MAT 21C: PRACTICE PROBLEMS LECTURE 5

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the fifth lecture of Part II, delivered May 102023.

Solutions will be posted within 48 h of these problems being posted.

Problem 1. Consider the vector $v=\langle-2,1,-1\rangle$.
(a) Compute the length $|v|$.
(b) Find the dot product $v \cdot v$.
(c) Verify that, in this case, $|v|^{2}=v \cdot v$.
(d) Find the unit length vector $\frac{v}{|v|}$.

Problem 2. Consider the vectors $v=\langle 3,-7,1\rangle$ and $w=\langle-1,4,2\rangle$.
(a) Find the dot product $u \cdot v$.
(b) Compute the length $|v|$.
(c) Compute the scalar component of u in the direction of v.
(d) Find the projection of u in the direction of v.
(e) What is the angle between u and v ?

Problem 3. Consider a vector $v=\left(v_{1}, v_{2}, v_{3}\right)$.
(a) Show by direct computation that $|v|^{2}$ equals $v \cdot v$.
(b) As a second method, use the dot product-angle formula to deduce $|v|^{2}=v \cdot v$.
(c) As a third method, justify geometrically in terms of projections why $|v|^{2}=v \cdot v$.

Problem 4. Consider the vectors $u=\langle-1,2,0\rangle$ and $v=\langle 3,2,-5\rangle$.
(a) Show that $w=\langle 0,0,1\rangle$ is perpendicular to u but not to v.
(b) Show that $w=\langle 1,1,1\rangle$ is perpendicular to v but not to u.
(c) Show that $w=\langle 10,5,8\rangle$ is perpendicular to both v and u.

Problem 5. Consider the vectors $u=\langle-5,8,1\rangle$ and $v=\langle-2,3,7\rangle$.
(a) Find a non-zero vector which is perpendicular to u but not v.
(b) Find a non-zero vector which is perpendicular to v but not u.
(c) Find a non-zero vector which is perpendicular to both u and v.

Problem 6. Consider the plane $\pi=\{a x+b y+c z=0\}$ for some $a, b, c \in \mathbb{R}$. Explain using the dot product why $\langle a, b, c\rangle$ is the perpendicular direction to π.

Hint: The left hand side $a x+b y+c z=0$ of the equation can be writtent as $\langle a, b, c\rangle$. $\langle x, y, z\rangle$. Also, the endpoint of $\langle x, y, z\rangle$ belong to π if and only if $a x+b y+c z=0$.

