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Classic Phase Transitions
A physical system is described by a space of states, X , (e.g.,
phase space) and a function H : X → R (the Hamiltonian).
H(x) is the energy of the system in state x . In general, the
state of the system is described by a probability measure,
µ(dx), on X . The mean energy is then E (µ) =

∫
H(x)µ(dx).

States of thermal equilibrium are the minimizers of the free
energy F :

F (µ) = E (µ) − TS(µ)

S : entropy; T temperature measured in units of kB , the
Boltzmann constant (approx. 1.38× 1023J/K .)
Phase transitions arise from the competition between the
energy and the entropy term in F , with T controlling their
relative importance.
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Example: Ising model
d = 1, 2, 3, . . . ,, X = {−1, 1}Zd

= {σ : Zd → {−1, 1}}.
For each finite Λ ⊂ Zd , define

HΛ(σ) = −J
∑
x,y∈Λ
|x−y|=1

σxσy .

1 1 1 1 1
1 −1 1 1 1
−1 1 1 −1 1
1 1 1 1 1
1 1 −1 1 1

versus

1 −1 −1 −1 1
1 −1 1 1 −1
−1 1 −1 −1 1
1 −1 1 −1 −1
1 −1 −1 1 −1
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Phase Transitions Without Temperature
The notion of phase transition, the existence of a critical value
of a parameter where the behavior undergoes a qualitative
change, has found broad application, including in situations
where the temperature is not the controlling parameter.
What is required: two competing trends and a parameter that
changes the relative strength of the two trends; and a
phenomenon, observable, or effect to make the question
interesting.

I Phase transitions without energy. Example: Percolation
(probability versus degeneracy (entropy)).

I Phase transitions without (obvious) entropy: Random
Matrices.

I Phase transitions in the ground states on the
Hamiltonian: quantum phase transitions (competing,
non-commuting, contributions to the energy).



6

Quantum Phase Transitions
Transitions in qualitative behavior of the ground states
(minimum energy), of Hamiltonians of the form

H = A + λB , λ ∈ R.

E.g., Ising model in transverse field:

HΛ(σ) = −J
∑
x,y∈Λ
|x−y|=1

σ3
xσ

3
y + λ

∑
x∈Λ

σ1.

where

σ3 =

(
1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
,

all considered as operators acting on HΛ =
⊗

x∈Λ C2.
For large λ, the long-range order in the Ising model is
destroyed, even in the ground state of the d = 1 model
(λc = 1).
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This can be understood as a consequence of the Heisenberg
uncertainty relations: for two s.a. observables, A,B ∈ B(H),
and ψ ∈ H, one has

Var(A)Var(B) ≥ 1

4
〈ψ, (i [A,B])2ψ〉2

where, for C = A,B , Var(C ) = 〈ψ, (C − 〈ψ,Cψ〉1l)2ψ〉 is the
variance of the observable C .
At T = 0, thermal fluctuations do not play a role, but
quantum fluctuations can have a similar effect.
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Did a 1-Dimensional Magnet Detect a
248-Dimensional Lie Algebra?
Title of a recent expository article 1 about a remarkable
experiment 2.
At the critical point (λc = 1 for the one-dimensional Ising
model in a transverse field), the delicate balance of the
competing terms often leads to new symmetries in the state of
the system. In this case, Alexander Zamolodchikov, predicted
an E8 symmetry on theoretical grounds in 1989, and evidence
for it was found experimentally last year (cobalt niobate).

1See D. Borthwick and S. Garibaldi, Notices of the AMS, 58 (2011)
Number 8, 1060.
http:www.ams.org/notices/201108/rtx110801055p.pdf

2R. Coldea etal., Science, 8 January 2010, 327 (no. 5962), 177-180

http:www.ams.org/notices/201108/rtx110801055p.pdf
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What is a Phase?
In order to be able to identify phase transitions, we need to
understand when different states are in the same phase. We
made progress on this question in a recent work with
Sven Bachmann, Spyridon Michalakis, and Robert Sims
(Automorphic Equivalence within Gapped Phases of Quantum
Lattice Systems, arXiv:1102.0842, to appear in Commun.
Math. Phys.)
We proposed automorphic equivalence as a characterization of
states belonging to “the same phase” and proved that, under
general assumptions, that this equivalence holds along curves
of Hamiltonians along which there is a non-vanishing gap in
the spectrum above the ground state (i.e., the smallest
eigenvalue is separated by a finite distance from the rest of the
spectrum).
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The Spin-1 Chain

H[1,L] =
L−1∑
x=1

J1Sx · Sx+1 + J2(Sx · Sx+1)2.

The parameter λ can be thought of as the angle θ in the
parametrization J1 = cos θ, J2 = sin θ.
There are multiple phase transitions in this model, most of
which are not mathematically well-understood.
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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The AKLT model (Affleck-Kennedy-Lieb-Tasaki, 1987).
Λ ⊂ Z, Hx = C3;

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Exact ground state is “frustration free” (Valence Bond Solid
state (VBS), Matrix Product State (MPS), Finitely Correlated
State (FCS)).
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Toric Code model (Kitaev, 2003, 2006). Λ ⊂ Z2, Hx = C2.

a b
cd

tr
v u

H = −
∑

p hp −
∑

s hs

hp = σ3
aσ

3
bσ

3
cσ

3
d

hs = σ1
r σ

1
t σ

1
uσ

1
v

all terms commute

On a surface of genus g , the model has 4g frustration free
ground states. Example of “topological insulator”.
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What about the so-called topological phases?
The space of ground states of Kitaev’s Toric Code model, and
other models introduced depends crucially on the topology of
the lattice on which it is defined. Such models are better
described as a family of models defined by interactions Φg on
lattices Γg , which are identical in the bulk, i.e., away from
boundaries and on a scale too short to detect the topology,
which is labeled by g ∈ G. The different topologies of interest
are represented by {Γg}g∈G.

To express the equivalence of members of one “topological
phase”, we then need to consider paths of interactions Φg

s ,
0 ≤ s ≤ 1, for all g .
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So, in one dimension, we need to consider at least two types
of infinite systems:

· · ·· · · · · ·

The bold site denotes a boundary. Other “large” but finite
systems can be pieced together from these two. So a
classification of one-dimensional gapped phase would involve a
bulk phase together with a boundary phase (essential for
non-trivial topological phase in higher dimensions, cfr Klich’s
talk).
With Bachmann we are working out explicit examples. E.g.,
for the AKLT model, we can construct a gapped path of
frustration free models showing that AKLT is connected to
- a bulk phase that is a unique product state
- a boundary phase (class of edge states) with a
two-dimensional space of edge states: the product state and
an exponentially localized excitation of it.
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The simplest examples in two dimensions are:
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etc.
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Conclusions


