 [10, 11, 12]. The inverse scattering transform can be
generalized to the sln case [23], which should give a box-ball interpretation of the unrestricted rigged configurations
presented here.

Another motivation for the study of unrestricted configuration sums, fermionic formulas and associated rigged
configurations is their appearance in generalizations of the Bailey lemma [3, 39]. The Andrews–Bailey construction [1,
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4] relies on an iterative transformation property of the q-binomial coefficient, which is one of the simplest unrestricted
configuration sums, and can be used to prove infinite families of Rogers–Ramanujan type identities. The explicit
formulas provided in this paper might trigger further progress towards generalizations to higher-rank or other types of
the Andrews–Bailey construction.

The paper is organized as follows. In Section 2 we review basics about crystal bases and virtual crystals. In
Section 3 we define rigged configurations. The new crystal structure on rigged configurations is presented in section 4.
Section 5 is devoted to type A, where we give an explicit characterization of the unrestricted rigged configurations, a
fermionic formula for unrestricted Kostka polynomials, and the affine crystal structure.

2. Crystals

2.1. Axiomatic definition. Kashiwara [16, 17] introduced a crystal as an edge-colored directed graph satisfying
a simple set of axioms. Let g be a symmetrizable Kac–Moody algebra with associated root, coroot and weight lattices
Q, Q∨, P . Let I be the index set of the Dynkin diagram and denote the simple roots, simple coroots and fundamental
weights by αi, hi and Λi (i ∈ I), respectively. There is a natural pairing 〈· , ·〉 : Q∨ ⊗ P → Z defined by 〈hi , Λj〉 =
δij .

The vertices of the crystal graph are elements of a set B. The edges of the crystal graph are colored by the index
set I . A P -weighted I-crystal satisfies the following properties:

(1) Fix an i ∈ I . If all edges are removed except those colored i, the connected components are finite directed
linear paths called the i-strings of B. Given b ∈ B, define fi(b) (resp. ei(b)) to be the vertex following
(resp. preceding) b in its i-string; if there is no such vertex, declare fi(b) (resp. ei(b)) to be undefined.
Define ϕi(b) (resp. εi(b)) to be the number of arrows from b to the end (resp. beginning) of its i-string.

(2) There is a function wt : B → P such that wt(fi(b)) = wt(b) − αi and ϕi(b) − εi(b) = 〈hi , wt(b)〉.

2.2. Virtual crystals. There exist natural inclusions of affine Lie algebras as indicated in Figures 2 and 3. Even
though these embeddings do not carry over to the corresponding quantum algebras, it is expected that such embeddings
exist for crystals. Note that every affine algebra can be embedded into one of type A(1), D(1) and E(1) which are the
untwisted affine algebras whose canonical simple Lie subalgebra is simply-laced. Crystal embeddings corresponding
to C

(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 have been studied in [29], whereas the crystal embeddings B

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1 have

been established in [30].
Consider an embedding of the affine algebra with Dynkin diagram X into one with diagram Y . We consider a

graph automorphism σ of Y that fixes the 0 node. For type A
(1)
2n−1, σ(i) = 2n − i (mod 2n). For type D

(1)
n+1 the

automorphism interchanges the nodes n and n + 1 and fixes all other nodes. There is an additional automorphism for
type D

(1)
4 , namely, the cyclic permutation of the nodes 1,2 and 3. For type E

(1)
6 the automorphism exchanges nodes 1

and 5 and nodes 2 and 4. In Figures 2 and 3 the automorphism σ is illustrated pictorially by arrows.
Let IX and IY be the vertex sets of the diagrams X and Y respectively, IY /σ the set of orbits of the action of σ

on IY , and ι : IX → IY /σ a bijection which preserves edges and sends 0 to 0.

EXAMPLE 2.1.
If X is one of C

(1)
n , A

(2)
2n , D

(2)
n+1 and Y = A

(1)
2n−1, then ι(0) = 0, ι(i) = {i, 2n− i} for 1 ≤ i < n and ι(n) = n.

If X = B
(1)
n or A

(2)
2n−1 and Y = D

(1)
n+1, then ι(i) = i for i < n and ι(n) = {n, n + 1}.

If X is D
(3)
4 or G

(1)
2 and Y = D

(1)
4 , then ι(0) = 0, ι(1) = 2 and ι(2) = {1, 3, 4}.

If X is E
(2)
6 or F

(1)
4 and Y = E

(1)
6 , then ι(0) = 0, ι(1) = 1, ι(2) = 3, ι(3) = {2, 4} and ι(4) = {1, 5}.

To describe the embedding we endow the bijection ι with additional data. For each i ∈ IX we shall define a
multiplication factor γi that depends on the location of i with respect to a distinguished arrow (multiple bond) in X .
Removing the arrow leaves two connected components. The factor γi is defined as follows:

(1) Suppose X has a unique arrow.
(a) Suppose the arrow points towards the component of 0. Then γi = 1 for all i ∈ IX .
(b) Suppose the arrow points away from the component of 0. Then γi is the order of σ for i in the component

of 0 and is 1 otherwise.
(2) Suppose X has two arrows. Then γi = 1 for 1 ≤ i ≤ n − 1. For i ∈ {0, n}, γi = 2 (which is the order of

σ) if the arrow incident to i points away from it and is 1 otherwise.
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FIGURE 2. Embeddings C
(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 and B

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1

EXAMPLE 2.2. The values of γi are summarized in the following table:

X

A
(2)
2n−1

D
(3)
4 γi = 1 for all i

E
(2)
6

B
(1)
n γi = 2 for 0 ≤ i ≤ n − 1

γn = 1

G
(1)
2 γi = 3 for i = 0, 1

γ2 = 1

F
(1)
4 γi = 2 for i = 0, 1, 2

γi = 1 for i = 3, 4

C
(1)
n γi = 1 for 1 ≤ i < n

γ0 = γn = 2

A
(2)
2n γi = 1 for 0 ≤ i < n

γn = 2

D
(2)
n+1 γi = 1 for all i

The embedding Ψ : P X → P Y of weight lattices is defined by

Ψ(ΛX
i ) = γi

∑

j∈ι(i)

ΛY
j .

Let V̂ be a Y -crystal. We define the virtual crystal operators êi, f̂i for i ∈ IX as the composites of Y -crystal
operators fj , ej given by

(2.1) f̂i =
∏

j∈ι(i)

fγi

j and êi =
∏

j∈ι(i)

eγi

j .

These are designed to simulate X-crystal operators fi, ei for i ∈ IX . The type Y operators on the right hand side,
may be performed in any order, since distinct nodes j, j ′ ∈ ι(i) are not adjacent in Y and thus their corresponding
raising and lowering operators commute.

A virtual crystal is a pair (V, V̂ ) such that:

(1) V̂ is a Y -crystal.
(2) V ⊂ V̂ is closed under êi, f̂i for i ∈ IX .
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FIGURE 3. Embeddings G
(1)
2 , D

(3)
4 ↪→ D

(1)
4 and F

(1)
4 , E

(2)
6 ↪→ E

(1)
6

(3) There is an X-crystal B and an X-crystal isomorphism Ψ : B → V such that ei, fi correspond to êi, f̂i.

Sometimes by abuse of notation, V will be referred to as a virtual crystal.
Let us define the Y -crystal

V̂ r,s =
⊗

j∈ι(r)

Bj,γrs
Y

except for A
(2)
2n and r = n in which case V̂ n,s = Bn,s

Y ⊗ Bn,s
Y . Denote by u(V̂ r,s) the extremal vector of weight

Ψ(sΛr) in V̂ r,s.

DEFINITION 2.3. Let V r,s be the subset of V̂ r,s generated from u(V̂ r,s) using the virtual crystal operators êi and
f̂i for i ∈ IX .

CONJECTURE 2.4. [30, Conjecture 3.7] There is an isomorphism of X-crystals Ψ : Br,s
X

∼= V r,s such that ei and
fi correspond to êi and f̂i respectively, for all i ∈ IX .

In [29] Conjecture 2.4 is proved for embeddings C
(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 and s = 1. In [30] Conjecture 2.4

is proved for all nonexceptional types when r = 1.

3. Rigged configurations

In this section we define rigged configurations for all affine Kac–Moody algebras. Type A
(2)
2n requires some special

treatment. We need the variant γ̃a of the multiplication factor γa which is γ̃a = γa except for A
(2)
2n and a = n when

γ̃n = 1. Also set α̃a = αa for all a ∈ I except for type A
(2)
2n in which case α̃a are the simple roots of type Bn.

Let L = (L
(a)
i )(a,i)∈H be an array of nonnegative integers where H = {1, 2, . . . , n}×Z>0, called the multiplicity

array, where n is the rank of the underlying algebra and Λ a weight. Then an (L, Λ)-configuration is an array m =

(m
(a)
i )(a,i)∈H such that

(3.1)
∑

(a,i)∈H

i m
(a)
i α̃a =

∑

(a,i)∈H

i L
(a)
i Λa − Λ

except for type A
(2)
2n . In this case the right hand side should be replaced by ι(r.h.s) where ι is a Z-linear map from the

weight lattice of type Cn to the weight lattice of type Bn such that

ι(ΛC
a ) =

{
ΛB

a for 1 ≤ a < n

2ΛB
a for a = n.
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The vacancy numbers of a given configuration are defined as

(3.2) p
(a)
i =

∑

(b,j)∈H

−
2(αa | αb)

γb(αa | αa)
min(γ̃ai, γ̃bj)m

(b)
j +

∑

j≥0

min(i, j)L
(a)
j .

An (L, Λ)-configuration is called admissible if p
(a)
i ≥ 0 for all (a, i) ∈ H. The set of admissible (L, Λ)-configurations

is denoted by C(L, Λ).

A rigged configuration is a pair (m, J) where m = (m
(a)
i )(a,i)∈H is an admissible (L, Λ)-configuration and

J = (J
(a)
i )(a,i)∈H is a matrix of partitions such that the partition J

(a)
i is contained in a rectangle of size m

(a)
i × p

(a)
i .

The set of rigged configurations for fixed L and Λ is denoted by RC(L, Λ).
Rigged configurations can also be represented as a sequence of partitions such that each part of each partition is

labeled or “rigged” by a number. Let ν = (ν (1), ν(2), . . . , ν(n)) be the sequence of partitions obtained from m =

(m
(a)
i ) as follows. Let m

(a)
i (ν) be the number of parts in ν(a) of size i. Then ν is determined by requiring that

m
(a)
�

γai
(ν) = m

(a)
i and m

(a)
j (ν) = 0 for j 6∈ γ̃aZ.

The vacancy number P
(a)
i (ν) for each part i of ν(a) is then

P
(a)
i (ν) =

∑

b∈I

−
2(αa | αb)

γb(αa | αa)
Qi(ν

(b)) +
∑

j≥0

min(
i

γ̃a

, j)L
(a)
j ,

where Qi(ρ) is the number of boxes in the first i columns of the partition ρ. The relation to p
(a)
i is

p
(a)
i = P

(a)
�

γai
(ν).

A tuple (i, x) where i is a part of ν(a) and x is a part of J
(a)
i is called a string of the rigged partition (ν, J)(a). Here i

is the length and x the label of the string. The colabel of a string (i, x) of (ν, J)(a) is P
(a)
i (ν) − x.

EXAMPLE 3.1. Let Λ = Λ1 + Λ3 of type A
(2)
6 , L

(1)
1 = 7 and all other L

(a)
i = 0. Then

(ν, J) =

0 0
0 0
0 0
0 0
0 0

0 0
1 1
1 1

1 1
0 1

∈ RC(L, Λ),

where the first number behind each part is the label and the second one is the vacancy number.

There is also a statistic called cocharge defined on rigged configurations. Set t∨a = |ι(a)|γa

γ0
. The cocharge is given

by

cc(ν) =
∑

(i,a),(b,j)∈H

t∨a
γb

·
(αa | αb)

(αa | αa)
min(γ̃ai, γ̃bj)m

(a)
i m

(b)
j

=
1

2

∑

(a,i)∈H

t∨a m
(a)
i

(∑

j≥0

min(i, j)L
(a)
j − p

(a)
i

)(3.3)

for a configuration ν and cc(ν, J) = cc(ν)+ |J | where |J | =
∑

(a,i)∈H t∨a |J
(a)
i | is the sum of the sizes of all partitions

J
(a)
i weighted by t∨a .

As mentioned in the introduction, rigged configurations correspond to highest weight crystal elements. Let Br,s

be a Kirillov–Reshetikhin crystal for (r, s) ∈ H and B = Brk,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 . Associate to B the

multiplicity array L = (L
(r)
s )(r,s)∈H where L

(r)
s counts the number of tensor factors Br,s in B. Denote by

P(B, Λ) = {b ∈ B | wt(b) = Λ, ei(b) undefined for all i ∈ I}

the set of all highest weight elements of weight Λ in B. There is a natural statistics defined on B, called energy
function or more precisely tail coenergy function D : B → Z (see [35, Eq. (5.1)] for a precise definition).

The following theorem was proven in [25] for type A
(1)
n−1 and general B = Brk,sk ⊗· · ·⊗Br1,s1 , in [32] for type

D
(1)
n and B = Brk ,1 ⊗ · · · ⊗ Br1,1 and in [35] for type D

(1)
n and B = B1,sk ⊗ · · · ⊗ B1,s1 .
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THEOREM 3.2. [25, 32, 35] For Λ a dominant weight, B as above and L the corresponding multiplicity array,
there is a bijection Φ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is, D(b) = cc(Φ(b)) for all
b ∈ P(B, Λ).

Defining the generating functions

(3.4) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we get the immediate corollary of Theorem 3.2.

COROLLARY 3.3. [25, 32, 35] Let Λ, B and L as in Theorem 3.2. Then X(B, Λ) = M(L, Λ).

4. Crystal structure on rigged configurations

The rigged configurations of section 3 correspond to highest weight crystal elements. In this section we introduce
the set of unrestricted rigged configurations RC(L) by defining a crystal structure generated from highest weight
vectors given by elements in RC(L) =

⋃
Λ∈P+ RC(L, Λ) by the Kashiwara operators ea, fa. For simply-laced

algebras the following definition was given in [33, Definition 3.3]. The multiplication factors γa for the simply-laced
case are equal to 1.

DEFINITION 4.1. Let L be a multiplicity array. Define the set of unrestricted rigged configurations RC(L) as
the set generated from the elements in RC(L) by the application of the operators fa, ea for 1 ≤ a ≤ n defined as
follows:

(1) Define ea(ν, J) by removing γa boxes from a string of length k in (ν, J)(a) leaving all colabels fixed and
increasing the new label by one. Here k is the length of the string with the smallest negative rigging of
smallest length. If no such string exists, ea(ν, J) is undefined.

(2) Define fa(ν, J) by adding γa boxes to a string of length k in (ν, J)(a) leaving all colabels fixed and de-
creasing the new label by one. Here k is the length of the string with the smallest nonpositive rigging of
largest length. If no such string exists, add a new string of length one and label -1. If the result is not a valid
unrestricted rigged configuration fa(ν, J) is undefined.

EXAMPLE 4.2. For (ν, J) of Example 3.1 we have

f1(ν, J) =

−1 -1
0 0
0 0
0 0
0 0

1 1
1 1
1 1

1 1
0 1

and

f3(ν, J) =

0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1

−1 -1
0 0

.

THEOREM 4.3. The operators ea, fa of Definition 4.1 are the Kashiwara crystal operators.

For simply-laced algebras Theorem 4.3 was proven in [33] by using the local characterization of simply-laced
crystals given by Stembridge [37]. In the following we show that, assuming that the virtual crystal embeddings of
section 2.2 hold, Theorem 4.3 is also true for the nonsimply-laced algebras.

We define virtual rigged configurations in analogy to virtual crystals. Here B = Brk ,sk ⊗ · · · ⊗ Br1,s1 is a
tensor product of Kirillov-Reshetikhin crystals and L = (L

(a)
i ) the corresponding multiplicity array.

DEFINITION 4.4. Let X ↪→ Y be one of the algebra embeddings of section 2.2, Λ a weight and B a crystal for
type X . Let (V, V̂ ) be the virtual Y -crystal corresponding to B. Then RCv(L, Λ) is the set of elements (ν̂, Ĵ) ∈

RC(L̂, Ψ(Λ)) such that:

(1) For all i ∈ Z>0, m̂
(a)
i = m̂

(b)
i and Ĵ

(a)
i = Ĵ

(b)
i if a and b are in the same σ-orbit in IY .

(2) For all i ∈ Z>0, a ∈ IX , and b ∈ ι(a) ⊂ IY , we have m̂
(b)
j = 0 if j 6∈ γ̃aZ and the parts of Ĵ

(b)
i are

multiples of γa.
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THEOREM 4.5. [30, Theorem 4.2] There is a bijection RC(L, Λ) → RCv(L, Λ) sending (ν, J) 7→ (ν̂, Ĵ) given
as follows. For all a ∈ IX , b ∈ ι(a) ⊂ IY , and i ∈ Z>0,

m̂
(b)
�

γai
= m

(a)
i and Ĵ

(b)
�

γai
= γaJ

(a)
i .

The cocharge changes by cc(ν̂, Ĵ) = γ0 cc(ν, J).

PROOF OF THEOREM 4.3. Theorem 4.3 was proved in [33] for the simply-laced algebras. Hence, assuming that
the virtual crystal embeddings of section 2.2 hold, it suffices to check that ea, fa of Definition 4.1 satisfy (2.1). By
Theorem 4.5 this reduces to checking that f̂a and êa preserve the conditions of Definition 4.4. We demonstrate this
for f̂a; the arguments for êa are analogous. Let (ν̂, Ĵ) ∈ RCv(L, Λ). Since fa and fb of Definition 4.1 for simply-
laced algebras commute if b ∈ ι(a), point (1) of Definition 4.4 follows for f̂a(ν̂, Ĵ). To prove that point (2) holds, it
suffices to check that if γa > 1, then the various applications of fa in f̂a select the same string γa times. Note that for
simply-laced algebras the application of fa changes the vacancy number p̂

(b)
i by

(4.1) p̂
(b)
i 7→ p̂

(b)
i − (αa | αb)χ(i > k),

where k is the length of the selected string. By the definition of k (see Definition 4.1) and the fact that all riggings
in the a-th rigged partition have parity γa by point (2) of Definition 4.4, all riggings of strings of length i > k in
(ν̂, Ĵ)(a) are greater or equal to −s+γa, where −s is the smallest rigging appearing in (ν̂, Ĵ)(a). By (4.1) the riggings
of length i > k in (ν̂, Ĵ)(a) change by -2. Hence the smallest j such that −s + γa − 2j ≤ −s − j is j = γa. This
shows that γa applications of fa select the same string, which in turn proves that f̂a(ν̂, Ĵ) satisfies the conditions of
Definition 4.4. �

THEOREM 4.6. With the same assumptions as in Theorem 3.2, the graph generated from (ν, J) ∈ RC(L, Λ) and
the crystal operators ea, fa of Definition 4.1 is isomorphic to the crystal graph B(Λ) of highest weight Λ.

PROOF. For simply-laced types this was proven in [33, Theorem 3.7]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.7. Consider the crystal B( ) of type A2 in B = (B1,1)⊗3. Here is the crystal graph in the usual

labeling and the rigged configuration labeling:

121

221

231

331

332

131

132

232

1

2

2

1

1

1

2

2

0 ∅

−1 ∅

0 −1

1 −2

−1
−1

−1

1 −1

−1
−1

0

−2
−1

0

1

2

2

1

1

1

2

2

THEOREM 4.8. The cocharge cc as defined in (3.3) is constant on connected crystal components.

PROOF. For simply-laced types this was proved in [33, Theorem 3.9]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.9. The cocharge of the connected component in Example 4.7 is 1.

For B = Brk,sk ⊗ · · · ⊗ Br1,s1 and Λ ∈ P let

P(B, Λ) = {b ∈ B | wt(b) = Λ}.
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THEOREM 4.10. Let Λ ∈ P , B be as in Theorem 3.2 and L the corresponding multiplicity array. Then there is a
bijection Φ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is, D(b) = cc(Φ(b)) for all b ∈ P(B, Λ).

PROOF. By Theorem 3.2 there is such a bijection for the maximal elements b ∈ P(B). By Theorems 4.6 and 4.8
this extends to all of P(B, Λ). �

Extending the definitions of (3.4) to

(4.2) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we obtain the corollary:

COROLLARY 4.11. With all hypotheses of Theorem 4.10, we have X(B, Λ) = M(L, Λ).

5. Unrestricted rigged configurations for type A
(1)
n−1

In this section we give an explicit description of the elements in RC(L, λ) for type A
(1)
n−1. Generally speaking, the

elements are rigged configurations where the labels lie between the vacancy number and certain lower bounds defined
explicitly. This characterization will be used in section 5.2 to write down an explicit fermionic formula M(L, λ) for
the unrestricted configuration sum X(B, λ). Section 5.3 is devoted to the affine crystal structure of RC(L, λ).

5.1. Characterization of unrestricted rigged configurations. Let L = (L
(a)
i )(a,i)∈H be a multiplicity array

and λ = (λ1, . . . , λn) be the n-tuple of nonnegative integers. The set of (L, λ)-configurations C(L, λ) is the set of all
sequences of partitions ν = (ν(a))a∈I such that (3.1) holds. As discussed in Section 3, in the usual setting a rigged
configuration (ν, J) ∈ RC(L, λ) consists of a configuration ν ∈ C(L, λ) together with a double sequence of partitions

J = {J
(a)
i | (a, i) ∈ H} such that the partition J

(a)
i is contained in a m

(a)
i × p

(a)
i rectangle. In particular this requires

that p
(a)
i ≥ 0. The unrestricted rigged configurations (ν, J) ∈ RC(L, λ) can contain labels that are negative, that is,

the lower bound on the parts in J
(a)
i can be less than zero.

To define the lower bounds we need the following notation. Let λ′ = (c1, c2, . . . , cn−1)
t, where ck = λk+1 +

λk+2 + · · · + λn is the length of the k-th column of λ′, and let A(λ′) be the set of tableaux of shape λ′ such that
the entries are strictly decreasing along columns, and the letters in column k are from the set {1, 2, . . . , ck−1} with
c0 = c1.

EXAMPLE 5.1. For n = 4 and λ = (0, 1, 1, 1), the set A(λ′) consists of the following tableaux

3 3 2
2 2
1

3 3 2
2 1
1

3 2 2
2 1
1

3 3 1
2 2
1

3 3 1
2 1
1

3 2 1
2 1
1

.

REMARK 5.2. Denote by tj,k the entry of t ∈ A(λ′) in row j and column k. Note that ck − j + 1 ≤ tj,k ≤
ck−1 − j + 1 since the entries in column k are strictly decreasing and lie in the set {1, 2, . . . , ck−1}. This implies
tj,k ≤ ck−1 − j + 1 ≤ tj,k−1, so that the rows of t are weakly decreasing.

Given t ∈ A(λ′), we define the lower bound as

M
(a)
i (t) = −

ca∑

j=1

χ(i ≥ tj,a) +

ca+1∑

j=1

χ(i ≥ tj,a+1),

where recall that χ(S) = 1 if the the statement S is true and χ(S) = 0 otherwise.
Let M, p, m ∈ Z such that m ≥ 0. A (M, p, m)-quasipartition µ is a tuple of integers µ = (µ1, µ2, . . . , µm) such

that M ≤ µm ≤ µm−1 ≤ · · · ≤ µ1 ≤ p. Each µi is called a part of µ. Note that for M = 0 this would be a partition
with at most m parts each not exceeding p.

The following theorem shows that the set of unrestricted rigged configurations can be characterized via the lower
bounds.

THEOREM 5.3. [33, Theorem 4.6] Let (ν, J) ∈ RC(L, λ). Then ν ∈ C(L, λ) and J
(a)
i is a (M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for some t ∈ A(λ′). Conversely, every (ν, J) such that ν ∈ C(L, λ) and J
(a)
i is a (M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for some t ∈ A(λ′) is in RC(L, λ).



10 A. SCHILLING

EXAMPLE 5.4. Let n = 4, λ = (2, 2, 1, 1), L
(1)
1 = 6 and all other L

(a)
i = 0. Then

(ν, J) = −2 0
0 3

0 0 −1 -1

is an unrestricted rigged configuration in RC(L, λ), where we have written the parts of J
(a)
i next to the parts of length

i in partition ν(a). The second number is the corresponding vacancy number p
(a)
i . This shows that the labels are indeed

all weakly below the vacancy numbers. For

4 4 1
3 3
2
1

∈ A(λ′)

we get the lower bounds

−2
−1

0 −1,

which are less or equal to the riggings in (ν, J).

For type A1 we have λ = (λ1, λ2) so that A = {t} contains just the single one-column tableau of height λ2

filled with the numbers 1, 2, . . . , λ2. In this case Mi(t) = −
∑λ2

j=1 χ(i ≥ tj,1) = −i, which agrees with the findings
of [38].

The characterization of unrestricted rigged configurations is similar to the characterization of level-restricted
rigged configurations [34, Definition 5.5]. Whereas the unrestricted rigged configurations are characterized in terms
of lower bounds, for level-restricted rigged configurations the vacancy number has to be modified according to tableaux
in a certain set.

5.2. Fermionic formula. With the explicit characterization of the unrestricted rigged configurations of Sec-
tion 5.1, it is possible to derive an explicit formula for the polynomials M(L, λ) of (4.2).

Let SA(λ′) be the set of all nonempty subsets of A(λ′) and set

M
(a)
i (S) = max{M

(a)
i (t) | t ∈ S} for S ∈ SA(λ′).

By inclusion-exclusion the set of all allowed riggings for a given ν ∈ C(L, λ) is
⋃

S∈SA(λ′)

(−1)|S|+1{J | J
(a)
i is a (M

(a)
i (S), p

(a)
i , m

(a)
i )-quasipartition}.

The q-binomial coefficient
[
m+p

m

]
, defined as

[
m + p

m

]
=

(q)m+p

(q)m(q)p

,

where (q)n = (1 − q)(1 − q2) · · · (1 − qn), is the generating function of partitions with at most m parts each not
exceeding p. Hence the polynomial M(L, λ) may be rewritten as

(5.1) M(L, λ) =
∑

S∈SA(λ′)

(−1)|S|+1
∑

ν∈C(L,λ)

qcc(ν)+
�

(a,i)∈H
m

(a)
i

M
(a)
i

(S)
∏

(a,i)∈H

[
m

(a)
i + p

(a)
i − M

(a)
i (S)

m
(a)
i

]

called fermionic formula. By Corollary 4.11 this is also a formula for the unrestricted configuration sum X(B, λ).
This formula is different from the fermionic formulas of [13, 18] which exist in the special case when L is the multi-
plicity array of B = B1,sk ⊗ · · · ⊗ B1,s1 or B = Brk,1 ⊗ · · · ⊗ Br1,1.

5.3. The Kashiwara operators e0 and f0. The Kirillov–Reshetikhin crystals Br,s are affine crystals and admit
the Kashiwara operators e0 and f0. It was shown in [36] that for type A

(1)
n−1 they can be defined in terms of the

promotion operator pr as

e0 = pr−1 ◦ e1 ◦ pr and f0 = pr−1 ◦ f1 ◦ pr.
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The promotion operator is a bijection pr : B → B such that the following diagram commutes for all a ∈ I

(5.2)

B
pr

−−−−→ B

fa

y
yfa+1

B −−−−→
pr

B

and such that for every b ∈ B the weight is rotated

(5.3) 〈ha+1 , wt(pr(b))〉 = 〈ha , wt(b)〉.

Here subscripts are taken modulo n.
We are now going to define the promotion operator on unrestricted rigged configurations.

DEFINITION 5.5. Let (ν, J) ∈ RC(L, λ). Then pr(ν, J) is obtained as follows:

(1) Set (ν′, J ′) = fλ1
1 fλ2

2 · · · fλn
n (ν, J) where fn acts on (ν, J)(n) = ∅.

(2) Apply the following algorithm ρ to (ν ′, J ′) λn times: Find the smallest singular string in (ν ′, J ′)(n). Let
the length be `(n). Repeatedly find the smallest singular string in (ν′, J ′)(k) of length `(k) ≥ `(k+1) for all
1 ≤ k < n. Shorten the selected strings by one and make them singular again.

EXAMPLE 5.6. Let B = B2,2, L the corresponding multiplicity array and λ = (1, 0, 1, 2). Then

(ν, J) = 0
−1

−1
−1 ∈ RC(L, λ)

corresponds to the tableau b = 1 3
4 4

∈ P(B, λ). After step (1) of Definition 5.5 we have

(ν′, J ′) = −1 1
0

−1
−1

−1.

Then applying step (2) yields

pr(ν, J) = ∅ 0 −1

which corresponds to the tableau pr(b) = 1 1
2 4

.

LEMMA 5.7. [33, Lemma 4.10] The map pr of Definition 5.5 is well-defined and satisfies (5.2) for 1 ≤ a ≤ n− 2
and (5.3) for 0 ≤ a ≤ n − 1.

Lemma 7 of [36] states that for a single Kirillov–Reshetikhin crystal B = Br,s the promotion operator pr is
uniquely determined by (5.2) for 1 ≤ a ≤ n − 2 and (5.3) for 0 ≤ a ≤ n − 1. Hence by Lemma 5.7 pr on RC(L) is
indeed the correct promotion operator when L is the multiplicity array of B = Br,s.

THEOREM 5.8. [33, Theorem 4.11] Let L be the multiplicity array of B = Br,s. Then pr : RC(L) → RC(L) of
Definition 5.5 is the promotion operator on rigged configurations.

CONJECTURE 5.9. [33, Conjecture 4.12] Theorem 5.8 is true for any B = Brk,sk ⊗ · · · ⊗ Br1,s1 .

Unfortunately, the characterization [36, Lemma 7] does not suffice to define pr uniquely on tensor products
B = Brk,sk ⊗ · · · ⊗ Br1,s1 . In [8] a bijection Φ : P(B, λ) → RC(L, λ) is defined via a direct algorithm. It
is expected that Conjecture 5.9 can be proven by showing that pr and Φ commute. Alternatively, an independent
characterization of pr on tensor factors would give a new, more conceptual way of defining the bijection Φ between
paths and (unrestricted) rigged configurations. A proof that the crystal operators fa and ea commute with Φ for
a = 1, 2, . . . , n − 1 is given in [8].
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Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002.

[15] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic formula, Contemp. Math. 248 (1999) 243–291.
[16] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260.
[17] M. Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994), 155–197, CMS Conf. Proc., 16, Amer. Math. Soc., Providence,

RI, 1995.
[18] A.N. Kirillov, New combinatorial formula for modified Hall-Littlewood polynomials, Contemp. Math. 254 (2000) 283–333.
[19] R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Fermionic quasi-particle representations for characters of (G(1))1 × (G(1))1/(G(1))2,

Phys. Lett. B 304 (1993), no. 3-4, 263–270.
[20] R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Fermionic sum representations for conformal field theory characters, Phys. Lett. B 307

(1993), no. 1-2, 68–76.
[21] S. V. Kerov, A. N. Kirillov, N. Y. Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group J. Soviet Math. 41

(1988), no. 2, 916–924.
[22] A. N. Kirillov, N. Y. Reshetikhin, The Bethe Ansatz and the combinatorics of Young tableaux, J. Soviet Math. 41 (1988) 925-955.
[23] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi, Y. Yamada, private communication.
[24] A.N. Kirillov, M. Shimozono, A generalization of the Kostka-Foulkes polynomials, J. Algebraic Combin. 15 (2002), no. 1, 27–69.
[25] A. N. Kirillov, A. Schilling, M. Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Math.

(N.S.) 8 (2002), no. 1, 67–135.
[26] A. Lascoux, B. Leclerc, J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math.

Phys. 38 (1997), no. 2, 1041–1068.
[27] B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, Adv. Stud. Pure Math. 28 (2000) 155–220.
[28] M. Okado, A. Schilling, M. Shimozono, A crystal to rigged configuration bijection for nonexceptional affine algebras, ”Algebraic Combina-

torics and Quantum Groups”, Edited by N. Jing, World Scientific (2003), 85–124.

[29] M. Okado, A. Schilling, M. Shimozono, Virtual crystals and fermionic formulas of type D
(2)
n+1, A

(2)
2n

, and C
(1)
n , Represent. Theory 7 (2003)

101–163.
[30] M. Okado, A. Schilling, M. Shimozono, Virtual crystals and Kleber’s algorithm, Comm. Math. Phys. 238 (2003), no. 1-2, 187–209.
[31] A. Schilling, q-supernomial coefficients: from riggings to ribbons, MathPhys odyssey, 2001, 437–454, Prog. Math. Phys., 23, Birkhäuser
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