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Additional Notes on Permutations
Bruno Nachtergaele!

1 Introduction

A permutation of a list of n objects is a reordering of that list. To describe
the reordering itself, the nature of the objects is irrelevant. E.g., we could
interchange the second and third item in a list of five objects, no matter
what those items are, and this defines a particular permutation that we
could perform on any list of five objects.

As the nature of the objects is immaterial for the definition of a permu-
tation, one commonly uses the integers 1,2,...,n, as the standard list of n
objects. If you like you can think of the integers as labels for the items in
any list of n elements.

2 Definition

Mathematically, we define a permutation as a transformation of the set
{1,...,n} into itself.

Definition 2.1 A permutation of n elements is a one-to-one and onto map
of the set {1,2,...,n} into itself.

So, a permutation is a map 7 : {1,2,...,n} — {1,2,...,n}, such that for
every integer ¢, 1 < ¢ < n, there exists exactly one integer j, 1 < j < n, such
that 7(j) = i. We will commonly denote permutations by Greek letters such
as 7 (pi), o (sigma), « (alpha), 8 (beta), v (gamma), etc.. The set of all
permutations of n elements is denoted by &,,.

Example: For n = 2, there is only 1 non-trivial permutation, namely the
exchange of the 1st and the 2nd element. According to the definition of
permutation, the identity map, which is the reordering that does not change
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the order at all, is also a permutation, called the trivial or identity permu-
tation. This is analogous to considering adding zero to a number, as a valid
addition. Thus, there are two permutations of two elements which reorder
the list 1,2 as 1,2 or 2,1. Considered as a map, the nontrivial permutation
of two elements is defined by

) =1, w2 =1

It is not difficult to find the number of permutations of n elements, i.e.,
the number of elements of the set S,,. To select a permutation of n elements
we can proceed as follows. First, choose an integer 7, 1 < ¢ < n, to put in the
first position. Clearly, there are n possible choices. Next, choose the element
to go in the second position. After the choice of the first, there are n — 1
remaining choices, etc. Therefore we see that

#S,=nn—1)(n—-2)---3-2-1=n!

Example: For n = 3, there are 3! = 1-2-3 = 6 permutations. A simple
way to describe a permutation is to show its effect on the list 1,2,...,n. In
our example n = 3, so an arbitrary permutation of three elements, denoted
by 7, can be presented as follows:

" (w(ll) 7r<22> Wf},))

which, to save space, is often written as

(1 2 3)
T = or m=(m m m3).

Ty To T3

The 6 permutations of three elements are
1 3 1 3 1 2 3
1 3 2 1 3 1 2
1 3 1 3 1 2 3
1 2 3 1 2 1 3

Once more, you should think of a permutation as a reordering operation.
E.g., the second permutation given above can be read as defining the reorder-
ing which, with respect to the original list places the 2nd element in the 1st
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position, the 3rd element in the 2nd position, and the 1st in the 3rd position.
The same permutation could equally well have been identified by describing
its action on the list of the a, b, c:

1 2 3\ _(a b c
2 3 1) \b ¢ a

no matter what the letters a, b, c stand for. In particular we also have

12 3\ (213
2 3 1) \1 3 2

Although these representations of permutations of n elements are 2 x n
matrices, at this moment, permutations are not linear transformations of a
vector space, and the composition of permutations does not correspond to
multiplication of these 2 X n matrices.

3 Composition of permutations

We have defined permutations as from {1,2,...,n} to itself. Therefore, we
can compose two such maps by performing one after the other. As each
permutation is a reordering, the result of performing two permutations in
succession will be another reordering, i.e., a permutation itself. This means
that for any pair 7,0 € S,,, the composition moo (read: pi after o) is also an
element of S,. The trivial permutation (corresponding to the identity map)
is denoted by id and, as it leaves the order unchanged, we have

moid=m, and idow =,
for all permutations 7. As always, the composition of maps is associative:
(@op)oy=ao(foy)=aocfoy

for all permutations «, 8 and 7.
As each permutation is one-to-one and onto, there is a unique inverse
map, i.e., a unique permutation ¢ such that

moo=1id, and ocomw =id,
1

o is called the inverse of m# and denoted 7.
undoes the reordering performed by 7.

It is the permutation that



The properties of the composition permutations discussed above are sum-
marized by the statement that S, is a group. Note that the composition of
permutations is not commutative. If n > 3, you can easily find examples of
permutations 7 and o such that Troo # o om.

4 Inversions and the sign of a permutation

For a given permutation m we can count the number of inversions it introduces
in the ordering of n objects. An inversion is a pair i, j, such that ¢ < j and
m(i) > m(j). In other words, an inversion is a pair of objects in the list
of which the relative order is changed by the permutation. The number
of inversions is then just the number of such pairs. If the permutation is
represented by its action on 1, 2, ..., n, an inversion is just a pair that appears
in decreasing order in the list 7, 79, ..., 7.

Example: The inversions in the 6 permutations of 1,2, 3 are indicated by
brackets:

1 2 3 1 2 3 1 2 3
( 1 2 3 ) ( 2 3 1 ) < 3 1 2 )
no inversions 2 inversions: 2,1; 3,1 2 inversions: 3,1; 3,2
1 2 3 1 2 3 1 2 3
< 1 3 2 ) ( 3 2 1 > ( 2 1 3 >
1 inversion: 3,2 3 inversions: 3,2; 2,1; 3,1 1 inversion: 2,1

One of the simplest nontrivial permutations is one that exchanges the
positions of two elements. Such permutations are called transpositions, e.g.,

t_1234
2712 1 3 4

is a transposition. In general, for any ¢ # j, we will denote the transposition
that exchanges ¢ and j, by t;;. It is an easy exercise to show that the number
of inversions in ¢;; equals 2|i — j| — 1. So the number of inversions in a
transposition is always odd.

Definition 4.1 Let m be a permutation. Then the sign of m, denoted by
sign(m) is defined by

. +1 if the number of inversions in m is even
signm = : . ) . .
—1 if the number of inversions in 7 is odd



The permutation 7 is called even if sign(m) = +1, and odd if sign(m) = —1.

In the example above the sign of the permutations on the first line is +1,
and the sign of the permutations on the second line is —1. As the number of
inversions in a transposition is always odd, all transpositions are odd.

It is a general fact that the number of even permutations of n elements
is the same as the number of odd permutations, i.e., both numbers are equal
to n!/2.

The sign has the following properties:

sign(id) =1

sign(t;;) = —1, foralli#j
sign(m o o) = sign(7)sign(o)
sign(m ') = sign(7)

5 Summations indexed by the set of all per-
mutations

Recall that the determinant of an n x n matrix A = (a;;), is defined by the
formula

det(A) = Zsign(ﬂ)alm(l)azm(g) “Onr(n)

where the sum is over all permutations of n elements. To compute det(A)
using this formula we have to add n! terms that are each a product of n
factors. n! is a very rapidly increasing function of n. E.g., 10! = 3,628, 800.
Fortunately, by using some properties of the determinant (listed in the next
section) this computation can be greatly reduced in size. The main tool
needed to derive these properties are some properties of summations over all
permutations, which are in turn based on properties of permutations and the
fact that the addition and multiplication of real numbers are commutative.

Suppose T'(7) is a real number for each permutation 7. E.g., T'(7) could
be the term corresponding to the permutation 7 in the sum that defines the
determinant of A. To compute

> T(x)



we could use any ordering of the set of all permutations, because the sum
is independent of the order in which the terms are added. As long as all
terms are added exactly once to the sum, the total will be the same. Some
commonly used reorderings of such sums are the following.

ZT(W) = ZT(O‘OW)
= Z T(moo)
- Y1

where o is a fixed permutation. These equalities are justified by the following
facts. If o is a fixed permutation and 7 runs through all permutations, then
o o7 runs through permutations as well, only in a different order. I.e.,
the action of ¢ is merely to permute the permutations! The same holds
for m o 0 and 7 !. Another way of saying this is that there is a one-to-
one correspondence between permutations and their inverses, which is quite

obvious, as every permutation has a unique inverse.

6 Properties of the determinant

The following properties of the determinant are given in the textbook by
Kolman. Their proofs involve the properties of permutations, of the sign
of permutations, and of sums over permutations discussed in the previous
sections.

Theorem 6.1 Let A and B be n X n matrices. Then

det(AT) = det(A)
det(AB) = det(A) det(B)

The determinant of the zero matriz is 0, and the determinant of the identity
matriz 15 1.

Theorem 6.2 If the matriz A has two identical rows, or two identical colum-

s, then det(A) = 0. If A has a row or a column consisting entirely of zeroes,
then det(A) = 0.



The effect of ERO’s on the determinant is given in the following theorem.

Theorem 6.3 Let A; be the matrixz obtained from A by interchanging rows
s and r, for s #r. Then

det(A4;) = —det(A).

Let Ay be the matriz obtained from A by multiplying row r by a constant c.
Then
det(Az) = cdet(A).

Let As be the matriz obtained from A by replacing row s by the sum of row
s and d times row r. Then

det(Az) = det(A)

These properties of ERO’s in combination with the following theorem,
give an alternative way of computing determinants of relatively large matri-
ces.

Theorem 6.4 If A is upper or lower triangular, we have

det(A) = 11092 * - - App-



