MAT 21C: PRACTICE PROBLEMS LECTURE 2

PROFESSOR CASALS (SECTIONS B01-08)

Abstract

These practice problems correspond to the second lecture of Part II, delivered on May 3rd 2023.

From now onward, the symbol $p \in X$ means p belongs to X.

Problem 1. Consider the plane $\pi=\{3 x-4 y+z=5\}$.
(1) Decide which of the following points belongs to π :

$$
(0,0,0), \quad(0,0,5), \quad(1,1,6), \quad(2,-1,4), \quad(0,3,17), \quad(-1,-2,-3),
$$

(2) Find two points in π different from those in Part (1).
(3) Find the direction perpendicular to π.

For (1), we substitute the values of x, y and z for every point into the equation $3 x-$ $4 y+z=5$ and see if it is satisfied:

- For $(0,0,0): 3 \cdot 0-4 \cdot 0+1 \cdot 0 \neq 5$, and thus $(0,0,0)$ does not belong to π.
- For $(0,0,5): 3 \cdot 0-4 \cdot 0+1 \cdot 5=5$, and thus $(0,0,5)$ does belong to π.
- For $(1,1,6): 3 \cdot 1-4 \cdot 1+1 \cdot 6=5$, and thus $(1,1,6)$ does belong to π.
- For $(2,-1,4): 3 \cdot 2-4 \cdot(-1)+1 \cdot 4 \neq 5$, and $(2,-1,4)$ does not belong to π.
- For $(0,3,17): 3 \cdot 0-4 \cdot 3+1 \cdot 17=5$, and thus $(0,3,17)$ does belong to π.

So the points that belong to L are $(0,0,5),(1,1,6),(0,3,17)$, while the rest do not.

For (2), we can for instance sample value for x, y and solve for z. For example, choose $x=1, y=0$ and that $z=5-3 x+4 y=5-3 \cdot 1+4 \cdot 0=2$. So the point $(1,0,2)$ belongs to π. For another one, say we choose $x=0, y=1$ and then $z=5-3 x+4 y=5-3 \cdot 0+4 \cdot 1=9$. So the point $(0,1,9)$ belongs to π.

For (3), we saw in lecture that the direction perpendicular to a plane of the form $\{a x+b y+c z=d\}$ is always (a, b, c). Thus the direction perpendicular to π is $(3,-4,1)$.

Problem 2. Consider the plane π whose perpendicular direction is $(1,2,-5)$ and passes through the point $P=(1,0,1)$. Find an equation for π.
Since the perpendicular direction to π is $(a, b, c)=(1,2,-5)$, the equation for π is of the form $\pi=\{1 \cdot x+2 \cdot y-5 \cdot z=d\}$ for some real value d to be found. Since the point P belongs to π, the equation for π must be satisfied for $(1,0,1)$. Therefore we must have $1 \cdot 1+2 \cdot 0-5 \cdot 1=d$. This implies $d=-4$ and an equation for π is $\pi=\{1 \cdot x+2 \cdot y-5 \cdot z=-4\}$.

Problem 3. Consider three points $P_{1}=(1,0,-1), P_{2}=(2,3,-1)$ and $P_{3}=(0,1,0)$.
(i) Find the unique plane π which contains P_{1}, P_{2} and P_{3}.
(ii) Find a different plane π^{\prime} which also contains both P_{1} and P_{2}, i.e. $P_{1}, P_{2} \in \pi^{\prime}$, but so that π^{\prime} does not contain P_{3}.

For (i), the equation for the plane π must be of the form

$$
a x+b y+c z=d
$$

for some values of a, b, c, d to be found. Since $P_{1}, P_{2}, P_{3} \in \pi$, substituting each of their (x, y, z) values must solve the above equation. This yields the following system of three equations for the variables a, b, c, d :

$$
\begin{gathered}
a \cdot 1+b \cdot 0+c \cdot(-1)=d \\
a \cdot 2+b \cdot 3+c \cdot(-1)=d \\
a \cdot 0+b \cdot 1+c \cdot 0=d
\end{gathered}
$$

There are (infinitely many) solutions to this system, we can just pick any of them. For instance, setting $d=1$ we get $b=1$ from the last equation. The first two questions then read $a+c=1$ and $2 a+3+c=1$. So we obtain the solution

$$
a=-3, b=1, c=-4, d=1
$$

Therefore $\pi=\{-3 x+y-4 z=1\}$.

For (ii), let us choose another point P_{4} different from P_{3} and find the unique plane π^{\prime} through P_{1}, P_{2} and P_{4}. For simplicity, we choose $P_{4}=(0,0,0)$. Then the system of equations for a, b, c, d becomes

$$
\begin{gathered}
a \cdot 1+b \cdot 0+c \cdot(-1)=d \\
a \cdot 2+b \cdot 3+c \cdot(-1)=d \\
a \cdot 0+b \cdot 0+c \cdot 0=d
\end{gathered}
$$

This implies $d=0$ and we are left with $a-c=0$ and $2 a+3 b-c=0$. Therefore $a=c$ and $a+3 b=0$. By choosing $a=3$ we obtain $c=3$ and $b=-1$. Hence $\pi^{\prime}=\{3 x-y+3 z=0\}$.
Problem 4. Consider the plane $\pi=\{5 x-3 y+z=-2\}$. Find a different plane π^{\prime} with the same perpendicular direction as π.
Since π^{\prime} must have the same perpendicular direction $(a, b, c)=(5,-3,1)$ as π, an equation for π^{\prime} must be of the form $\pi^{\prime}=\{5 x-3 y+z=d\}$ for some value of d. It suffices to choose d different from -2 so that π^{\prime} is different from π. For instance $d=0$ works, and we can choose $\pi^{\prime}=\{5 x-3 y+z=0\}$.
Problem 5. Consider the two points $P_{1}=(1,0,-1), P_{2}=(2,3,-1)$. Find the distance between P_{1} and P_{2}.

The formula for the distance $d\left(P_{1}, P_{2}\right)$ between P_{1} and P_{2} is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{(1-2)^{2}+(0-3)^{2}+(-1-(-1))^{2}}=\sqrt{1+9+0}=\sqrt{10}
$$

