MAT 21C: PRACTICE PROBLEMS LECTURE 7

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the seventh lecture of Part II, delivered May 15 2023. Solutions will be posted within 48 h of these problems being posted.

Recall the four descriptions of a plane π :
(1) The plane π is given by three points $P, Q, R \in \pi$.
(2) The plane π is given by one point $P \in \pi$ and a normal direction $n=\langle a, b, c\rangle$.
(3) The plane π is given by one point $P \in \pi$ and two vectors u, v inside of $\pi \|^{1}$
(4) The plane π is given by an equation

$$
\pi=\{a x+b y+c z=d\}
$$

where $a, b, c, d \in \mathbb{R}$ are real numbers.
Problem 1. Consider the unique plane π containing the three points $P=(1,1,2), Q=$ $(-2,3,0)$ and $R=(0,-5,7)$.
(a) Find two vectors u, v inside of π.
(b) Compute a perpendicular direction to π.
(c) Find an equation for π.

Problem 2. Find an equation for the plane through point $(9,3,-1)$ parallel to the plane $\{x+y+z=0\}$.

Problem 3. Consider the three planes

$$
\pi_{1}=\{3 x-5 y+4 z=12\}
$$

$\pi_{2}=\{$ unique plane that contains $(0,1,0)$ with perpendicular direction $\langle 1,4,3\rangle\}$
$\pi_{3}=\{$ unique plane that contains $(0,0,0)$ and vectors $u=\langle 2,4,1\rangle, v=\langle 2,-5,12\rangle\}$
(a) Show that π_{1} intersects π_{2} at a line, π_{1} intersects π_{3} at a line, and π_{2} intersects π_{3} at a line. (That is, these are not parallel to each other.)
(b) Find the directions of each of these lines.

[^0]Problem 4. Consider the two planes

$$
\pi_{1}=\{3 x+3 y+3 z=12\}
$$

$\pi_{2}=\{$ unique plane that contains $(0,0,0)$ with perpendicular direction $\langle 1,1,1\rangle\}$
(a) Show that π_{1} and π_{2} are parallel planes and they are different.
(b) Find a plane π_{3} different than π_{1} and π_{2} but is parallel to both of them.

Problem 5. Consider the plane $\pi=\{2 x+9 y-z=3\}$.
(a) Find three distinct points $P, Q, R \in \pi$ that belong to π.
(b) Find two vectors u, v which are parallel to π.
(c) Find a plane π^{\prime} parallel to π but different from it.
(d) Find a plane $\pi^{\prime \prime}$ which intersects π at a line.

Problem 6. Consider the plane $\pi=\{2 x+y-z=0\}$ and the unique line L through the origin and the point $P=(0,1,1)$.
(a) Argue that the point $P \in \pi$ belongs to the plane π.
(b) Justify that the line L lies inside the plane π.
(c) Find a plane π^{\prime} such that their intersection is the line L.

[^0]: ${ }^{1}$ It is fine if u, v are just two vectors in the direction parallel to π.

