Homework #2. Due: Tuesday, 7 February 2006

Problem 1. Let $n \ge 1$ and consider $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. Let $C_0 \subset \mathbb{R}^n$ denote the essential domain of f, i.e., the set of points where f is finite. Recall the definition of f^* , the Legendre transform of f:

$$f^* = \sup_{x \in \mathbb{R}^n} \left(\langle y, x \rangle - f(x) \right)$$
.

Define the *epigraph* of f, epi(f), to be the set

$$epi(f) = \{(x, r) \in C_0 \times \mathbb{R} \mid r \ge f(x)\}.$$

a) Suppose C_0 is convex. Then, show that f is convex iff epi(f) is a convex subset of \mathbb{R}^{n+1} . b) Prove that for any f, we have $epi(f^{**}) = \overline{co} epi(f)$, where \overline{co} denotes the closed convex hull.

c) Show that if f is convex, then

$$(f^*)^*(x) = f(x),$$

for all x in the interior of C_0 . (Hint: note that $\overline{\operatorname{co}}\operatorname{epi}(f)$ is the intersection of a family of closed halfspaces.)

d) Let n = 1 and f(x) = |x|. Find f^* .

Problem 2. Consider the one-dimensional Ising model defined on intervals of the form $[-L, L] \subset \mathbb{Z}$ with Hamiltonians $H_L^{b_L}$ defined by

$$H_L^{b_L} = -J \sum_{x=-L}^{L-1} \sigma_x \sigma_{x+1} + b_L$$

where, for each $L \geq 1$, b_L is a function of the boundary spin variables σ_{-L} and σ_L . Fix any inverse temperature $\beta \in \mathbb{R}$. Prove that the sequence Gibbs states at inverse temperature β , ω_L on $C(\Omega_{[-L,L]})$, determined by $H_L^{b_L}$, converges (in the weak-* sense) to a translation invariant state on $C(\Omega_{\mathbb{Z}})$, which depends on J and β , but not on b_L .

Problem 3. Let γ be a non-selfintersecting closed path consisting of nearest neighbor bonds in \mathbb{Z}^2 (i.e., a *simple contour*), and denote by $V(\gamma)$ the lattice sites enclosed by γ , and by $l(\gamma)$ the length of γ (i.e., the number of bonds).

a) Prove the following bound:

$$|V(\gamma)| \le \frac{1}{16} l(\gamma)^2.$$

b) Consider a finite subset $\Lambda \subset \mathbb{Z}^2$, and let $l = 4, 6, 8, \ldots$ Let $M_{\Lambda}(l)$ denote the number of simple contours γ of length l contained in Λ . Prove the bound

$$M_{\Lambda}(l) \leq 3^{l-1} |\Lambda|$$

for all $l = 4, 6, 8, \ldots$

c) (Optional) Show that there exists c > 1 such that for all $l = 4, 6, 8, \ldots$, there exists L_l such that for all $\Lambda = [1, L]^2$, with $L \ge L_l$ one has the bound

$$M_{\Lambda}(l) \geq L^2 c^l$$
.

Problem 4. Fix J > 0 and $\beta \ge 0$. Prove that the Gibbs states at inverse temperature β of the *d*-dimensional translation invariant Ising model defined on $[-L, L]^d \subset \mathbb{Z}^d$ with periodic boundary conditions (i.e., defined on tori), converge in the thermodynamic limit $L \to \infty$.

Problem 5. Let $\omega_{d,\beta}^+$ be the limiting Gibbs state of the translation invariant ferromagnetic Ising model on \mathbb{Z}^d with coupling constant J = 1, at inverse temperature $\beta \ge 0$. Define the critical inverse temperature, β_c , by

$$\beta_c = \sup\{\beta \ge 0 \mid \omega_{d,\beta}^+(\sigma_0) = 0\}.$$

Prove that $\beta_c(d)$ is a monotone decreasing function of the dimension d.