MAT 21C: PRACTICE PROBLEMS LECTURE 12

PROFESSOR CASALS (SECTIONS B01-08)

ABSTRACT. Practice problems for the twelfth lecture of Part II, delivered June 2nd 2023. Solutions will be posted within 48h of these problems being posted.

<u>Brief reminder from lecture</u>: Given a critical point (x_0, y_0) of a function f(x, y), the characteristic polynomial $p(\lambda)$ at the critical point (x_0, y_0) is computed as follows:

(1) First, compute the four second derivatives

$$\partial_{xx}f, \partial_{yy}f, \partial_{xy}f, \partial_{yx}f.$$

(Recall that you should always get $\partial_{xy}f = \partial_{yx}f$.)

(2) Second, evaluate the four second derivatives at (x_0, y_0) , setting:

$$a := \partial_{xx} f(x_0, y_0), \quad b := \partial_{xy} f(x_0, y_0),$$
$$c := \partial_{yx} f(x_0, y_0), \quad d := \partial_{yy} f(x_0, y_0).$$

(3) The characteristic polynomial $p(\lambda)$ at the critical point (x_0, y_0) is the polynomial

$$\lambda^2 - (a+d)\lambda + (ad-bc).$$

The real roots λ_+, λ_- of the characteristic polynomial determine the type of critical point, as follows:

- If both $\lambda_+, \lambda_- > 0$, then it is a minimum.
- If both $\lambda_+, \lambda_- < 0$, then it is a maximum.
- If one of λ_+, λ_- is positive and the other is negative, then it is a saddle.
- Otherwise, i.e. if at least one of λ_+, λ_- is zero or the roots are imaginary, then we cannot decide.

Another fast way to check is to just compute a and ad - bc directly, then you can instead use the following criteria:

- If both ad bc > 0 and a > 0, then it is a minimum.
- If ad bc > 0 and a < 0, then it is a maximum.
- If ad bc < 0, then it is a saddle.
- If ad bc = 0, then we cannot decide.

Problem 1. Consider the function $f(x, y) = x^2y^2 - 5x^2 - 5y^2 - 8xy$.

- (a) Show that the critical points are (0, 0), (3, 3), (-3, -3), (1, -1) and (-1, 1).
- (b) Compute all the second derivatives $\partial_{xx}f, \partial_{yy}f, \partial_{xy}f, \partial_{yx}f$.
- (c) Write the characteristic polynomials for each of the 5 critical points in Part (a).
- (d) Show that (0,0) is a maximum, and all the rest, (3,3), (-3,-3), (1,-1) and (-1,1), are saddle points.

Problem 2. Consider the function $f(x, y) = 4x^2 + 9y^2 + 8x - 36y + 24$.

- (a) Show that the only critical point is (-1, 2).
- (b) Prove that (-1, 2) is a minimum.

Problem 3. For each of the following functions, find *all* critical points and determine whether they are minima, saddles, maxima or cannot decide.

- (a) $f(x,y) = x^3 + 2xy 6x 4y^2$.
- (b) $f(x,y) = x^3 3xy^2$.
- (c) $f(x,y) = e^x(x^4 + y^4)$.
- (d) f(x,y) = xy x + y.
- (e) $f(x, y) = y \cos(x)$.
- (f) $f(x,y) = x^2 y^2$.