MAT 21C: PRACTICE PROBLEMS LECTURE 2

PROFESSOR CASALS (SECTIONS B01-08)

ABSTRACT. These practice problems correspond to the second lecture of Part II, delivered on May 3rd 2023.

From now onward, the symbol $p \in X$ means p belongs to X.

Problem 1. Consider the plane $\pi = \{3x - 4y + z = 5\}$.

(1) Decide which of the following points belongs to π :

(0,0,0), (0,0,5), (1,1,6), (2,-1,4), (0,3,17), (-1,-2,-3),

- (2) Find two points in π different from those in Part (1).
- (3) Find the direction perpendicular to π .

For (1), we substitute the values of x, y and z for every point into the equation 3x - 4y + z = 5 and see if it is satisfied:

- For (0, 0, 0): $3 \cdot 0 4 \cdot 0 + 1 \cdot 0 \neq 5$, and thus (0, 0, 0) does not belong to π .
- For (0,0,5): $3 \cdot 0 4 \cdot 0 + 1 \cdot 5 = 5$, and thus (0,0,5) does belong to π .
- For (1, 1, 6): $3 \cdot 1 4 \cdot 1 + 1 \cdot 6 = 5$, and thus (1, 1, 6) does belong to π .
- For (2, -1, 4): $3 \cdot 2 4 \cdot (-1) + 1 \cdot 4 \neq 5$, and (2, -1, 4) does not belong to π .
- For (0,3,17): $3 \cdot 0 4 \cdot 3 + 1 \cdot 17 = 5$, and thus (0,3,17) does belong to π .

So the points that belong to L are (0, 0, 5), (1, 1, 6), (0, 3, 17), while the rest do not.

For (2), we can for instance sample value for x, y and solve for z. For example, choose x = 1, y = 0 and that $z = 5 - 3x + 4y = 5 - 3 \cdot 1 + 4 \cdot 0 = 2$. So the point (1,0,2) belongs to π . For another one, say we choose x = 0, y = 1 and then $z = 5 - 3x + 4y = 5 - 3 \cdot 0 + 4 \cdot 1 = 9$. So the point (0,1,9) belongs to π .

For (3), we saw in lecture that the direction perpendicular to a plane of the form $\{ax+by+cz=d\}$ is always (a, b, c). Thus the direction perpendicular to π is (3, -4, 1).

Problem 2. Consider the plane π whose perpendicular direction is (1, 2, -5) and passes through the point P = (1, 0, 1). Find an equation for π .

Since the perpendicular direction to π is (a, b, c) = (1, 2, -5), the equation for π is of the form $\pi = \{1 \cdot x + 2 \cdot y - 5 \cdot z = d\}$ for some real value d to be found. Since the point P belongs to π , the equation for π must be satisfied for (1, 0, 1). Therefore we must have $1 \cdot 1 + 2 \cdot 0 - 5 \cdot 1 = d$. This implies d = -4 and an equation for π is $\pi = \{1 \cdot x + 2 \cdot y - 5 \cdot z = -4\}$.

Problem 3. Consider three points $P_1 = (1, 0, -1), P_2 = (2, 3, -1)$ and $P_3 = (0, 1, 0)$.

- (i) Find the unique plane π which contains P_1, P_2 and P_3 .
- (ii) Find a different plane π' which also contains both P_1 and P_2 , i.e. $P_1, P_2 \in \pi'$, but so that π' does not contain P_3 .

For (i), the equation for the plane π must be of the form

$$ax + by + cz = d,$$

for some values of a, b, c, d to be found. Since $P_1, P_2, P_3 \in \pi$, substituting each of their (x, y, z) values must solve the above equation. This yields the following system of three equations for the variables a, b, c, d:

$$a \cdot 1 + b \cdot 0 + c \cdot (-1) = d,$$

 $a \cdot 2 + b \cdot 3 + c \cdot (-1) = d,$
 $a \cdot 0 + b \cdot 1 + c \cdot 0 = d.$

There are (infinitely many) solutions to this system, we can just pick any of them. For instance, setting d = 1 we get b = 1 from the last equation. The first two questions then read a + c = 1 and 2a + 3 + c = 1. So we obtain the solution

$$a = -3, b = 1, c = -4, d = 1.$$

Therefore $\pi = \{-3x + y - 4z = 1\}.$

For (ii), let us choose another point P_4 different from P_3 and find the unique plane π' through P_1, P_2 and P_4 . For simplicity, we choose $P_4 = (0, 0, 0)$. Then the system of equations for a, b, c, d becomes

$$a \cdot 1 + b \cdot 0 + c \cdot (-1) = d,$$

 $a \cdot 2 + b \cdot 3 + c \cdot (-1) = d,$
 $a \cdot 0 + b \cdot 0 + c \cdot 0 = d.$

This implies d = 0 and we are left with a - c = 0 and 2a + 3b - c = 0. Therefore a = c and a + 3b = 0. By choosing a = 3 we obtain c = 3 and b = -1. Hence $\pi' = \{3x - y + 3z = 0\}$.

Problem 4. Consider the plane $\pi = \{5x - 3y + z = -2\}$. Find a different plane π' with the same perpendicular direction as π .

Since π' must have the same perpendicular direction (a, b, c) = (5, -3, 1) as π , an equation for π' must be of the form $\pi' = \{5x - 3y + z = d\}$ for some value of d. It suffices to choose d different from -2 so that π' is different from π . For instance d = 0 works, and we can choose $\pi' = \{5x - 3y + z = 0\}$.

Problem 5. Consider the two points $P_1 = (1, 0, -1), P_2 = (2, 3, -1)$. Find the distance between P_1 and P_2 .

The formula for the distance $d(P_1, P_2)$ between P_1 and P_2 is

$$d(P_1, P_2) = \sqrt{(1-2)^2 + (0-3)^2 + (-1-(-1))^2} = \sqrt{1+9+0} = \sqrt{10}.$$