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1. Canonical Coherent States

We start with a brief description of the coherent states generated by a canonical
annihilation and creation operators a and a∗. They satisfy canonical commutation
relation [a, a∗] = I. We introduce the vacuum state |0〉 with the property

a |0〉 = 0

and define the state space as that spanned by repeated action of a∗ on |0〉.
The canonical coherent states are defined for each complex number z ∈ C by

unitary transformation of the vacuum state

|z〉 = eza
∗−z̄a |0〉

= e−|z|/2eza
∗
e−z̄a |0〉

= e−|z|/2eza
∗
|0〉

= e−|z|/2
∞∑
n=0

1√
n!
zn |n〉 .(1.1)

Here to obtain the second line we used the Baker-Campbell-Hausdorff formula

eA+B = a−1/2[A,B]eAeB ,
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2 A. VERSHYNINA

when [A,B] commutes with both A and B. In the last line we introduced the
orthonormal vectors |n〉 = 1√

n!
(a∗)n |0〉, which are the eigenstates of the number

operator N = a∗a.
From the definition it follows that for any two complex numbers z1 and z2

〈z1| |z2〉 = e−1/2|z2|2−1/2|z1|2
∞∑
n=0

1

n!
zn1 z̄2

n 〈n| |n〉

= e−
1
2 |z1|

2+z1z̄2− 1
2 |z2|

2

.(1.2)

This shows that the states |z〉 are not orthogonal.
Let us denote d2z = d( Re z)d( Im z), then consider

π−1

∫
|z〉 〈z| d2z

= π−1
∑
n,m

1√
n!m!

∫
e−|z|

2

z̄nzm |m〉 〈n| d( Re z)d( Im z).

Introduce polar coordinates z = |z|eiθ, then d2z = |z|d|z|dθ. continuing the calcu-
lation

= π−1
∑
n,m

1√
n!m!

∫
e−|z|

2

|z|n+meiθm−n |m〉 〈n| |z|d|z|dθ.

Since
∫ 2π

0
eiθ(m−n)dθ=δn,m2π and d|z|2 = 2|z|d|z| the last expression simplifies

=
∑
n

1

n!

∫
e−|z|

2

|z|2n |n〉 〈n| d|z|2

=
∑
n

|n〉 〈n| = I.

Here we used that
∫∞

0
e−xxndx = n!.

Therefore we have the resolution of the identity

(1.3) π−1

∫
|z〉 〈z| d2z = I.

1.1. Eigenproperties of |z〉. From the CCR it is clear that e−za
∗
aez

∗
= a + z.

Then from the definition of the canonical coherent states

a |z〉 = e−1/2|z|2aeza
∗
|0〉

= e−
1
2 |z|

2

eza
∗
(a+ z) |0〉

= e−
1
2 |z|

2

eza
∗
|0〉

= z |z〉 ,

since a |0〉 = 0.
It follows that 〈z| a |z〉 = z, so we may interpret the label z by saying it is the

mean of a in the coherent state |z〉.
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1.2. Diagonal representation of operators. For any bounded operator or a
polynomial in a and a∗, B we may calculate

(1.4) 〈z| B |z′〉 = e−
1
2 |z|

2− 1
2 |z
′|2
∑
n,m

1√
n!m!

〈n| B |m〉 z̄nz′m.

This series defined an entire function of two variables z̄ and z′. It is uniquely
determined by its diagonal elements z = z′ [2]. For example, every monomial z̄nzm

can be written as a polynomial in x and y, z = x+ iy and then uniquely extended
to z̄nz′

m
, by determining the coefficients in z̄nzm and use them to construct z̄nz′

m
.

Note that for the conventional basis this is never true.
Define the lower symbol of the operator

(1.5) b(z) := 〈z| B |z〉 ,

which uniquely determine the operator B.
The trace of the operator B may be calculated by

Tr(B) =
∑
n

〈n| B |n〉

=

∫
d2z

∫
d2z′

∑
n

〈n| |z〉 〈z| B |z′〉 〈z′| |n〉

=

∫
d2z

∫
d2z′

∑
n

e−
1
2 |z|

2− 1
2 |z
′|2 1

n!
znz′

n 〈z| B |z′〉

=

∫
d2z

∫
d2z′e−

1
2 |z|

2− 1
2 |z
′|2+zz̄′ 〈z| B |z′〉

=

∫
d2z

∫
d2z′ 〈z′| |z〉 〈z| B |z′〉

=

∫
d2z 〈z| B |z〉

=

∫
b(z)d2z.

Here in the second line we used the resolution of the identity (1.3) twice and again
to get to the last line.

We look at the operators that admit diagonal representation:

(1.6) B = π−1

∫
B(z) |z〉 〈z| d2z,

where B(z) is called the upper symbol of the operator B.

Example 1.1. Consider the polynomial in creation and annihilation operators

B =
∑
m,n

dm,na
ma∗n.
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Then

B = π−1

∫ ∑
m,n

dm,na
m |z〉 〈z| a∗nd2z

= π−1

∫
[
∑
m,n

dm,nz
mz̄n] |z〉 〈z| d2z

= π−1

∫
B(z) |z〉 〈z| d2z,

where we take B(z) =
∑
m,n dm,nz

mz̄n.

It follows that

b(z′) = 〈z′| B |z′〉

= π−1

∫
B(z)| 〈z′| |z〉 |2d2z.

From (1.2) we have

| 〈z′| |z〉 |2 = e−|z|
2−|z′|2+2 Re z̄′z

= e−|z
′−z|2 .

Therefore

b(z) = π−1

∫
B(z)e−|z

′−z|2d2z

The trace of B may be represented by

TrB = π−1

∫
b(z)d2z

= π−1

∫
d2zπ−1

∫
d2z′B(z′)e−|z

′−z|2

= π−1

∫
d2z′B(z′)π−1

∫
d2ze−|z

′−z|2

= π−1

∫
B(z)d2z.

To get to the last line we calculated the integral π−1
∫
d2ze−|z

′−z|2 = δ(z − z′).
And more generally,

TrAB = π−1

∫
〈z| AB |z〉

= π−1

∫
d2zπ−1

∫
d2z′A(z′) 〈z| |z′〉 〈z′| B |z〉

= π−1

∫
A(z)b(z)d2z

and similarly = π−1

∫
a(z)B(z)d2z.

Further reading [1].
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2. Bloch Coherent States

The Bloch coherent states (also called Spin coherent states) are similar to the
canonical coherent states. Their definition uses the angular momentum opera-
tors. We consider a single quantum spin of fixed total angular-momentum J ,
J = 0, 1

2 , 1,
3
2 , ... and shall denote by S = (Sx, Sy, Sz) the usual angular momentum

operators with commutation relations:

[Sx, Sy] = iSz, and cyclically.

And
S2 = S2

x + S2
y + S2

z = J(J + 1)I.

Define
S± = Sx ± iSy,

then
[Sz, S±] = ±S±, and [S+, S−] = Sz.

The Hilbert space on which these operators act is C2J+1.
We denote by S the unit sphere in three dimensions:

S = {(x, y, z)|x2 + y2 + z2 = 1},
and by L2(S) the space of square integrable function on S with the measure

Ω = (θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π,(2.1)

dΩ = sin θdθdφ,(2.2)

x = sin θ cosφ, y = sin θ sinφ, z = cos θ.

The eigenstates of Sz are

Sz |s〉 = s |s〉 , s = −J, ..., J.
Let us chose s = J then the state |J〉 ∈ C2J+1 satisfies

Sz |J〉 = J |J〉
and

S+ |J〉 = 0 and S− |J〉 = |J − 1〉 .
Define the Bloch state |Ω〉 ∈ C2J+1 by

|Ω〉 = e
1
2 θe

iφS−− 1
2 θe
−iφS+ |J〉(2.3)

= ezS−e− ln(1+|z|2)Sze−z̄S+ |J〉 ,

where z = tan θ
2e
iφ. See Appendix on how to get to the second line. Taking into

account that S+ annihilates |J〉 we obtain

|Ω〉 = (1 + |z|2)−JezS− |J〉

= (1 + |z|2)−J
2J∑
n=0

zn

n!
|J − n〉

= (1 + |z|2)−J
J∑

m=−J
zJ−m

|m〉
(J −m)!

= (1 + |z|2)−J
J∑

M=−J
zJ−M

(
2J

J +M

)1/2

|M〉 ,(2.4)
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where |M〉 is the normalized state

(2.5) |M〉 =

(
2J

J +M

)−1/2
1

(J −M)!
SJ−M− |J〉

such that

Sz |M〉 = M |M〉 .
Writing z in terms of θ and φ we obtain

|Ω〉 =

J∑
M=−J

(
2J

J +M

)1/2(
cos

θ

2

)J+M(
sin

θ

2

)J−M
ei(J−M) |M〉 .

2.1. Eigenpropoerties of |Ω〉. Note that the operator

Rθ,φ = e
1
2 θe

iφS−− 1
2 θe
−iφS+

is a rotation through an angle θ about an axis n = (sinφ,− cosφ, 0).
Since |J〉 is an eigenstate of Sz, |Ω〉 is an eigenstate of the rotated Sz

(2.6) (Rθ,φSzR
−1
θ,φ) |Ω〉 = J |Ω〉 ,

since |Ω〉 = Rθ,φ |J〉.
The overlap between two Bloch states is given by

KJ(Ω′,Ω) = 〈Ω′| |Ω〉(2.7)

= (cos
θ

2
cos

θ′

2
+ ei(φ−φ

′) sin
θ

2
sin

θ′

2
)2J .

In particular |Ω〉 is normalized since KJ(Ω,Ω) = 1.
We also have

| cos
θ

2
cos

θ′

2
+ ei(φ−φ

′) sin
θ

2
sin

θ′

2
)|2

= (cos
θ

2
cos

θ′

2
+ cos(φ− φ′) sin

θ

2
sin

θ′

2
))2 + (sin(φ− φ′) sin

θ

2
sin

θ′

2
))2

=
1 + cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)

2

=
1 + cos Φ

2
= cos2 1

2
Φ,

where cos Φ = cos θ cos θ′+ sin θ sin θ′ cos(φ− φ′) is the cosine of the angle between
Ω and Ω′. Therefore

|KJ(Ω′,Ω)|2 =
(

cos
1

2
Φ
)4J

.

2.2. Upper and lower symbols. Let M2J+1 be the set of linear transformation
on C2J+1. Define the linear transformation on C2J+1 and, for a given F ∈ L1(S),
define AF ∈M2J+1 by

(2.8) AF =
2J + 1

4π

∫
dΩF (Ω) |Ω〉 〈Ω| .

In fact, every operator in A ∈ M2J+1 can be written in the form (2.8). In
particular,

(2.9) 1l =
2J + 1

4π

∫
dΩ |Ω〉 〈Ω| .
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The function F corresponding to the operator A is called the upper symbol.
Thus, to every operator A there correspond two functions: GA(Ω) and the lower
symbol

(2.10) gA(Ω) = 〈Ω|A |Ω〉

In the next theorem we show how the find the upper symbol for a particular
operator.

Theorem 2.1. Every operator A in spin space can be expanded in the following
manner:

(2.11) A =
2J + 1

4π

∫
dΩFA(Ω) |Ω〉 〈Ω| ,

where FA(Ω) = Tr[A∆J(Ω)] and for z = tan θ
2e
iφ

∆J(Ω) =
(−1)2J

(2J + 1)!

J∑
N,K=−J

|N〉 〈K|

√
(J −N)!(J +N)!

(J −K)!(J +K)!
z̄N−K ·

(2.12)

·
J+N∑
m=0

J−N∑
r=0

(−1)r+m
(

J +K

J +N −m

)(
J −K

J −N − r

)
(2J + 1 +m+ r)!

m!r!

|z|2r

(1 + |z|2)m+r
.

Proof. Define the integral

IK0,N0 =
2J + 1

4π

∫
dΩ 〈N0|∆J(Ω) |K0〉 |Ω〉 〈Ω| .

Observe that from dΩ = sin θdθdφ (2.2), we have∫
dΩ

zj z̄k

(1 + |z|2)m
=

∫ (
cos

θ

2

)2m−j−k(
sin

θ

2

)j+k
sin θdθ

∫
eiφ(j−k)dφ

= 2πδj,k

∫ (
cos

θ

2

)2(m−j)(
sin

θ

2

)2j

d(cos θ)

= 2πδj,k

∫ (1 + cos θ

2

)m−j(1 + sin θ

2

)j
d(cos θ)

= 4πδj,k

∫ 1

0

xm−j(1− x)jdx

= 4πδj,k
j!(m− j)!
(m+ 1)!

.(2.13)

From the definition of the Bloch coherent state the projection can be written
(2.14)

|Ω〉 〈Ω| = 1

(1 + |z|2)2J

J∑
M,L=−J

(
2J

J +M

)1/2(
2J

J + L

)1/2

zJ−M z̄J−L |M〉 〈L| .
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Therefore from (2.13) and (2.12) we get

IK0,N0
=

(−1)2J

4π(2J)!

√
(J −N0)!(J +N0)!

(J −K0)!(J +K0)!

J∑
M,L=−J

|M〉 〈L| ·

·
J+N0∑
m=0

J−N0∑
r=0

(−1)r+m
(

J +K0

J +N0 −m

)(
J −K0

J −N0 − r

)
(2J + 1 +m+ r)!

m!r!

(
2J

J +M

)1/2

·

·
(

2J

J + L

)1/2 ∫
dΩ

zJ−M+r z̄J−L+N−K+r

(1 + |z|2)m+r+2J

=
(−1)2J

4π(2J)!

√
(J −N0)!(J +N0)!

(J −K0)!(J +K0)!

J∑
M,L=−J

|M〉 〈L| ·

·
J+N0∑
m=0

J−N0∑
r=0

(−1)r+m
(

J +K0

J +N0 −m

)(
J −K0

J −N0 − r

)
(2J + 1 +m+ r)!

m!r!

(
2J

J +M

)1/2

·

·
(

2J

J + L

)1/2

4πδM,K0−N0+L
(J +M +m)!(J −M + r)!

(2J + 1 +M + r)!

= (−1)2J

√
(J −N0)!(J +N0)!

(J −K0)!(J +K0)!

J∑
M,L=−J

δM,K0−N0+L |M〉 〈L|√
(J +M)!(J −M)!(J + L)!(J − L)!

·

·
J+N0∑
m=0

J−N0∑
r=0

(−1)r+m
(

J +K0

J +N0 −m

)(
J −K0

J −N0 − r

)
(J +M +m)!(J −M + r)!

m!r!
.

Note that there is a relation between binomial coefficients

N∑
r=0

(−1)r
(

k

N − r

)
(n+ r)!

r!
= n!

(
k − n− 1

N

)
.

Therefore using this relation for r and m we obtain

IK0,N0
= (−1)2J

√
(J −N0)!(J +N0)!

(J −K0)!(J +K0)!

J∑
M,L=−J

δM,K0−N0+L |M〉 〈L|

·

√
(J −M)!(J +M)!

(J − L)!(J + L)!

(
N0 − L− 1

J +N0

)(
L−N0 − 1

J −N0

)
,

where we used the fact that M −K0 = L−N0 from the Kronecker symbol.
Since (

N0 − L− 1

J +N0

)(
L−N0 − 1

J −N0

)
= (−1)2JδN0,L,

we have
2J + 1

4π

∫
dΩ 〈N0|∆J(Ω) |K0〉 |Ω〉 〈Ω| = |N0〉 〈K0| .

And from here

δK,K0
δN,N0 =

2J + 1

4π

∫
dΩ 〈N0|∆J(Ω) |K0〉 〈K| |Ω〉 〈Ω| |N〉 .
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Multiplying both sides by |N0〉 〈K0| and summing it over N0,K0

|N〉 〈K| =
∑
N0,K0

δK,K0δN,N0 |N0〉 〈K0|

=
∑
N0,K0

2J + 1

4π

∫
dΩ 〈N0|∆J(Ω) |K0〉 〈K| |Ω〉 〈Ω| |N〉 |N0〉 〈K0|

=
2J + 1

4π

∫
dΩ 〈K| |Ω〉 〈Ω| |N〉∆J(Ω),

since every operator can be written as a sum of its matrix elements

A =

J∑
N,K=−J

〈N |A |K〉 |N〉 〈K| .

Therefore

|N〉 〈K| = 2J + 1

4π

∫
dΩTr[|N〉 〈K|∆J(Ω)] |Ω〉 〈Ω|

and so

A =
2J + 1

4π

∫
dΩTr[A∆J(Ω)] |Ω〉 〈Ω| .

The proof is based on [4]. �

2.3. Table. In the following table we list some function and their upper and lower
symbols

Operator g(Ω) G(Ω)

Sz J cos θ (J + 1) cos θ
Sx J sin θ cosφ (J + 1) sin θ cosφ
Sy J sin θ sinφ (J + 1) sin θ cosφ
S2
z J(J − 1

2 )(cos θ)2 + J
2 (J + 1)(J + 3

2 )(cos θ)2 − 1
2 (J + 1)

2.4. Remarks. Some final remarks. First, if we consider |Ω′〉 〈Ω| ∈ M2J+1 then
as may be seen from (2.4)

Tr |Ω〉 〈Ω′| =
J∑

M=−J
〈M | |Ω〉 〈Ω′| |M〉

= 〈Ω′| |Ω〉 = KJ(Ω′,Ω).(2.15)

Hence from (2.8)

(2.16) TrAG =
2J + 1

4π

∫
dΩG(Ω).

The second remark is that from the resolution of the identity (2.9) and the
definition of KJ (2.7)

(2.17)
2J + 1

4π

∫
dΩKJ(Ω′,Ω)KJ(Ω,Ω′′) = KJ(Ω′,Ω′′).

Thus, KJ reproduces itself under convolution.
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The third remark is that for any A ∈M2J+1 we can use the resolution of identity
(2.9) to obtain

TrA =
2J + 1

4π

∫
dΩTr |Ω〉 〈Ω|A

=
2J + 1

4π

∫
dΩ

J∑
M=−J

〈M | |Ω〉 〈Ω|A |M〉

=
2J + 1

4π

∫
dΩ 〈Ω|A |Ω〉(2.18)

=
2J + 1

4π

∫
gA(Ω)dΩ.

3. Lower bound to the quantum partition function

We consider a system of N quantum spins. The Hilbert space is

HN =

N⊗
i=1

Hi =

N⊗
i=1

C2Ji+1.

The Hamiltonian, H, can be general, but can always be written as a polynomial in
the 3N spin operators.

The partition function is

(3.1) ZQ = αNTre−βH ,

where αN =
∏N
i=1(2J i + 1)−1 is a normalization factor, which is not essential here.

We denote by

(3.2) |ΩN 〉 =

N⊗
i=1

∣∣Ωi〉
the complete, normalized set of states on HN .

Using (2.18),

ZQ = (4π)−N
∫
dΩN 〈ΩN | e−βH

∣∣ΩN〉 .
By the Peierls-Bogoliubov inequality

〈φ| eX |φ〉 ≥ exp 〈φ|X |φ〉

for any normalized φ ∈ HN and X selfadjoint. Thus,

(3.3) ZQ ≥ (4π)−N
∫
dΩNexp{−β 〈ΩN |H |ΩN 〉}.

We suppose that the Hamiltonian is H is linear in the operators Si of each
spin. That is we allow multiple site interactions of arbitrary complexity such as
S1
xS

2
ys

3
yS

4
z , but do not allow monomials such as (S1

x)2 or S1
xS

1
y . We shall refer to

this case as the normal case.
From the definition of the lower symbol (2.10) and the table of the lower symbols

the right hand side of (3.3) is precisely the classical partition function in which each
Si is replaces by J i times a unit vector in S. I.e.

(3.4) Si → J i(sin θi cosφi, sin θi sinφi, cos θi).
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Thus in the normal case,

(3.5) ZQ ≥ ZC(J1, ...JN ),

where ZC means the classical partition function for the classical Hamiltonian ob-
tained from the quantum one by the replacing each angular momentum operator
Si by J i times the unit vector (3.4).

4. Upper bound to the quantum partition function

From the definition of the partition function (3.1)

(4.1) ZQ = lim
n→∞

Z(n),

where

(4.2) Z(n) = αNTr(1l− βn−1H)n.

Now denote the upper symbol of the Hamiltonian H by G(ΩN ), so (1 − 1
nβH)

is represented by

(4.3) Fn(ΩN ) = 1− βn−1G(ΩN ).

Therefore by (2.8)

(1− βn−1H)n = C

∫
dΩN1 ...

∫
dΩNn

n∏
j=1

Fn(ΩNj ) |ΩN1〉 〈ΩN1 | ... |ΩNn〉 〈ΩNn | ,

where C is a normalization constant. So taking the trace

Tr(1−βn−1H)n = C

∫
dΩN1 ...

∫
dΩNn

n∏
j=1

Fn(ΩNj )Tr
(
|ΩN1〉 〈ΩN1 | ... |ΩNn〉 〈ΩNn |

)
.

Calculating the trace

Tr |ΩN1〉 〈ΩN1 | ... |ΩNn〉 〈ΩNn | = Tr
( N⊗
i=1

∣∣ΩiN1

〉 〈
ΩiN1

∣∣ ... ∣∣ΩiNn〉 〈ΩiNn∣∣)
=

N∏
i=1

Tr
∣∣ΩiN1

〉 〈
ΩiN1

∣∣ ... ∣∣ΩiNn〉 〈ΩiNn ∣∣ =

N∏
i=1

n∏
j=1

KJi(Ω
i
j ,Ω

i
j+1)

=

n∏
j=1

LJ(ΩjN ,Ω
j+1
N ),

where we defined

(4.4) LJ(ΩjN ,Ω
j+1
N ) =

N∏
i=1

KJi(Ω
i
j ,Ω

i
j+1).

To get the first equality we used the definition of |ΩN 〉 (3.2) and to get to the third
line we used the definition of KJ (2.7) and (2.15).

So Z(n) can be represented as an nN -fold integral

(4.5) Z(n) = αN

∫
dΩN1 ...

∫
dΩNn

n∏
j=1

Fn(ΩNj )LJ(ΩNj ,ΩNj+1),

with n+ 1 = 1 in the last factor, and where LJ(ΩN ′ ,ΩN ) is defined in (4.4).
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From the definition of LJ (4.4)

(4.6) LJ(ΩN ′ ,ΩN ) = (4π)−Nα−1
N

and from the convolution property for KJ (2.17)

(4.7)

∫
dΩNLJ(ΩN ′ ,ΩN )LJ(ΩN ,ΩN ′′) = LJ(ΩN ′ ,ΩN ′′).

Now we think of Fn as a multiplication operator and of LJ as an integral kernel
of a compact self-adjoint operator on L2(S) in (4.5).

Let B be the operator with an integral kernel B(ΩN1 ,ΩN2), then

B(f)(ΩN1) =

∫
B(ΩN1 ,ΩN2)f(ΩN2)dΩN2 ,

for any f ∈ L1(S). And

(4.8) TrB =

∫
dΩNB(ΩN ,ΩN ).

The operator B2 can be calculated

B2(f)(ΩN1) = B(B(f))(ΩN1) =

∫
B(ΩN1 ,ΩN2)B(f)(ΩN2)dΩN2

=

∫
B(ΩN1

,ΩN2
)

∫
B(ΩN2

,ΩN3
)f(ΩN3

)dΩN3
dΩN2

=

∫ [∫
B(ΩN1 ,ΩN2)B(ΩN2 ,ΩN3)dΩN2

]
f(ΩN3)dΩN3 ,

so operator B2 has kernel

B2(ΩN1 ,ΩN3) =

∫
dΩN2B(ΩN1 ,ΩN2)B(ΩN2 ,ΩN3).

Similarly operator Bn has kernel

(4.9) Bn(ΩN1 ,ΩNn+1) =

∫
dΩN2 ...dΩNnB(ΩN1 ,ΩN2)...B(ΩNn ,ΩNn+1).

Then from (4.5) and (4.8) Zn can be written

(4.10) Z(n) = αNTr(FnLJ)n.

In general if m = 2j , j = 0, 1, 2, ... the following inequality can be proven by
induction (see [5])

(4.11) |Tr(AB)2m| ≤ TrA2mB2m

whenever A and B are self-adjoint operators.
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Hence if we take n = 2j in the the definition of Z(n) (4.2) and use (4.11), we
obtain

Z(n) ≤ αNTr(FnnL
n
J)

= α

∫
dΩNF

n
n (ΩN )LnJ(ΩN ,ΩN )

= α

∫
dΩNF

n
n (ΩN )

∫
dΩN2 ...dΩNnLJ(ΩN ,ΩN2)...LJ(ΩNn ,ΩN )

= α

∫
dΩNF

n
n (ΩN )LJ(ΩN ,ΩN )

= α

∫
dΩNF

n
n (ΩN )(4π)−Nα−1

N

= (4π)−N
∫
dΩNF

n
n (ΩN )

= (4π)−N
∫
dΩN (1− βn−1G(ΩN ))n.

where in the second equality we used (4.9), in the third equality we used (4.7) n
times and in the fourth equality we used (4.6) and we used the definition of Fn
(4.3) in the last equality.

Therefore in the limit n→∞ we get

(4.12) ZQ ≤ (4π)−N
∫
dΩN exp[−βG(ΩN )].

In the normal case, when the Hamiltonian H is linear in each Si, the upper
symbol G(ΩN ) replaces each Si by (J i + 1) times a unit vector in S. Thus

(4.13) ZQ ≤ ZC(J1 + 1, ...JN + 1).

And putting the upper (4.13) and lower (3.5) bounds together we get the rela-
tionship between the quantum and classical partition functions for the normal case
Hamiltonian

(4.14) ZC(J1, ...JN ) ≤ ZQ ≤ ZC(J1 + 1, ...JN + 1).

5. Thermodynamics limit

We consider here only the normal case. Let HN be a Hamiltonian of N spins
in which each spin has angular momentum one. Replace each spin operator Si

by J−1Si and let Si now have angular momentum J . We shall denote the result-

ing Hamiltonian by HQ
N (J) and the corresponding quantum partition function by

ZQN (J).
For both quantum and classical partition function ZN (J) we denote the free

energy per spin by

fN (J) = −(Nβ)−1 lnZN (J).

Therefore we have the original Hamiltonian HQ
N which is a polynomial in Si each

of which has angular momentum 1. Replacing each Si by a unit vector ui in S we
obtain the classical Hamiltonian HC

N and corresponding partition function ZCN and
the free energy per spin fCN .
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From the quantum Hamiltonian HQ
N (J), that we constructed above as a poly-

nomial in J−1Si, we get the classical Hamiltonian by replacing each spin opera-
tor Si by J̃ui, for ui ∈ S and any J̃ . So the classical Hamiltonian becomes a
polynomial in J+1

J ui, denote δJ = J+1
J . Then the classical Hamiltonian is de-

noted by HC
N (δ) = Polynom(δui). The corresponding partition function is de-

noted by ZCN (J + 1) and the free energy function is denoted by fCN (δJ). Note that
HC
N (1) = HC

N and fCN (1) = fCN .

Theorem 5.1. For a particular class of Hamiltonians (see Assumption 1 below)
and with the above construction of the classical free energy function in mind, the
following inequality holds

(5.1) lim
J→∞

lim
N→∞

fQN (J) = fC = lim
N→∞

fCN .

Proof. From the previous sections (4.14) we know that

(5.2) fCN ≥ f
Q
N (J) ≥ fCN (δJ).

Now we think of δJ as a variable δ. Then limJ→∞ is the same as limδ→1. The
classical Hamiltonian HC

N (δ) is continuous in δ since it is a polynomial in δ.
We consider a class of Hamiltonians such that N−1HC

N (δ) is equicontinuous in
N , i.e.

∀ε > 0 ∃γ > 0 such that ∀N : ‖HC
N (δ + x)−HC

N (δ)‖ ≤ Nε,
whenever |x| < γ (γ is independent of N). The norm is taken the uniform norm on
SN .

For example, it is enough to assume that:

Assumption 1. For every N we assume that the normal case Hamiltonian HN

satisfies the following two conditions

• the degree of the Hamiltonian (which is a polynomial in a normal case) do
not exceed some fixed number d and

• the sum of coefficients in HN is no greater than N (possibly, times some
fixed constant).

For example, one cane take the Heisenberg Hamiltonian HQ
N =

∑N
i=1 S

iSi+1.
The uniform norm looks like ‖HC

N (δ)‖ = supΩi |Polynom(δΩi)|. Since

(5.3) |Polynom((δ + x)Ωi)− Polynom(δΩi)| ≤ |x|d(δ + 1)d−1N,

the norm can be bounded

‖HC
N (δ + x)−HC

N (δ)‖ ≤ Nε
whenever |x| < γ < ε

d(δ+1)d−1 . Therefore N−1HC
N is equicontinuous in N .

Note that for |x| < γ, any ΩN and any value of any Ωi

|Polynom(δΩi)| ≤ δdN,
so

e−βδ
dN ≤ e−βPolynom(δΩi) ≤ eβδ

dN .

Then

(5.4) | lnZCN (δ)| = | ln(4π)−N
∫
dΩNe

−βPolynom(δΩi)| ≤ Nβδd
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and therefore there is a constant K such that for all N the uniform norm of the
free energy function is bounded above

|fCN (δ)| ≤ K.

So fCN is uniformly bounded.
To show the equicontinuity of the free energy we use the continuity of the loga-

rithm function. From continuity of logarithm, for the inequality to hold

| lnZCN (δ + x)− lnZCN (δ)| ≤ Nβε,

we need the following inequality to be true

(5.5) |ZCN (δ + x)− ZCN (δ)| ≤ |ZCN (δ)|min{eNβε − 1, 1− e−Nβε}.

The left hand side in (5.5) is bounded above similarly to (5.3) by

|ZCN (δ + x)− ZCN (δ)| ≤ |x|Nβd(δ + 1)de−Nβ(δ+1)d .

The right hand side of (5.5) is bounded below using (5.4) by

e−Nβδ
d

min{eβε − 1, 1− e−βε}.

Therefore from (5.5) we have

|x| ≤ 1

βd(δ + 1)d
eNβ((δ+1)d−δd)

N
min{eβε − 1, 1− e−βε}.

Since eNβ((δ+1)d−δd)

N →∞ as N →∞, for any ε > 0 there exists γ > 0 independent
of N such that for any N

|fCN (δ + x)− fCN (δ)| < ε

whenever |x| < γ.
So fCN (δ) is equicontinuous in N .
Hence, by Arzela-Ascoli theorem, the limit function

(5.6) fC(δ) = lim
N→∞

fCN (δ)

exists and is continuous in δ. Therefore

lim
J→∞

lim
N→∞

fCN (δJ) = lim
δ→1

lim
N→∞

fCN (δ)

= lim
δ→1

fC(δ) =: fC .(5.7)

Taking δ = 1 in (5.6)

(5.8) lim
J→∞

lim
N→∞

fCN = lim
N→∞

fCN = fC ,

then by (5.2), (5.7) and (5.8) we have

lim
J→∞

lim
N→∞

fCN (J) = fC = lim
N→∞

fCN .

�

Further reading [3].
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6. Appendix

Consider 2× 2 matrix representation:

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
, Sz =

(
1
2 0
0 1

2

)
.

We would like to find the relationship between ω’s and x’s in the formula

eω+S++ω−S−+ωzSz = ex−S−eln xzSzex+S+ .

Writing the exponent as a series

eω+S++ω−S−+ωzSz =
∑
n

1

n!
(ω+S+ + ω−S− + ωzSz),

define A := ω+S+ +ω−S−+ωzSz. To find the n-th power of A we first diagonalize
the operator

A =

(
1
2ωz ω+

ω−
1
2ωz

)
.

The eigenvalues of A are λ = ±K = ±(ω+ω− + 1
4ω

2
z)1/2 and eigenvectors are

v1,2 =

(
1
2ωz ±K
ω−

)
.

Then A = V DV −1, where

V =

(
1
2ωz +K 1

2ωz −K
ω− ω−

)
and D =

(
K 0
0 −K

)
.

Then An = V DnV −1. Multiplying three matrices

An =

(
Kn+(−K)n

2 + 1
2ωz

Kn−(−K)n

2K ω+
Kn−(−K)n

2K

ω−
Kn−(−K)n

2K
Kn+(−K)n

2 − 1
2ωz

Kn−(−K)n

2K

)
.

Therefore

eω+S++ω−S−+ωzSz =
∑
n

1

n!
An

=

(
coshK + 1

2ωz
sinhK
K ω+

sinhK
K

ω−
sinhK

2K coshK − 1
2ωz

sinhK
K

)
.

Similarly calculating the matrices we find that

ex−S−eln xzSzex+S+ =

(
x

1/2
z x+x

1/2
z

x−x
1/2
z x

−1/2
z + x+x−x

1/2
z

)
.

Therefore we get the relationship between ω’s and x’s. In the case of Bloch
coherent states (2.3) we get

ω+ = −1

2
θe−iφ, ω− =

1

2
θeiφ, ωz = 0

and

x+ = −z̄ = tan
θ

2
e−iφ, x− = z = tan

θ

2
eiφ, xz = (1 + |z|2)−1 = cos2 θ

2
.

The proof is based on [6].
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