MAT 21C: PRACTICE PROBLEMS LECTURE 4

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the fourth lecture of Part II, delivered May 82023.

 Solutions will be posted within 48 h of these problems being posted.Problem 1. Consider the vectors $v=\langle 3,-7,1\rangle$ and $w=\langle-1,4,2\rangle$.
(a) Compute the following vectors $v+w, 2 v, 5 w$ and $2 v+5 w$.
(b) Find the length of v and w.
(c) Find the unit length vector in the direction of v and the unit length vector in the direction of w.

Problem 2. Consider the points $P=(-5,1,2), Q=(7,6,-3)$, and $R=(1,0,4)$.
(a) Find the vector $\overrightarrow{P Q}$ and its length $|\overrightarrow{P Q}|$.
(b) Find the midpoint between P and Q.
(c) Compute the vectors $\overrightarrow{Q R}$ and $\overrightarrow{P R}$ and show that $\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}$.

Problem 3. Consider the vectors $v=\langle 1,-2,-3\rangle$ and $w=\langle-1,4,5\rangle$.
(a) Find a vector u such that $v+u=w$.
(b) Compute the lengths $|v|,|w|$ and $|v+w|$.
(c) Justify geometrically that $|v+w| \leq|v|+|w|$.

Problem 4. Suppose that a vector $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ has length zero $|v|=0$. Argue that then $v=\langle 0,0,0\rangle$, i.e. $v_{1}=v_{2}=v_{3}=0$.

Problem 5. (Optional) Consider the eight vectors

$$
\begin{gathered}
v_{1}=\langle 1,1,1\rangle, \quad v_{2}=\langle 1,-1,1\rangle, \quad v_{3}=\langle 1,1,-1\rangle, \quad v_{4}=\langle-1,-1,1\rangle \\
v_{5}=\langle-1,1,1\rangle, \quad v_{6}=\langle 1,-1,-1\rangle, \quad v_{7}=\langle-1,1,-1\rangle, \quad v_{8}=\langle-1,-1,-1\rangle,
\end{gathered}
$$

which we think of geometrically as starting at the origin $O=(0,0,0)$.
(a) Draw the endpoints of each of the 8 vectors $v_{i}, i=1, \ldots, 8$.
(b) Show by direct computation that

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}+v_{6}+v_{7}+v_{8}=\overrightarrow{0},
$$

where $\overrightarrow{0}=(0,0,0)$ is the zero vector.
(c) Justify geometrically that

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}+v_{6}+v_{7}+v_{8}=\overrightarrow{0},
$$

by thinking about these vectors as arrows going around a cube.

