
Statistical Mechanics, Math 266: Week 3 Notes

January 19 and 21, 2010

1 Phase Transitions and Spontaneous Symme-
try Breaking

Consider the d-dimensional Ising model:

Λ ⊆ Zd e.g., Λ = [1, L]d (1)

HΛ = −J
∑
|x−y|=1
x,y∈Λ

σxσy (2)

As before, we will assume that the model is ferromagnetic, so J > 0. The
Hamiltonian HΛ exhibits a spin flip symmetry which takes σx → −σx Many
fundamental models have symmetries and many interesting phase transitions
are accompanied by symmetry breaking. More precisely, let F : Ω → Ω be
defined by

F (η) = −η (3)

Clearly HΛ ◦ F = HΛ. It follows that the equilibrium state

ωΛ(f) =

∑
η f(η)e−βHΛ(η)∑
η e
−βHΛ(η)

(4)

is also F -symmetric, meaning

ωΛ(f ◦ F ) = ωΛ(f) for all f ∈ C(ΩΛ) (5)

In particular, we have for all x ∈ Λ,

ωΛ(σx) = ωΛ(σx ◦ F ) = −ωΛ(σx) (6)
and hence ωΛ(σx) = 0 for all x ∈ Λ (7)

Taking the thermodynamic limit does not change this,

lim
Λ↗Zd

ωΛ(σx) = 0 (8)
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All of the thermodynamics is contained in the function f(β), the free energy
density

−βf(β) = lim
Λ↗Zd

1
|Λ|

logZΛ(β) (9)

ZΛ(β) =
∑
η∈ΩΛ

e−βHΛ(η) (10)

It is easy to see that boundary conditions do not affect f , so in the thermody-
namic limit, we obtain the same thermodynamics.

Now define the boundary of Λ,

∂Λ = {x ∈ Λ| there exists y ∈ Zd ∪ Λc and |x− y| = 1} (11)

Then consider bΛ ∈ C(Ω∂Λ) and suppose that ‖bΛ‖sup ≤ B|∂Λ|, so that bΛ is
uniformly bounded with B some fixed constant. For some sequence of boundary
terms, we may find that

ωb = lim
Λ
ωbΛ exists (12)

ωbΛΛ (f) =
1

ZbΛΛ (β)

∑
η∈ΩΛ

f(η)e−βH
bΛ
Λ (η) (13)

where HbΛ
Λ = HΛ + bΛ (14)

Then,
e−Bβ|∂Λ|ZΛ ≤ ZbΛΛ ≤ ZΛe

Bβ|∂Λ| (15)

So that as long as we have |∂Λ|
|Λ| → 0, we will have that f b(β) = f(β). It is

therefore reasonable to assume that ωb = limΛ ω
bΛ
Λ . If this limit exists, it will

also describe the equilibrium of the thermodynamic system. (We will make this
precise and rigorous when we study characteristics of equilibrium later.) Under
quite general conditions, one can show that for some βc > 0, ωb is independent
of b for all 0 ≤ β ≤ βc. But it often happens that there is some dependence
on the boundary condition, b, if β is large enough. Before doing anything more
general, we will show that this happens for the d-dimensional Ising model.

2 The Peierls Argument

We will consider the particular boundary term leading to what is called +
boundary conditions,

bΛ = −J
∑
x∈∂Λ

y∈Λc,|x−y|=1

σx · 1 (16)

as if the spin at y ∈ Λc are all fixed to be +1. − boundary conditions are
completely analogous. Let’s assume that the following limit exists:

ω+ = lim
Λ
ω+

Λ (17)

= lim
Λ
ωbΛΛ (18)
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Note that if we were free to interchange limits, it would be rather trivial to show
that limβ→∞m(β) = 1 since limβ→∞ ω+

Λ (σx) = 1 for all finite Λ ⊆ Zd, for all
d ≥ 1.

Theorem 2.1. Let J > 0 and d = 2. Then,

1. There exists β1 > 0 such that for all β > β1,

1
|Λ|

∑
x∈Λ

ω+
Λ (σx) = mΛ(β) > 0 (19)

and limβ→∞mΛ(β) = 1 uniformly in Λ.

2. There exists β2 > 0 such that for all β > β2 and for all x ∈ Λ,

ω+
Λ (σx) = mx(β) > 0 (20)

and limβ→∞mx(β) = 1 uniformly in x.

In fact, we obtain bounds of the form

0 ≤ 1−mx(β) ≤ 216e−8Jβ (21)

0 ≤ 1−mΛ(β) ≤ 216e−8Jβ (22)

For sufficiently large β.

Remark 2.1. Onsager obtained an exact solution of the free energy density if
the 2-dimensional Ising model frem which it follows that βc = log(1+

√
2)

2J .

To prove the theorem we will use the contour description of

Ω+
Λ = {η ∈ ΩΛ∪∂(Λc)|η �Λc= +1} (23)
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Figure 1: Configuration space as described by contours.

There is a one-to-one correspondence between configurations and configura-
tions of contours.

σ ∈ Ω+
Λ ←→ {γ1, . . . , γn} = Γ(σ) (24)
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Figure 2: A dual edge is in γ if the corresponding edge has a +− pair.

Here, Γ(σ) is a configuration of closed, non-intersecting paths (where we ignore
corner intersection) in the dual lattice. We define the support of a configuration,

supp Γ =
n⋃
i=1

supp γi = {(x, y) ∈ Z2|σxσy = −1} (25)

and this allows us to define the length of a configuration of contours as

`(Γ) = | supp Γ| =
n∑
i=1

`(γi) (26)

Now, we wish to rewrite the Hamiltonian of the Ising model in terms of contours.

H+
Λ (σ) = −J{#{(x, y) ∈ Z2|σxσy = +1}}+ J{#{(x, y) ∈ Z2|σxσy = −1}}

(27)

= −J |B(Λ)|+ 2J`(Γ) (28)

where |B(Λ)| is equal to the number of edges in Λ. Here, we can think of energy
as being proportional to the length of the contours. Since the configurations
Γ(σ) that we consider consist of compatible, closed, non-intersecting paths, we
define V (γ) to be the vertices enclosed by a given contour γ.

Lemma 2.1. For all γ such that `(γ) <∞,

|V (γ)| ≤ 1
16
`(γ)2 (29)

Proof. Left to reader. See homework.

Lemma 2.2. Let Λ ⊆ Z2 and ` = 4, 6, 8, . . . Define MΛ(`) = # of distinct
simple contours of length ` within Λ (with ‘+’ boundary conditions). Then

MΛ(`) ≤ 3`−1|Λ| (30)

Proof. Left to reader. See homework.
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We know what P+
Λ(σ) is, and this allows us to make sense of P(Γ). Now,

for a given contour γ, we define P+
Λ(γ) to be the probability that γ occurs.

Specifically, it is the event that contains all configurations Γ that have γ in it.
Explicitly,

P+
Λ(γ) =

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
e−βH

+
Λ (σ)

(31)

Lemma 2.3 (Peierls Estimate).

P+
Λ (γ) ≤ e−2Jβ`(γ) (32)

Proof. For all σ such that γ ∈ Γ(σ), for some fixed γ define σ∗ as the unique
configuration such that Γ(σ∗) = Γ(σ)\{γ}. Explicitly, σ∗ is obtained by flipping
all spins located at x ∈ V (γ). Recall that H+

Λ (σ) = −JB(Λ) + 2J`(γ), and
therefore

H+
Λ (σ)−H+

Λ (σ∗) = 2J`(Γ) (33)

and

P+
Λ(γ) =

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
e−βH

+
Λ (σ)

(34)

≤

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ)

∑
σ∈Ω+

Λ
γ∈Γ(σ)

e−βH
+
Λ (σ∗)

(35)

≤ e−2βJ`(γ) (36)

Proof of Theorem 2.1. We will estimate

0 ≤ 1− ω+
Λ (σx) = ω+

Λ (1− σx) (37)

Observe that 1 − σx takes the values 0 and 2. If 1 − σx = 2, then there exists
a γ ∈ Γ(η) such that x ∈ V (γ). Denote by γ∗(σ) the first contour you meet
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starting at x. Then

1− ω+
Λ (σx) ≤

2
∑
γ,x∈V (Γ)

∑
σ,γ∗(σ)=γ e

−βH+
Λ (σ)∑

σ e
−βH+

Λ (σ)
(38)

≤ 2
∑

γ,x∈V (γ)

∑
σ,γ∈Γ(σ) e

−βH+
Λ (σ)∑

σ e
−βH+

Λ (σ)
(39)

= 2
∑

γ,x∈V (γ)

P+
Λ(γ) (40)

≤ 2
∑

γ,x∈V (γ)

e−2βJ`(γ) (41)

where (39) comes from the fact that 1−ω+
Λ vanishes if it is enclosed by an even

number of contours, and (41) follows from Lemma 2.3. From here, Parts 1 and
2 of Theorem 2.1 proceed only slightly differently, and so we only present the
proof of Part 2. We rewrite the inequality (41) in a more suggestive way.

1− ω+
Λ (σx) ≤ 2

∑
`=4,6,8,...

∑
γ,x∈V (γ)
`(γ)=`

e−2βJ` (42)

≤ 2
∑

`=4,6,8,...

`23`e−2βJ` (43)

≤ 16(3e−2βJ)2 where 3e−2βJ ≤ 1
2

(44)

Here, we have used the observation that a contour of length ` must be contained
within a square box of size ` centered at x, along with lemma 2.2 and the fact
that

∞∑
k=2

k2rk =
2r2(2− 3

2r + 1
2r

2)
(1− r)3

(45)

The lower bound on β now follows.

Remark 2.2. Clearly ω+
Λ (σx)→ 1 as β →∞, and with the same estimates for

the − boundary condition, we have that ω−Λ (σx)→ −1 as β →∞. Hence, if

ω±Λ → ω± as Λ↗ Z2 (46)

clearly, ω+ 6= ω−. A similar argument works for d ≥ 2, and these same argu-
ments (using Peierls Estimate) can be generalized to other models with somewhat
similar structure.

3 The Griffiths Inequalities

The goal for us is to show the existence of the limiting Gibbs states, but the
Griffiths inequalities have many other applications. Again, we are considering
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Ising systems on Zd. The algebra of observables for a finite volume Λ ⊂ Zd is
C(ΩΛ). Consider the special observables

σA =
∏
x∈A

σx for all A ⊆ Λ (47)

σ∅ = 1 (48)

We make the observation that the set {σA|A ⊆ Λ} is a basis for C(ΩΛ) because
δηx=ε = 1

2 (1+εσx) forms a basis upon taking products. The ferromagnetic Ising
model can be generalized to a general class of ferromagnetic models with local
Hamiltonians of the form

HΛ = −
∑
A

JAσA , JA ≥ 0 (49)

Note that
∂

∂JB
ωΛ(σA) = ωΛ(σAσB)− ωΛ(σA)ωΛ(σB) (50)

where we have set β = 1 in this equation.

Theorem 3.1 (Griffiths Inequalities). Let ωΛ be the Gibbs state at β with
ferromagnetic Hamiltonian HΛ. Then

1. ωΛ(σA) ≥ 0 for all A ⊂ Λ.

2. ωΛ(σAσB)− ωΛ(σA)ωΛ(σb) ≥ 0 for all A,B ⊂ Λ.

Proof. Proof of 1.

ωΛ(σA) =
1
ZΛ

∑
η∈ΩΛ

σA(η)e−βHΛ(η) (51)

=
1
ZΛ

∞∑
n=0

βn

n!

∑
η∈ΩΛ

σA(η)(
∑
B⊆Λ

JBσB)n (52)

Clearly σAσB = σC with C = A4B, and where A4B = (A ∪ B) \ (A ∩ B) is
the symmetric difference of A and B. Now, we group all terms with the same
C.

ωΛ(σA) =
∑
C

a(C)
∑
η∈ΩΛ

σC(η) (53)

If C 6= ∅,
∑
η∈ΩΛ

σC(η) = 0 since if x ∈ C then the sum over η with ηx = ±1
cancel each other out. In the case that C = ∅,

∑
η∈ΩΛ

σC = 2|Λ|. So ωΛ(σA) =
a(∅)2|Λ| ≥ 0.

Proof of 2.
Note that for 1, we did not really use the structure of Zd, and the argument

works on any finite set Λ. Now we will consider Λ̃ = Λ t Λ, two disjoint copies
of Λ. Equivalently, we can consider a system with two copies of the algebra

ÃΛ = C(ΩΛ)⊗ C(ΩΛ) (54)
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where each copy of C(ΩΛ) is generated by the functions σx and τx respectively.
The configuration space is Ω̃Λ = ΩΛ × ΩΛ = {(η, ξ)|ηx, ξx ∈ {−1,+1}}. Simi-
larly, we have σA and τA. Define

H̃Λ(η, ξ) = HΛ(η) +HΛ(ξ) (55)

Z̃Λ =
∑
η∈ΩΛ

∑
ξ∈ΩΛ

e−βHΛ(η)e−βHΛ(ξ) (56)

= (ZΛ)2 (57)

If f(η, ξ) = f1(η)f2(ξ), we have

ω̃Λ(f) = ωΛ(f1)ωΛ(f2) (58)

Now consider “rotated” variables

sx =
1√
2

(σx + τx) (59)

tx =
1√
2

(σx − τx) (60)

which take values −
√

2, 0,
√

2 on double configurations. Note that

σx =
1√
2

(sx + tx) (61)

τx =
1√
2

(sx − tx) (62)

and for A ⊆ Λ,

∆±A = σA ± τA =
(

1√
2

)|A|
{(s+ t)A ± (s− t)A} (63)

where σA =
∏
x∈A σx, and τA is completely analogous.

Lemma 3.1.
∆±A =

∑
B⊆A

KBsA\BtB (64)

with some KB ≥ 0

Proof. Just calculate

(s+ t)A =
∏
x∈A

(sx + tx) (65)

=
∑
B⊆A

sA\BtB (66)

and
(s− t)A =

∑
B⊆A

(−1)|B|sA\BtB (67)

The lemma follows.
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Now, we can proceed with the proof of 2.

ωΛ(σAσB)−ωΛ(σA)ωΛ(σB) (68)
= ω̃Λ(σAσB)− ω̃Λ(σAτB) (69)
= ω̃Λ(σA(σB − τB)) (70)

=
(

1√
2

)|A|+|B|
ω̃Λ(s+ t)A{(s+ t)B + (s− t)B} (71)

= ω̃Λ(
∑
C⊆B

KC(s+ t)AsB\CtC) (72)

= ω̃Λ(
∑
D

KDsA∪B\DtD) (73)

The variables sx and tx have the following properties:

sxtx = 0 and either sx or tx = 0 for a given configuration σx, τx (74)

tx and sx are odd functions of σx and τx, so all their odd powers are odd and
all their even porwers are of course greater than or equal to 0. So∑

σx,τx

snx =
{

= 0 if n odd.
> 0 if n even. (75)

and the same result holds for
∑
tnx . The Hamiltonian can be rewritten,

H̃Λ =
∑
A⊂Λ

KAσA +KAτA (76)

=
∑
A⊂Λ

K̃A

∑
C⊂A

(1 + (−1)|C|)sA\CtC (77)

and is again a Hamiltonian with coefficients greater than or equal to 0 in the
monomial basis. Although the polynomials in s and t are not independent
variables, the same argument as in 1 applies.

H̃Λ =
∑

C,D⊂Λ

K̃C,DsCtD (78)

ω̃Λ =
1

Z̃Λ

∞∑
n=0

βn

n!

∑
{σx,τx}

sAtB(
∑

C,D⊂A
K̃C,DsCtD)n (79)

=
1

Z̃Λ

∞∑
n=0

βn

n!

∑
{σx,τx}

∑
C,D

˜̃
KABCDsAsCtBtD (80)

Indeed,

H̃Λ =
∑
A⊂Λ

JAσA + JAτA (81)

=
1√
2

∑
A⊂Λ

∑
C⊂A

JA(1 + (−1)|C|)sA\CtC (82)
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Therefore we can apply 1 to H̃Λ and finish the proof of 2.

Recall the observation

∂

∂JB
ωΛ(σA) = ωΛ(σAσB)− ωΛ(σA)ωΛ(σB) (83)

therefore the second Griffiths inequality implies that ∂
∂JB

ωΛ(σA) ≥ 0 for ferro-
magnetic Ising models.

4 The Thermodynamic Limit of Ising Equilib-
rium States

The set of states on C(ΩZd) is weak-* compact. From this we deduce that at
each fixed βJ , the set of finite volume states {ωΛ}Λ⊆Zd has at least one limit
point (extend them to states on all of Zd in more or less any way you like). And
more generally the same is true for sequences with other boundary conditions
bΛ. The Peierls argument shows that if ω+ and ω− are such limit points of {ω+

Λ }
and {ω−Λ } respectively, then for all β large enough, they will be distinct, since

ω+(σ0) = −ω−(σ0) 6= 0 (84)

Later, in a more general context, we will show that for small β the limit points
are unique independent of bΛ. It is nevertheless still an interesting question
whether the sequence ω+

Λ itself converges.

Theorem 4.1. 1. Let {ω0
Λ} be the sequence of β Gibbs states in finite volume

Λ ⊆ Zd of the Ising model with free boundary conditions. Then

ω0
Λ(σA)↗ ω0(σA) for all finite subsets A ⊂ Zd (85)

2. If {ω+
Λ } is a sequence corresponding to + boundary conditions, then

ω+
Λ (σA)↘ ω+(σA) (86)

i.e., we have weak* convergence in both cases and they are monotone in-
creasing and decreasing, respectively, on the basis functions σA.

Proof. Proof of 1.
ω0

Λ can be regarded as the Gibbs state for the ferromagnetic Ising model

HΛ = −
∑
X

JΛ
XσX (87)

with

JΛ
X =

{
J if X = (x, y), x, y ∈ Λ, |x− y| = 1
0 otherwise (88)
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with J > 0. Hence, JΛ
X is monotonic increasing by the second Griffiths inequal-

ity.
Proof of 2.
Define

JΛ
X =

 Jx if X = x, y, x, y ∈ Λ, |x− y| = 1
+∞ if X = {x}, x ∈ Λc

0 otherwise
(89)

It is not hard to see that the infinite coupling constant does not pose a problem.

Note that the Griffiths inequalities also show that a variety of other Ising
models with higher dimensionality and anisotropies also have a non-vanishing
magnetism at sufficiently low temperature by comparing with the two-dimensional
translation invariant model.
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