
MAT265 University of California, Davis Fall 2003

Homework #1. Due: Tuesday, 14 October 2003

Choose 3 of the 9 problems to turn in. I won’t be able to grade more than 3 problems for
your grade on homework #1.

Problem 1. Consider the Pauli matrices defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

a) Verify that

σiσj = δij1 + i
3∑

k=1

εijkσk

where, for i, j, k ∈ {1, 2, 3}, εijk is the Levi-Civita symbol, which is 0, whenever two or
more of the indices are equal, and otherwise equal to the sign (±1) of the permutation
(123) 7→ (ijk).

b) For any x ∈ C3, define x · σ = x1σ1 + x2σ2 + x3σ3. For x,y ∈ R3, show that

(x · σ)(y · σ) = x · y1 + i(x× y) · σ

c) Prove that the set of eigenvalues of n · σ is {1,−1}, for all unit vectors n ∈ R3.

Problem 2. Let the Pauli matrices be defined as in the previous problem, and suppose

f(z) =
∞∑
n=0

anz
n

is a power series with radius of convergence R > 0. Prove that for any x ∈ C3, with
0 < ‖x‖ = r < R, one has

f(x · σ) =
1

2
(f(‖x‖) + f(−‖x‖))1 +

1

2
(f(‖x‖)− f(−‖x‖)) x

‖x‖
· σ

You can assume the results of Problem 1 in your derivation.

Problem 3. Consider the real linear space, V , of traceless 2×2 complex matrices, for which
the Pauli matrices are a basis. For any unitary 2×2 matrix with determinant 1, U ∈ SU(2),
define the linear map πU : V → V , by

πU(x · σ) = U∗x · σU,x ∈ R3 .
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Find the map R : U(2)→M3(R) such that

πU(x · σ) = (R(U)x) · σ

Problem 4.

a) Find the states ψ ∈ C2, with the property that a measurement of σj, will have outcome
+1 with probability 1/2, for j = 1, 2, 3, i.e., no matter which component you choose to
measure, you will find +1 with probability 1/2.

b) Does the property of the states ψ found in part a) imply that measurement of any
component of σ, say in the n-direction, will yield +1 with probability 1/2? Why or why
not?

Problem 5. Define three units vector sin R3 as follows:

n1 = (0, 0, 1), n2 = (sin θ, 0, cos θ), n3 = (sinα cos β, sinα sin β, cosα),

and consider a sequence of three Stern-Gerlach experiments, which measure the n1-, n2-,
and n3-components of a beam of spin 1/2 particles, in that order.

a) Calculate the probabilities of finding each of following sequences of outcomes: (+1,+1,+1),
(+1,+1,−1), (+1,−1,+1).

b) What is the the probability of measuring (+1,+1or− 1,+1)?

c) Compare the result of b) with the probability of finding (+1,+1), in an experiment where
only the n1-, and n3-components are measured.

Problem 6. Consider a tree of Stern-Gerlach instruments constructed as follows. For a
positive integer N ≥ 1, and k = 0, . . . , N , define

n(k) = (sin kπ/(2N), 0, cos kπ/(2N))

A beam of silver atoms enters the first apparatus, which measures the n(0)-component of
the magnetic moment and splits the beam in two parts according to the results. These
two beams then enter each another Stern-Gerlach instrument which is set to measure the
n(1)-component. Next, four instruments are measuring the n(2-components of each of the
four beams leaving the previous experiment. At the end we have 2N+1 beams, labeled
by a sequence of plus and minus one’s, the outcomes of the successive measurements of
n(0),n(1), . . . ,n(N). For b ∈ {1,−1}N+1, let P (b) denote the probability that a silver atom
ends up in beam b.

a) Suppose the initial state of each atom in the beam is ψ0 = |z,+〉, the eigenstate of σ3

with eigenvalue 1. Calculate maxb P (b), and find the b where the maximum it is attained.

b) What happens in the limit N → +∞?

Problem 7. Define the Hermite polynomials Hn by

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
.
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a) Show that

φn(x) = e−x
2/2Hn(x)

is an orthogonal set in L2(R).

b) Show that the nth Hermite function φn is an eigenfunction of the linear operator

H = − d2

dx2
+ x2

with eigenvalue
λn = 2n+ 1.

Hint: Let

A =
d

dx
+ x, A∗ = − d

dx
+ x.

Show that
Aφn = 2nφn−1, A∗φn = φn+1, H = AA∗ − 1.

c) Note that H is the Hamiltonian operator of a harmonic oscillator. A∗ and A (or closely
related operators) are called creation and annihilation, or ladder, operators. Define domains
for these unbounded operators on L2(R), and prove the algebraic relations of part b) for the
unbounded operators.

Problem 8. For ψ ∈ L1(Rd) ∩ L2(Rd), prove the formula

e−i
t
2

∆ψ(x) =

(
2πit

m

)−d/2 ∫
Rd

e
im
2t
|x−y|2ψ(y) dy .

Problem 9. For ψ ∈ L2(Rn), define the Wigner distribution of ψ, W (x, k), for x, k ∈ Rn,
by

W (x, k) =
1

(2π)n

∫
Rn

ψ
(
x− y

2

)
ψ
(
x+

y

2

)
eik·y dy.

a) Compute the Wigner distribution of a Gaussian exp (−x · Ax), where A is a positive
definite matrix.

b) Show that W is real-valued, and

W (x, k) =
1

(2π)n

∫
Rn

ψ̂

(
k − `

2

)
ψ̂

(
k +

`

2

)
e−i`·x d`,∫

Rn

W (x, k) dk = |ψ(x)|2 ,
∫
Rn

W (x, k) dx =
∣∣∣ψ̂(k)

∣∣∣2 ,
where ψ̂ denotes the Fourier Transform of ψ.

c) From part b) we see that the Wigner distribution W has some properties of a joint
distribution for position and momentum in the state ψ, (x, k) ∈ R2n, the classical phase
space. Show, however, that W is not necessarily nonnegative.
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