MAT 21C: PRACTICE PROBLEMS LECTURE 12

PROFESSOR CASALS (SECTIONS B01-08)

Abstract

Practice problems for the twelfth lecture of Part II, delivered June 2nd 2023. Solutions will be posted within 48 h of these problems being posted.

Brief reminder from lecture: Given a critical point $\left(x_{0}, y_{0}\right)$ of a function $f(x, y)$, the characteristic polynomial $p(\lambda)$ at the critical point $\left(x_{0}, y_{0}\right)$ is computed as follows:
(1) First, compute the four second derivatives

$$
\partial_{x x} f, \partial_{y y} f, \partial_{x y} f, \partial_{y x} f .
$$

(Recall that you should always get $\partial_{x y} f=\partial_{y x} f$.)
(2) Second, evaluate the four second derivatives at (x_{0}, y_{0}), setting:

$$
\begin{array}{lr}
a:=\partial_{x x} f\left(x_{0}, y_{0}\right), & b:=\partial_{x y} f\left(x_{0}, y_{0}\right), \\
c:=\partial_{y x} f\left(x_{0}, y_{0}\right), & d:=\partial_{y y} f\left(x_{0}, y_{0}\right) .
\end{array}
$$

(3) The characteristic polynomial $p(\lambda)$ at the critical point $\left(x_{0}, y_{0}\right)$ is the polynomial

$$
\lambda^{2}-(a+d) \lambda+(a d-b c) .
$$

The real roots λ_{+}, λ_{-}of the characteristic polynomial determine the type of critical point, as follows:

- If both $\lambda_{+}, \lambda_{-}>0$, then it is a minimum.
- If both $\lambda_{+}, \lambda_{-}<0$, then it is a maximum.
- If one of λ_{+}, λ_{-}is positive and the other is negative, then it is a saddle.
- Otherwise, i.e. if at least one of λ_{+}, λ_{-}is zero or the roots are imaginary, then we cannot decide.

Another fast way to check is to just compute a and $a d-b c$ directly, then you can instead use the following criteria:

- If both $a d-b c>0$ and $a>0$, then it is a minimum.
- If $a d$ - $b c>0$ and $a<0$, then it is a maximum.
- If $a d-b c<0$, then it is a saddle.
- If $a d-b c=0$, then we cannot decide.

Problem 1. Consider the function $f(x, y)=x^{2} y^{2}-5 x^{2}-5 y^{2}-8 x y$.
(a) Show that the critical points are $(0,0),(3,3),(-3,-3),(1,-1)$ and $(-1,1)$.

The first derivatives are $f_{x}(x, y)=2 x y^{2}-10 x-8 y$ and $f_{y}(x, y)=2 x^{2} y-$ $10 y-8 x$. Since $f_{x}(0,0)=f_{y}(0,0)=0, f_{x}(3,3)=f_{y}(3,3)=0, f_{x}(-3,-3)=$ $f_{y}(-3,-3)=0, f_{x}(1,-1)=f_{y}(1,-1)=0$, and $f_{x}(-1,1)=f_{y}(-1,1)=0$, those points are critical points.
(b) Compute all the second derivatives $\partial_{x x} f, \partial_{y y} f, \partial_{x y} f, \partial_{y x} f$.

$$
\begin{aligned}
\partial_{x x} f & =2 y^{2}-10 \\
\partial_{y y} f & =2 x^{2}-10 \\
\partial_{x y} f & =4 x y-8 \\
\partial_{y x} f & =4 x y-8
\end{aligned}
$$

(c) Write the characteristic polynomials for each of the 5 critical points in Part (a).

$$
\begin{aligned}
& \text { At }(0,0): \lambda^{2}+20 \lambda+100 \\
& \text { At }(3,3): \lambda^{2}-16 \lambda+\left(16-28^{2}\right) \\
& \text { At }(-3,-3): \lambda^{2}-16 \lambda+\left(16-28^{2}\right) \\
& \text { At }(1,-1): \lambda^{2}+16 \lambda+\left(-16-(-12)^{2}\right) \\
& \text { At }(-1,1): \lambda^{2}+16 \lambda+\left(-16-(-12)^{2}\right)
\end{aligned}
$$

(d) Show that $(0,0)$ is a maximum, and all the rest, $(3,3),(-3,-3),(1,-1)$ and $(-1,1)$, are saddle points.

For $(0,0), \lambda^{2}+20 \lambda+100=(\lambda+10)^{2}=0 \Longrightarrow \lambda_{+}, \lambda_{-}=-10$, so there is a maximum at this point. We see that $16-28^{2}<0$ and $-16-(-12)^{2}<0$, so the rest are saddle points (by the shortcut).
Problem 2. Consider the function $f(x, y)=4 x^{2}+9 y^{2}+8 x-36 y+24$.
(a) Show that the only critical point is $(-1,2)$.

$$
\begin{aligned}
& f_{x}(x, y)=8 x+8=0 \Longrightarrow x=1 \\
& f_{y}(x, y)=18 y-36=0 \Longrightarrow y=2
\end{aligned}
$$

(b) Prove that $(-1,2)$ is a minimum.
$\partial_{x x} f=8$
$\partial_{y y} f=18$
$\partial_{x y} f=\partial_{y x} f=0$
Since $8(18)-0>0$ and $8>0$, the point $(-1,2)$ is a minimum
Problem 3. For each of the following functions, find all critical points and determine whether they are minima, saddles, maxima or cannot decide.
(a) $f(x, y)=x^{3}+2 x y-6 x-4 y^{2}$.
$\left(x_{0}, y_{0}\right)=\left(-\frac{3}{2},-\frac{3}{8}\right)$ - maximum
$\left(x_{1}, y_{1}\right)=\left(\frac{4}{3}, \frac{1}{3}\right)$ - saddle
(b) $f(x, y)=x^{3}-3 x y^{2}$.
$\left(x_{0}, y_{0}\right)=(0,0)$ - saddle
(c) $f(x, y)=e^{x}\left(x^{4}+y^{4}\right)$.
$\left(x_{0}, y_{0}\right)=(-4,0)$ - can't decide $\left(x_{1}, y_{1}\right)=(0,0)$ - can't decide
(d) $f(x, y)=x y-x+y$.
$\left(x_{0}, y_{0}\right)=(-1,1)$ - saddle
(e) $f(x, y)=y \cos (x)$.
$\left(x_{n}, y_{n}\right)=\left(2 \pi n \pm \frac{\pi}{2}, 0\right)$ for $n \in \mathbb{N}$ - (infinitely many) saddle points
(f) $f(x, y)=x^{2} y^{2}$.
$\left(x_{0}, y_{0}\right)=(0,0)$ - can't decide

