MAT 21C: PRACTICE PROBLEMS LECTURE 6

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the sixth lecture of Part II, delivered May 122023.

Solutions will be posted within 48 h of these problems being posted.

Problem 1. Consider the vectors $v=\langle-2,1,-1\rangle$ and $u=\langle 4,-5,7\rangle$.
(a) Compute the cross product $u \times v$.

Recall for vectors $u=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, we have that

$$
u \times v=\left|\begin{array}{ccc}
i & j & k \tag{1}\\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| k
$$

Substitute $\langle 4,-5,7\rangle,\langle-2,1,-1\rangle$ for u, v respectively.
$u \times v=\left|\begin{array}{cc}-5 & 7 \\ 1 & -1\end{array}\right| i-\left|\begin{array}{cc}4 & 7 \\ -2 & -1\end{array}\right| j+\left|\begin{array}{cc}4 & -5 \\ -2 & 1\end{array}\right| k=-2 i-10 j-6=\langle-2,-10,-6\rangle$.
(b) By explicit computation and only for this example, verify that the cross product $u \times v$ is orthogonal to both u and v.
To show $u \times v$ is orthogonal to u and v, it suffices to show that $(u \times v) \cdot u$ (dot product) and $(u \times v) \cdot v$ both equal 0 . We compute the dot products:

$$
\begin{aligned}
& (u \times v) \cdot u=\langle-2,-10,-6\rangle \cdot\langle 4,-5,7\rangle=(-2) \cdot 4+(-10) \cdot(-5)+(-6) \cdot 7=0 \\
& (u \times v) \cdot v=\langle-2,-10,-6\rangle \cdot\langle-2,1,-1\rangle=(-2) \cdot(-2)+(-10) \cdot 1+(-6) \cdot(-1)=0
\end{aligned}
$$

So $u \times v$ is indeed orthogonal to both u and v.
(c) Find the area of the parallelogram spanned by u and v.

The area of the parallelogram spanned by u and v is determined by $|u \times v|$. This is precisely: $|u \times v|=(-2)^{2}+(-10)^{2}+(-6)^{2}=140$.
Problem 2. Consider the vectors $v=\langle 3,-7,1\rangle$ and $w=\langle-1,4,2\rangle$.
(a) Show that the cross product is $v \times w=\langle-18,-7,5\rangle$.

By Equation 1, we have:

$$
v \times w=\left|\begin{array}{cc}
-7 & 1 \\
4 & 2
\end{array}\right| i-\left|\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right| j+\left|\begin{array}{cc}
3 & -7 \\
-1 & 4
\end{array}\right| k=\langle-18,-7,5\rangle
$$

(b) Find an equation for the plane π which contains both u and v and passes through the origin $(0,0,0)$.
Recall that for any plane, all we need is a point on the plane and a normal vector. One such point is $(0,0,0)$. From the construction of π in the proof of PSet 5 Question 6, the equation of π is:

$$
\pi:\langle-18,7,5\rangle \cdot\langle x-0, y-0, z-0\rangle=-18 x-7 y+5 z=0
$$

Problem 3. Consider the parallelogram with vertices $(0,0,0),(4,5,-11),(-3,2,17),(1,7,6)$.
(a) Show that the parallelogram is spanned by $u=\langle 4,5,-11\rangle$ and $v=\langle-3,2,17\rangle$. We want to show that every point on the parallelogram P is a linear combination of u and v. Consider $s, t \in[0,1]$. Then we have the following:

- Any point on the line between $(0,0,0)$ and $(4,5,-11)$ can be determined by $s u$.
- Any point on the line between $(0,0,0)$ and $(-3,2,17)$ can be determined by $t v$.
- Any point on the line between $(-3,2,17)$ and $(1,7,6)$ can be determined by $v+s u$
- Any point on the line between $(4,5,-11)$ and $(1,7,6)$ can be determined by $u+t v$.
(b) Find the area of the parallelogram.

In the previous part we showed that P is spanned by u, v. Then the area of P is given by $|u \times v|$. We compute:

$$
u \times v=\left|\begin{array}{cc}
5 & -11 \\
2 & 17
\end{array}\right| i-\left|\begin{array}{cc}
4 & -11 \\
-3 & 17
\end{array}\right| j+\left|\begin{array}{cc}
4 & 5 \\
-3 & 2
\end{array}\right| k=\langle 107,-35,23\rangle
$$

Then we have that $|u \times v|=\sqrt{107^{2}+(-35)^{2}+23^{2}}$.
Problem 4. Let u, v be two vectors.
(a) Show by direct computation that $u \times v=-v \times u$.

Firstly:

$$
u \times v=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| k
$$

Secondly, we have:

$$
v \times u=\left|\begin{array}{ll}
v_{2} & v_{3} \\
u_{2} & u_{3}
\end{array}\right| i-\left|\begin{array}{ll}
v_{1} & v_{3} \\
u_{1} & u_{3}
\end{array}\right| j+\left|\begin{array}{ll}
v_{1} & v_{2} \\
u_{1} & u_{2}
\end{array}\right| k
$$

Notice the i component of $u \times v$ is $u_{2} v_{3}-u_{3} v_{2}=-\left(v_{2} u_{3}-u_{2} v_{3}\right)$. We see this is also true for the j, k components as well. Thus $u \times v=-v \times u$.
(b) Argue geometrically that $u \times v=-v \times u$.

Consider $u, v ; v$ has a specific orientation with respect to u. This orientation is the opposite when referring to u with respect to v (For example in 2D: If v is some clockwise rotation from u, then u must be a counter-clockwise rotation of the same angle to v). The orientation of u and v with respect to one another matters when talking about $u \times v$ and $v \times u$. To preserve the orientation of u and v when considering $u \times v$, we must negate one of the vectors, in this case v, in order to preserve the direction of the output vector $-v \times u$.

Problem 5. Suppose that $u=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are vectors.
(a) Prove by direct computation that u, v are parallel, i.e. we have equality of the ratios $\frac{u_{1}}{v_{1}}=\frac{u_{2}}{v_{2}}=\frac{u_{3}}{v_{3}}$, if and only if $u \times v=0$.
Proof. (\Longrightarrow) Suppose that u and v are parallel, in other words, there exists $c \in \mathbb{R}$ such that $u=c v$. Then we want to show $u \times v=0$. By Equation 1, we have:

$$
\begin{aligned}
u \times v & =\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| k \\
& =\left|\begin{array}{cc}
c v_{2} & c v_{3} \\
v_{2} & v_{3}
\end{array}\right| i-\left|\begin{array}{cc}
c v_{1} & c v_{3} \\
v_{1} & v_{3}
\end{array}\right| j+\left|\begin{array}{cc}
c v_{1} & c v_{2} \\
v_{1} & v_{2}
\end{array}\right| k \\
& =0 i+0 j=0 k=0 .
\end{aligned}
$$

($\Longleftarrow) ~ N o w ~ s u p p o s e ~ u \times v=0$. Then we have that each:

$$
\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|, \quad\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|, \quad\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

are equal 0 . This is true if and only if $u_{i} v_{j}-u_{j} v_{i}=0 \Longrightarrow u_{i} v_{j}=u_{j} v_{i} \Longrightarrow$ $\frac{u_{i}}{v_{i}}=\frac{u_{j}}{v_{j}}$ for $1 \leq i, j \leq 3$. Then we conclude that u, v must be parallel.
(b) Using the cross product angle formula show that two vectors u, v parallel if and only if $u \times v=0$.

Proof. Suppose u, v are parallel. This is true if and only if the angle θ between u and v is 0 . We have

$$
\begin{equation*}
|u||v| \sin \theta=0 \tag{2}
\end{equation*}
$$

The only vector with magnitude 0 is the zero vector (or if $u, v=0$, in which case the statement is true by convention), and because $|u \times v|=|u||v| \sin \theta$, Equation 2 is true if and only if $u \times v=0$.
(c) Justify geometrically that u, v parallel if and only if $u \times v=0$.

Recall that $|u \times v|$ is the area of the parallelogram spanned by vectors u and v. If u and v are parallel, then the parallelogram spanned by these vectors is a line, which has area 0 .

Problem 6. Using the cross product, find an equation for the unique plane π containing the points $(0,0,0),(2,-5,-8)$ and $(11,-7,34)$.

We will again use the construction of a plane from PSet 5 Question 6. Two vectors on π are $u=\langle 2,-5,-8\rangle$ and $v=\langle 11,-7,34\rangle$. We need a normal vector and a point to construct the plane, so compute $u \times v$ and we get this is $\langle-226,-156,41\rangle$. One point on π is $(0,0,0)$

$$
\pi:-226(x-0)-156(y+0)+41(z+0)=-226 x-156 y+41 z=0
$$

