MAT 21C: PRACTICE PROBLEMS LECTURE 6

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the sixth lecture of Part II, delivered May 122023.
Solutions will be posted within 48 h of these problems being posted.

Problem 1. Consider the vectors $v=\langle-2,1,-1\rangle$ and $u=\langle 4,-5,7\rangle$.
(a) Compute the cross product $u \times v$.
(b) By explicit computation and only for this example, verify that the cross product $u \times v$ is orthogonal to both u and v.
(c) Find the area of the parallelogram spanned by u and v.

Problem 2. Consider the vectors $v=\langle 3,-7,1\rangle$ and $w=\langle-1,4,2\rangle$.
(a) Show that the cross product is $u \times v=\langle-18,-7,5\rangle$.
(b) Find an equation for the plane π which contains both u and v and passes through the origin $(0,0,0)$.

Problem 3. Consider the parallelogram with vertices $(0,0,0),(4,5,-11),(-3,2,17),(1,7,6)$.
(a) Show that the parallelogram is spanned by $u=\langle 4,5,-11\rangle$ and $v=\langle-3,2,17\rangle$.
(b) Find the area of the parallelogram.

Problem 4. Let u, v be two vectors.
(a) Show by direct computation that $u \times v=-v \times u$.
(b) Argue geometrically that $u \times v=-v \times u$.

Problem 5. Suppose that $u=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are vectors.
(a) Prove by direct computation that u, v are parallel, i.e. we have equality of the ratios $\frac{u_{1}}{v_{1}}=\frac{u_{2}}{v_{2}}=\frac{u_{3}}{v_{3}}$, if and only if $u \times v=0$.
(b) Using the cross product angle formula show that two vectors u, v parallel if and only if $u \times v=0$.
(c) Justify geometrically that u, v parallel if and only if $u \times v=0$.

Problem 6. Using the cross product, find an equation for the unique plane π containing the points $(0,0,0),(2,-5,-8)$ and $(11,-7,34)$.

