# MAT 21C: PRACTICE PROBLEMS LECTURE 10 

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the tenth lecture of Part II, delivered May 222023.
Solutions will be posted within 48 h of these problems being posted.

Reminder: the 2nd Newton Law states $F(t)=m \cdot a(t)$, where $F(t)$ is the force vector, $m$ the mass of the particle, and $a(t)$ its acceleration vector.
Problem 1. Suppose that a particle starts at $r(0)=\langle 5,2,-1\rangle$ and has velocity vector

$$
v(t)=\left\langle t^{3}, \sin (t), e^{-t}\right\rangle
$$

(a) Find the trajectory $r(t)$ of the particle.
(b) Where is the particle at $t=10$ seconds?

Problem 2. Suppose that a particle starts at $r(0)=\langle 0,0,1\rangle$ and has velocity vector

$$
v(t)=\langle 0,0,-t\rangle .
$$

Find when the particle will hit the origin $(0,0,0)$, i.e. find the time $t$ so $r(t)=\langle 0,0,0\rangle$.

Problem 3. A pebble of mass $m=0.1 \mathrm{~kg}$ is dropped from the point $S=(0,0,3)$, with initial velocity $v(0)=\langle 0,0,0\rangle$. Assume that the force of gravity is $F(t)=\langle 0,0,-9.81\rangle$.
(a) Find the position of the particle after $t=15$ seconds.
(b) Does the particle ever pass through the origin $(0,0,0)$ ? If so, at what time $t$ ?
(c) Suppose there is increasingly stronger winds blowing west according to

$$
\langle 0,5 t, 0\rangle,
$$

and thus the force applied to the particle is instead

$$
F(t)=\langle 0,5 t,-9.81\rangle
$$

Find the position of the particle after $t=15$ seconds and show that it will never hit the origin $(0,0,0)$.

Problem 4. Consider a particle in space moving with acceleration

$$
a(t)=\left\langle t^{2}, 3-\cos (t), 45 t+e^{t}\right\rangle .
$$

Suppose the initial velocity of the particle is $v(0)=\langle 0,0,1\rangle$ and its initial position is $r(0)=\langle 2,0,3\rangle$.
(a) Find the velocity $v(t)$ of the particle.
(b) Find the speed of the particle at $t=0$ and at $t=10$.
(c) Find the position $r(10)$ of particle at $t=10$.

