STABILITY MEASURES ON TRIANGULATED CATEGORIES

ERIC BABSON AND LANG MOU

Stability measures generalize Bridgeland's stability conditions on a triangulated category. They form a convex cone with the stability conditions among their extreme rays.

Take \mathcal{C} to be a small triangulated category. Let \mathcal{M} be the set of finite positive Borel measures on \mathbb{R} and $\mathcal{M}_{fs} \subseteq \mathcal{M}$ consist of measures with finite-set support.

Definition 1. Write \mathcal{MC} for the maps $\mu: \operatorname{Ob}(\mathcal{C}) \to \mathcal{M}, A \mapsto \mu_A$ satisfying the following. Write $z_A^{\mu}(r) = z_A(r) = \int_r^{\infty} e^{i\pi t} d\mu_A(t) \in \mathbb{C}$ for $r \in \mathbb{R}$; if $\Delta: A \to B \to C \to A[1]$ is a distinguished triangle in \mathcal{C} , write $z_{\Delta}^{\mu} = z_{\Delta} = z_A - z_B + z_C$.

- (1) $\mu_{A\oplus B} = \mu_A + \mu_B,$
- (2) $\mu_{A[1]}(r+1) = \mu_A(r),$
- (3) $z_{\Delta}(r) \in e^{i\pi r} \cdot (\mathbb{H} \cup \mathbb{R}_{\geq 0})$ for any Δ and any $r \in \mathbb{R}$.

An element $\mu \in \mathcal{MC}$ is called a *stability measure* on \mathcal{C} .

Clearly the set \mathcal{MC} is closed under positive linear combinations (thus a convex cone). There is a generalized metric d on \mathcal{MC} defined as

(1)
$$d(\mu,\nu) = \sup_{0 \neq A \in \mathcal{C}} \left\{ W(\mu_A/|\mu_A|,\nu_A/|\nu_A|), |\log \frac{|\mu_A|}{|\nu_A|}| \right\} \in [0,\infty],$$

where $|\mu_A| = \int_{\mathbb{R}} d\mu_A \in \mathbb{R}_+$ (the *total mass*) and W is some Wasserstein metric of probability measures (total mass 1).

If $F: \mathcal{C} \to \mathcal{D}$ is a triangulated functor, then there is $\mathcal{M}F: \mathcal{M}\mathcal{D} \to \mathcal{M}\mathcal{C}, \mu \mapsto \mu \circ F$, which is functorial. In particular, a stability measure can be restricted to a triangulated subcategory.

Lemma 2. The space \mathcal{MC} carries a (right) action of the group $\widetilde{GL^+}(2,\mathbb{R})$, the universal covering space of $GL^+(2,\mathbb{R})$.

Proof. An element $g \in \widetilde{GL^+}(2,\mathbb{R})$ can be expressed as a pair (T, f) where $f: \mathbb{R} \to \mathbb{R}$ is an increasing map with f(t+1) = f(t)+1 and $T \in GL^+(2,\mathbb{R})$ such that $f(t) \equiv \operatorname{Im}(\log T(e^{i\pi t}))/\pi$ mod 2. Define $\mu g: \operatorname{Ob}(\mathcal{C}) \to \mathcal{M}$ by $(\mu g)_A(t) = |T^{-1}(e^{i\pi t})|\mu_A(f(t))$. Let s = f(r). Then for any distinguished triangle Δ , we have

$$z_{\Delta}^{\mu g}(s) = T(z_{\Delta}^{\mu}(r)) \in T(e^{i\pi r}) \cdot (\mathbb{H} \cup \mathbb{R}_{\geq 0}) = e^{i\pi s} \cdot (\mathbb{H} \cup \mathbb{R}_{\geq 0})$$

This verifies that μg belongs to \mathcal{MC} .

Note that the group $\operatorname{Aut}(\mathcal{C})$ of triangulated auto-equivalences acts on \mathcal{MC} by isometries. It commutes with the action of $\widetilde{GL^+}(2,\mathbb{R})$.

The following definition is due to Bridgeland [Bri07].

Definition 3. Write \mathcal{BC} for the pairs (Z, \mathcal{P}) of a group homomorphism $Z: K(\mathcal{C}) \to \mathbb{C}$ and a map $\mathcal{P}: \mathbb{R} \to \operatorname{Sub}(\mathcal{C})$ satisfying the following where $K(\mathcal{C})$ is the Grothendieck group and $\operatorname{Sub}(\mathcal{C})$ is the set of full additive subcategories of \mathcal{C} .

- (1) $Z(X) \in e^{i\pi\phi}\mathbb{R}_+$ for nonzero $X \in \mathcal{P}(\phi)$;
- (2) $\mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1];$
- (3) for any $\phi \in \mathbb{R}$ and $\epsilon \in \mathbb{R}_+$, $\operatorname{Hom}_{\mathcal{C}}(\mathcal{P}(\phi + \epsilon), \mathcal{P}(\phi)) = 0$;
- (4) every A has an associated section p_A of \mathcal{P} .

Date: May 15, 2025.

Here a finitely supported set map $p: \mathbb{R} \to \operatorname{Ob}(\mathcal{C})$ is said to be associated to an object A if (taking \mathbb{R} to be the poset category) there is a contravariant functor $c: \mathbb{R} \to \mathcal{C}$ and for each r and sufficiently small $\epsilon > 0$ there is a distinguished triangle $c(r+\epsilon) \to c(r-\epsilon) \to p(r) \to c(r+\epsilon)[1]$ with the first map $c((r-\epsilon, r+\epsilon))$ while for R sufficiently large c(R) = 0 and c(-R) = A. It is called a section of P if $p(r) \in P(r)$ for any $r \in \mathbb{R}$.

A pair $(Z, \mathcal{P}) \in B\mathcal{C}$ is called a stability condition.

If $\mu \in \mathcal{MC}$, define $Z_{\mu}(A) = \int_{-\infty}^{\infty} e^{i\pi t} d\mu_A(t)$ and $\mathcal{P}_{\mu}(\phi) = \{A \mid \operatorname{supp}(\mu_A) = \{\phi\}\}$. Since $Z_{\mu}(A) = \lim_{r \to -\infty} z_A(r)$ and because of condition (3) of \mathcal{MC} , $Z_{\mu}(A) - Z_{\mu}(B) + Z_{\mu}(C) = 0$ for any Δ . Hence $Z_{\mu} \colon K(\mathcal{C}) \to \mathbb{C}$ is a group homomorphism. Note also that $(Z_{\mu}, \mathcal{P}_{\mu})$ satisfies all but the last condition for \mathcal{BC} .

Conversely, if $(Z, \mathcal{P}) \in \mathcal{BC}$, define $\mu_A = \sum_{\phi} |Z(p_A(\phi))| \delta_{\phi}$ where p_A is the section of \mathcal{P} associated to $A \in \mathcal{C}$.

Proposition 4. This gives an inclusion $\mathcal{BC} \hookrightarrow \mathcal{MC}$.

Proof. We only need to show μ is indeed an element in \mathcal{MC} . Once this is checked, the injectivity is clear since any $(Z, \mathcal{P}) \in \mathcal{BC}$ is determined by the measures μ_E for $E \in \mathcal{P}(\phi)$.

For any interval $I \subseteq \mathbb{R}$, define $\mathcal{P}(I) = \{X \in \mathcal{C} \mid \operatorname{supp}(\mu_X) \subseteq I\}$. Then for each $r \in \mathbb{R}$, the subcategory $\mathcal{P}([r, \infty))$ is a bounded t-structure on \mathcal{C} whose heart is $\mathcal{A} = \mathcal{P}([r, r+1))$. Then for $X \in \mathcal{C}$, there is a decomposition $\mu_X = \sum_{i \in \mathbb{Z}} \mu_{H^i_{\mathcal{A}}(X)[-i]}$ into measures supported on successive unit intervals [r-i, r-i+1), where $H^i_{\mathcal{A}}(X) \in \mathcal{A}$ is the *i*-th cohomology of X with respect to the t-structure.

For any $\Delta: A \to B \to C \to A[1]$ there is a long exact sequence $H_{\mathcal{A}}(\Delta)$ in \mathcal{A} :

$$\cdots \longrightarrow H^{i}_{\mathcal{A}}(A) \xrightarrow{f^{i}_{A}} H^{i}_{\mathcal{A}}(B) \xrightarrow{f^{i}_{B}} H^{i}_{\mathcal{A}}(C) \xrightarrow{f^{i}_{C}} H^{i+1}_{\mathcal{A}}(A) \longrightarrow \cdots$$

The integral $z_{\Delta}(r)$ can be expressed as the (finite) sum

$$\begin{aligned} z_{\Delta}(r) &= \sum_{i \leq 0} Z(H^{i}_{\mathcal{A}}(A)[-i]) - Z(H^{i}_{\mathcal{A}}(B)[-i]) + Z(H^{i}_{\mathcal{A}}(C)[-i]) \\ &= \sum_{i \leq 0} (-1)^{i} (Z(\operatorname{Im} f^{i-1}_{C}) + Z(\operatorname{Im} f^{i}_{A})) - (-1)^{i} (Z(\operatorname{Im} f^{i}_{A}) + Z(\operatorname{Im} f^{i}_{B})) \\ &+ (-1)^{i} (Z(\operatorname{Im} f^{i}_{B}) + Z(\operatorname{Im} f^{i}_{C})) \\ &= Z(\operatorname{Im} f^{0}_{C}). \end{aligned}$$

It belongs to $\in e^{i\pi r} \cdot (\mathbb{H} \cup \mathbb{R}_{\geq 0})$ since $\operatorname{Im} f_C^0 \in \mathcal{A} = \mathcal{P}([r, r+1)).$

The generalized metric (1) can be restricted to \mathcal{BC} . It then induces the same topology on \mathcal{BC} as the one defined in [Bri07].

Example 5. Let C be the bounded derived category of finite dimensional representations on the quiver $2 \to 1$. Let $\mu_{S_1} \in \mathcal{M}$ be any finite Borel measure. Let $\mu_{S_2}(t+d) = m\mu_{S_1}(t)$ for $0 \leq d < 1$ and $m \in \mathbb{R}_+$. Let $\mu_{P_2}(t+d') = m'\mu_{S_1}(t)$ for $0 \leq d' < 1$ and $m' \in \mathbb{R}_+$ such that $1 + me^{i\pi d} = m'e^{i\pi d'}$. We claim that this determines a stability measure. In fact, the measure μ_{S_1} can be approximated by a sequence $\mu_{S_1}^{(k)} \in \mathcal{M}_{\text{fs}}, k \in \mathbb{N}$, and define $\mu_{S_2}^{(k)}(t+d) = m\mu_{S_1}^{(k)}(t)$ and $\mu_{P_2}^{(k)}(t+d') = m'\mu_{S_1}^{(k)}(t)$. Note that for each k, this defines $\mu^{(k)} \in \mathcal{MC}$ because $\mu^{(k)}$ is a positive linear combination of stability conditions. Then $\mu = \lim_{k} \mu^{(k)} \in \mathcal{MC}$.

References

[[]Bri07] Tom Bridgeland, Stability conditions on triangulated categories, Ann. Math. (2) **166** (2007), no. 2, 317–345.