MAT 21C: PRACTICE PROBLEMS LECTURE 8

PROFESSOR CASALS (SECTIONS B01-08)

ABSTRACT. Practice problems for the eighth lecture of Part II, delivered May 17 2023. Solutions will be posted within 48h of these problems being posted.

Problem 1. Consider the unique plane π containing the three points P = (1, 0, 2), Q = (-2, 3, 0) and R = (0, -5, 1).

- (a) Find the distance from the point S = (1, 2, -4) to π using the vector PS.
- (b) Find the distance from the point S = (1, 2, -4) to π using the vector \vec{QS} .
- (c) Find the distance from the point S = (1, 2, -4) to π using the vector \vec{RS} .

Problem 2. Consider the three planes

$$\pi_1 = \{3x - 5y + 4z = 12\}$$

 $\pi_2 = \{ \text{unique plane that contains } (0, 1, 0) \text{ with perpendicular direction } \langle 1, 4, 3 \rangle \}$ $\pi_3 = \{ \text{unique plane that contains } (0, 0, 0) \text{ and vectors } u = \langle 2, 4, 1 \rangle, v = \langle 2, -5, 12 \rangle \}$ and the point S = (-2, 0, 1).

- (a) Find the distance of S to π_1 .
- (b) Find the distance of S to π_2 .
- (c) Find the distance of S to π_3 .

Problem 3. Find two different points S_1 and S_2 in space such that both S_1 and S_2 have distance to the plane $\{x + y + z = 0\}$ equal to 9.

Problem 4. Find two different planes π_1 and π_2 in space such that both π_1 and π_2 have distance to the point S = (1, 0, 0) equal to 23.

Problem 5. Consider the two planes

$$\pi_1 = \{x - z = 12\}$$

 $\pi_2 = \{ \text{unique plane that contains } (0,0,0) \text{ with perpendicular direction } \langle 1,1,1 \rangle \}$

- (a) Compute the distance from S to the plane π_1 .
- (b) Compute the distance from S to the plane π_2 .
- (c) Compute the distance from S to the intersection line $\pi_1 \cap \pi_2$.

Problem 6. Let *L* be the unique line through the point P = (1, 2, 0) and direction vector $v = \langle 0, 2, -7 \rangle$. Compute the distance from the point S = (-3, 0, 4) to the line *L*.

Problem 7. Let L be the unique line through the points P = (1, 2, 0) and Q = (7, -5, 6). Compute the distance from the point S = (-3, 0, 4) to the line L.

Problem 8. Decide whether each of the following sentences is *true* or *false*.

- (a) A point P belongs to a line L if and only if the distance from P to L is zero.
- (b) A point P belongs to a plane π if and only if the distance from P to π is zero.
- (c) Given a point P, there exists a unique plane π whose distance to P is 1.
- (d) Given a point P, there are infinitely many lines L whose distance to P is 14.
- (e) If a point P belongs to a plane π_1 and L is a line of intersection between π_1 and a different (non-parallel) plane π_2 . Then the distance from P to L is the same as the distance from P to π_2 .