MAT 21C: PRACTICE PROBLEMS LECTURE 3

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the third lecture of Part II, delivered May 52023.

Problem 1. Show that the surface $S=\left\{x^{2}-2 x+y^{2}+z^{2}-6 z=-1\right\}$ is the sphere of radius 3 and center ($1,0,3$).
We want to verify that the equation that gives S is equivalent to the equation

$$
(x-1)^{2}+y^{2}+(z-3)^{2}=9
$$

which indeed describes the sphere of radius 3 and center ($1,0,3$). For that we consider the above equation and expand it:

$$
\begin{aligned}
& (x-1)^{2}+y^{2}+(z-3)^{2}=9 \Longleftrightarrow x^{2}-2 x+1+y^{2}+z^{2}-6 z+9=9 \Longleftrightarrow \\
& \Longleftrightarrow x^{2}-2 x+1+y^{2}+z^{2}-6 z=0 \Longleftrightarrow x^{2}-2 x+1+y^{2}+z^{2}-6 z=-1
\end{aligned}
$$

which is indeed the equation given in the statement of the problem. Here we have used that $(a-b)^{2}=a^{2}-2 a b+b^{2}$.
Problem 2. Knowing that the surface $S=\left\{x^{2}+y^{2}+8 y+z^{2}-2 z=8\right\}$ is a sphere of radius 5 , find its center.
Since $x^{2}+y^{2}+8 y+z^{2}-2 z=8$ is a sphere of radius 5 , its equation must be of the form

$$
\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}+\left(z-c_{3}\right)^{2}=25
$$

where $\left(c_{1}, c_{2}, c_{3}\right)$ is its center. We need to find the (unique) values of $\left(c_{1}, c_{2}, c_{3}\right)$ so that this equation matches the equation $x^{2}+y^{2}+8 y+z^{2}-2 z=8$. Expanding the equation above we obtain:

$$
x^{2}-2 x c_{1}+c_{1}^{2}+y^{2}-2 y c_{2}+c_{2}^{2}+z^{2}-2 z c_{3}+c_{3}^{2}=25
$$

We want to be comparing the coefficients in front of each $x^{2}, y^{2}, z^{2}, x, y, z$ and the constant for each of this equation and $x^{2}+y^{2}+8 y+z^{2}-2 z=8$:

- For x^{2}, y^{2}, z^{2} the coefficients are 1 for both, so that is a good start.
- For x the coefficients are 0 and $-2 c_{1}$, so we obtain the equation $0=-2 c_{1}$. Therefore $c_{1}=0$.
- For y the coefficients are 8 and $-2 c_{2}$, so we obtain the equation $8=-2 c_{2}$. Therefore $c_{2}=-4$.
- For z the coefficients are -2 and $-2 c_{3}$, so we obtain the equation $-2=-2 c_{3}$. Therefore $c_{3}=1$.
- The constant coefficient are $25-c_{1}^{2}-c_{2}^{2}-c_{3}^{2}$ and 8 . Since $25-16-1=8$, the above values of $c_{1}=0, c_{2}=-4$ and $c_{3}=-1$ work.
In conclusion, the center of the sphere is $\left(c_{1}, c_{2}, c_{3}\right)=(0,-4,1)$.

Problem 3. Describe the set of points satisfying

$$
\{x+2 y-z=3, \quad 4 x-5 y-z=0\} .
$$

The set of points satisfying $x+2 y-z=3$ is a plane. The set of points satisfying $4 x-5 y-z=0$ is also a plane. Therefore the set of points satisfying both equations is the intersection of these two planes.

Two planes can either not intersect (at all) or intersect exactly at a line. If we find a point that belongs to both planes, it must be that they intersect and therefore the intersection will have to be a line. So we need to find one solution of both equations $4 x-5 y-z=0$ and $x+2 y-z=3$. Subtracting one equation from the other we deduce that $3 x-7 y=-3$ and we can just choose $x=-1$ and $y=0$ as a possible solution. Since $x+2 y-z=3$ (or $4 x-5 y-z=0$), we get $z=-4$. Hence the point $(-1,0,-4)$ belongs to both planes.

Problem 4. Let $\pi_{1}=\{a x+b y+c z=d\}$ and $\pi_{2}=\{\alpha x+\beta y+\gamma z=\delta\}$ be two planes. Show that π_{1} are π_{2} are parallel (and therefore do not intersect) if and only if (a, b, c) is a multiple of (α, β, γ), i.e. $a / \alpha=b / \beta=c / \gamma$.

The perpendicular direction to π_{1} is (a, b, c) and the perpendicular direction to π_{2} is (α, β, γ). The two planes π_{1} and π_{2} being parallel is equivalent to saying that their perpendicular directions are "in the same direction", i.e. one is a multiple of the other. Therefore π_{1} and π_{2} are parallel if and only if there exists a real constant k such that $(k \cdot a, k \cdot b, k \cdot c)=(\alpha, \beta, \gamma)$. In that case, the ratios $a / \alpha, b / \beta$ and c / γ are all equal to k and thus equal to each other.

Problem 5. Describe the following subsets of space:
(1) $\{x-y+3 z \geq 4\}$
(2) $\{x \geq 0, y \geq 0, z \geq 0\}$
(3) $\left\{x^{2}-4 x+4+y^{2}+z^{2}<81\right\}$
(4) $\left\{x^{2}+y^{2}+z^{2}<36, y \leq 0\right\}$
(5) $\left\{x^{2}+y^{2}+z^{2}<36, y=0\right\}$
(6) $\left\{x^{2}+y^{2}+z^{2}=36, y=0\right\}$
(7) $\left\{x^{2}+y^{2}+z^{2}>36, y=0\right\}$

For (1), the equality $x-y+3 z=4$ defines a plane in space. Hence it cuts space out into two half-spaces. Therefore $x-y+3 z \geq 4$ is a half-space. To decide which one, we note that $(0,0,0)$ satisfies $x-y+3 z<4$. Therefore, the answer is that it is the only half-space (out of the possible two) which does not contain the origin.

For (2), $x=0$ cuts out a plane and thus $x \geq 0$ is a half-space. It is the half-space that contains $(1,0,0)$, for instance. (Instead of, say, $(-1,0,0)$.) Note that a half-space is made out of 4 octants. Now $y=0$ also cuts out a plane and $y \geq 0$ is also a half-space. The intersection of $x \geq 0$ with $y \geq 0$ is therefore the intersection of two half-spaces. This intersection is 2 of those 4 octants. Finally, $z \geq 0$ is also a half-space. The intersection of $z \geq 0$ with $\{x \geq 0, y \geq 0\}$ is 1 of octant (of the two in $\{x \geq 0, y \geq 0\}$).

For (3), we note that $\left\{x^{2}-4 x+4+y^{2}+z^{2}=81\right\}$ can be re-written as $\left\{(x-2)^{2}+y^{2}+z^{2}=\right.$ $\left.9^{2}\right\}$, which we recognize as the sphere centered at $(2,0,0)$ of radius 9 . This sphere cuts space into two halves: a ball, which contains the center ($2,0,0$) and space minus a ball. To decide which of these two regions $\left\{x^{2}-4 x+4+y^{2}+z^{2}<81\right\}$ represents, we check what inequality the center verified. Since $(x, y, z)=(2,0,0)$ plug into $\left\{x^{2}-4 x+4+y^{2}+z^{2}<81\right\}$ gives $0<81$, the inequality is satisfied. Therefore $\left\{x^{2}-4 x+4+y^{2}+z^{2}<81\right\}$ is the region which contains the center and it is thus a ball.

For (4), $\left\{x^{2}+y^{2}+z^{2}=36\right\}$ is the sphere of radius $R=6$ centered at the origin $O=(0,0,0)$. Therefore $\left\{x^{2}+y^{2}+z^{2}<36\right\}$ is a ball. The equality $y=0$ cuts out a plane through the origin and $y \leq 0$ is a half-space. Therefore the intersection of the ball $\left\{x^{2}+y^{2}+z^{2}<36\right\}$ with the half-space $\{y \leq 0\}$ is half of the ball. (Note that the plane $\{y=0\}$ contains the center, so it really cuts the ball exactly by half.)

For (5), $\left\{x^{2}+y^{2}+z^{2}=36\right\}$ is the sphere of radius $R=6$ centered at the origin $O=(0,0,0)$ and, as before $\left\{x^{2}+y^{2}+z^{2}<36\right\}$ is a ball. The plane $\{y=0\}$ passes through the center of this ball. Therefore the intersection of this ball with the plane is a disk: a flat surface contained in the plane $\{y=0\}$ in the shape of a pizza.

For (6), $\left\{x^{2}+y^{2}+z^{2}=36\right\}$ is the sphere of radius $R=6$ centered at the origin $O=(0,0,0)$. The plane $\{y=0\}$ passes through the center of this ball. Now the intersection of this sphere (a surface, not a ball!) with the plane is a circle: it is a circle in the plane $\{y=0\}$. In the previous example, that circle is the crust of the pizza disk in the previous example.

For (7), $\left\{x^{2}+y^{2}+z^{2}=36\right\}$ is the sphere of radius $R=6$ centered at the origin $O=(0,0,0)$ and $\left\{x^{2}+y^{2}+z^{2}>36\right\}$ is the entire space minus a ball. (Like we removed a solid ball from space.) The equality $y=0$ cuts out a plane through the origin. The intersection of the region $\left\{x^{2}+y^{2}+z^{2}>36\right\}$ with the plane $\{y=0\}$ is contained in the plane. Since we are intersecting space minus a ball with the plane, and the ball intersects the plane at a disk, the answer is that the intersection is a plane minus a disk. (If you had a table with a pizza on it, this region is exactly all points in the table, which is the plane, except the regions that has the pizza.)

