MAT 21C: PRACTICE PROBLEMS LECTURE 8

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the eighth lecture of Part II, delivered May 17 2023. Solutions will be posted within 48 h of these problems being posted.

Problem 1. Consider the unique plane π containing the three points $P=(1,0,2), Q=$ $(-2,3,0)$ and $R=(0,-5,1)$.
(a) Find the distance from the point $S=(1,2,-4)$ to π using the vector $\overrightarrow{P S}$.
(b) Find the distance from the point $S=(1,2,-4)$ to π using the vector $\overrightarrow{Q S}$.
(c) Find the distance from the point $S=(1,2,-4)$ to π using the vector $\overrightarrow{R S}$.

Problem 2. Consider the three planes

$$
\pi_{1}=\{3 x-5 y+4 z=12\}
$$

$\pi_{2}=\{$ unique plane that contains $(0,1,0)$ with perpendicular direction $\langle 1,4,3\rangle\}$
$\pi_{3}=\{$ unique plane that contains $(0,0,0)$ and vectors $u=\langle 2,4,1\rangle, v=\langle 2,-5,12\rangle\}$
and the point $S=(-2,0,1)$.
(a) Find the distance of S to π_{1}.
(b) Find the distance of S to π_{2}.
(c) Find the distance of S to π_{3}.

Problem 3. Find two different points S_{1} and S_{2} in space such that both S_{1} and S_{2} have distance to the plane $\{x+y+z=0\}$ equal to 9 .

Problem 4. Find two different planes π_{1} and π_{2} in space such that both π_{1} and π_{2} have distance to the point $S=(1,0,0)$ equal to 23 .

Problem 5. Consider the two planes

$$
\pi_{1}=\{x-z=12\}
$$

$\pi_{2}=\{$ unique plane that contains $(0,0,0)$ with perpendicular direction $\langle 1,1,1\rangle\}$
(a) Compute the distance from S to the plane π_{1}.
(b) Compute the distance from S to the plane π_{2}.
(c) Compute the distance from S to the intersection line $\pi_{1} \cap \pi_{2}$.

Problem 6. Let L be the unique line through the point $P=(1,2,0)$ and direction vector $v=\langle 0,2,-7\rangle$. Compute the distance from the point $S=(-3,0,4)$ to the line L.

Problem 7. Let L be the unique line through the points $P=(1,2,0)$ and $Q=$ $(7,-5,6)$. Compute the distance from the point $S=(-3,0,4)$ to the line L.

Problem 8. Decide whether each of the following sentences is true or false.
(a) A point P belongs to a line L if and only if the distance from P to L is zero.
(b) A point P belongs to a plane π if and only if the distance from P to π is zero.
(c) Given a point P, there exists a unique plane π whose distance to P is 1 .
(d) Given a point P, there are infinitely many lines L whose distance to P is 14 .
(e) If a point P belongs to a plane π_{1} and L is a line of intersection between π_{1} and a different (non-parallel) plane π_{2}. Then the distance from P to L is the same as the distance from P to π_{2}.

