MAT 21C: PRACTICE PROBLEMS LECTURE 5

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the fifth lecture of Part II, delivered May 102023.

 Solutions will be posted within 48 h of these problems being posted.Problem 1. Consider the vector $v=\langle-2,1,-1\rangle$.
(a) Compute the length $|v|$.
(b) Find the dot product $v \cdot v$.
(c) Verify that, in this case, $|v|^{2}=v \cdot v$.
(d) Find the unit length vector $\frac{v}{|v|}$.
(a) In general, if $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then $|v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$. This gives

$$
|v|=\sqrt{(-2)^{2}+1^{2}+(-1)^{2}}=\sqrt{6}
$$

(b) The dot product formula for $u \cdot v$, where $u=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, is

$$
u \cdot v=u_{1} \cdot v_{1}+u_{2} \cdot v_{2}+u_{3} \cdot v_{3} .
$$

This gives

$$
v \cdot v=(-2) \cdot(-2)+1 \cdot 1+(-1) \cdot(-1)=6 .
$$

(c) Direct computation using results from (a),(b) gives

$$
|v|^{2}=(\sqrt{6})^{2}=6=v \cdot v
$$

(d) Since $|v|$ is a scalar, dividing each component of v by $|v|$ gives

$$
\frac{v}{|v|}=\left\langle\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right\rangle .
$$

Problem 2. Consider the vectors $v=\langle 3,-7,1\rangle$ and $w=\langle-1,4,2\rangle$.
(a) Find the dot product $u \cdot v$.
(b) Compute the length $|v|$.
(c) Compute the scalar component of u in the direction of v.
(d) Find the projection of u in the direction of v.
(e) What is the angle between u and v ?
(Assuming $w=u$.)
(a) Using the same formula as stated in Problem 1(b), this gives

$$
u \cdot v=(-1) \cdot 3+4 \cdot(-7)+2 \cdot 1=-3-28+2=-29 .
$$

(b) Using the same formula as in Problem 1(a), this gives

$$
|v|=\sqrt{3^{2}+(-7)^{2}+1^{2}}=\sqrt{59}
$$

(c) The formula for the scalar component of u in the direction of v is

$$
|u| \cos \theta=\frac{u \cdot v}{|v|}
$$

where θ is the angle between u and v. This gives

$$
\text { the scalar component of } u \text { in the direction of } v \text { equals } \frac{u \cdot v}{|v|}=\frac{-29}{\sqrt{59}} \text {. }
$$

(d) The formula for the projection of u in the direction of v is

$$
\operatorname{proj}_{v} u=\left(\frac{u \cdot v}{|v|^{2}}\right) v=\left(\frac{u \cdot v}{v \cdot v}\right) v
$$

Hence,

$$
\operatorname{proj}_{v} u=\left(\frac{u \cdot v}{|v|^{2}}\right) v=\frac{-29}{(\sqrt{59})^{2}}\langle 3,-7,1\rangle=\left\langle\frac{-87}{59}, \frac{203}{59}, \frac{-29}{59}\right\rangle .
$$

(e) Let the angle between u, v is θ, then the formula for finding θ is

$$
\theta=\arccos \left(\frac{u \cdot v}{|u||v|}\right)
$$

Firstly, $|u|=\sqrt{(-1)^{2}+4^{2}+2^{2}}=\sqrt{21}$, so that we can find θ as follows:

$$
\theta=\arccos \left(\frac{u \cdot v}{|u||v|}\right)=\arccos \left(\frac{-29}{\sqrt{21} \sqrt{59}}\right) .
$$

Problem 3. Consider a vector $v=\left(v_{1}, v_{2}, v_{3}\right)$.
(a) Show by direct computation that $|v|^{2}$ equals $v \cdot v$.
(b) As a second method, use the dot product-angle formula to deduce $|v|^{2}=v \cdot v$.
(c) As a third method, justify geometrically in terms of projections why $|v|^{2}=v \cdot v$.
(a) Using the same formula as stated in Problem 1(a), we have

$$
|v|^{2}=\left(\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}\right)^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=v_{1} \cdot v_{1}+v_{2} \cdot v_{2}+v_{3} \cdot v_{3}=v \cdot v
$$

(b) Let θ be the angle between u, v, then the dot product formula can also be stated as:

$$
u \cdot v=|u||v| \cos \theta
$$

Since the angle between v and v is 0 , then

$$
v \cdot v=|v||v| \cos (0)=|v|^{2} .
$$

(c) Using the formula as stated in Problem 2(c), and note that the angle between v and v is 0 . This implies the scalar component of v in the direction of v is

$$
|v| \cos (0)=\frac{v \cdot v}{|v|} \Longrightarrow|v|^{2}=v \cdot v
$$

Problem 4. Consider the vectors $u=\langle-1,2,0\rangle$ and $v=\langle 3,2,-5\rangle$.
(a) Show that $w=\langle 0,0,1\rangle$ is perpendicular to u but not to v.
(b) Show that $w=\langle 1,1,1\rangle$ is perpendicular to v but not to u.
(c) Show that $w=\langle 10,5,8\rangle$ is perpendicular to both v and u.

Vector u is perpendicular to v if and only if $u \cdot v=0$.
(a) Since $w \cdot u=0 \cdot(-1)+0 \cdot 2+1 \cdot 0=0$ and $w \cdot v=0 \cdot 3+0 \cdot 2+1 \cdot(-5)=-5 \neq 0$, this implies w is perpendicular to u but not v.
(b) Since $w \cdot u=1 \cdot(-1)+1 \cdot 2+1 \cdot 0=1 \neq 0$ and $w \cdot v=1 \cdot 3+1 \cdot 2+1 \cdot(-5)=0$, this implies w is perpendicular to v but not u.
(c) Since $w \cdot u=10 \cdot(-1)+5 \cdot 2+8 \cdot 0=0$ and $w \cdot v=10 \cdot 3+5 \cdot 2+8 \cdot(-5)=0$, this implies w is perpendicular to u and v.
Problem 5. Consider the vectors $u=\langle-5,8,1\rangle$ and $v=\langle-2,3,7\rangle$.
(a) Find a non-zero vector which is perpendicular to u but not v.
(b) Find a non-zero vector which is perpendicular to v but not u.
(c) Find a non-zero vector which is perpendicular to both u and v.

Vector u is perpendicular to v if and only if $u \cdot v=0$.
(a) Let $w=\langle 2,1,2\rangle$, then

$$
w \cdot u=2 \cdot(-5)+1 \cdot 8+2 \cdot 1=0
$$

and

$$
w \cdot v=2 \cdot(-2)+1 \cdot 3+2 \cdot 7=13 .
$$

This gives w is perpendicular to u but not v.
(b) Let $w=\langle 5,1,1\rangle$, then

$$
w \cdot u=5 \cdot(-5)+1 \cdot 8+1 \cdot 1=-16
$$

and

$$
w \cdot v=5 \cdot(-2)+1 \cdot 3+1 \cdot 7=0
$$

This gives w is perpendicular to v but not u.
(c) Suppose $w=\langle x, y, z\rangle$, then perpendicular to both u, v implies

$$
-5 x+8 y+z=0, \text { and }-2 x+3 y+7 z=0
$$

Set $z=1$, then

$$
-5 x+8 y+1=0, \text { and }-2 x+3 y+7=0,
$$

and by solving these two functions gives $x=53, y=33$. Hence, let $w=\langle 53,33,1\rangle$, then

$$
w \cdot u=-265+264+1=0, w \cdot v=-106+99+7=0
$$

This gives w is perpendicular to u and v.
Problem 6. Consider the plane $\pi=\{a x+b y+c z=0\}$ for some $a, b, c \in \mathbb{R}$. Explain using the dot product why $\langle a, b, c\rangle$ is the perpendicular direction to π.

Hint: The left hand side $a x+b y+c z=0$ of the equation can be writtent as $\langle a, b, c\rangle$. $\langle x, y, z\rangle$. Also, the endpoint of $\langle x, y, z\rangle$ belong to π if and only if $a x+b y+c z=0$.
Consider two arbitrary points of the plane, with

$$
\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \pi
$$

Definition of π gives

$$
a x_{1}+b y_{1}+c z_{1}=0, \quad a x_{2}+b y_{2}+c z_{2}=0
$$

which implies

$$
a\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)+c\left(z_{2}-z_{1}\right)=0,
$$

and it is equivalent to

$$
\langle a, b, c\rangle \cdot\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle=0
$$

Since $\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$ represents the vector that connects arbitrary two points in the plane, we have $\langle a, b, c\rangle$ perpendicular to vectors that connects arbitrary two points in the plane. Hence, $\langle a, b, c\rangle$ is the perpendicular direction to π.

