MAT 21C: PRACTICE PROBLEMS LECTURE 9

PROFESSOR CASALS (SECTIONS B01-08)

Abstract. Practice problems for the ninth lecture of Part II, delivered May 192023.

Solutions will be posted within 48 h of these problems being posted.

Problem 1. Find the parametric description of the trajectory of a particle which moves along the unique line through the point $P=(3,-5,11)$ and with direction vector $\langle 7,2,-1\rangle$.

Problem 2. Find the parametric description of the trajectory of a particle which moves along the unique line given by the intersection of the two planes $\pi_{1}=\{x+4 y-6 z=10\}$ and $\pi_{2}=\{11 x-2 y-6 z=3\}$.

Problem 3. Suppose that a particle is moving along a line L with its trajectory being given by $r(t)=\langle 3+8 t, 5-9 t, 1+t\rangle$.
(a) Find the position of the particle at $t=0$ and $t=5$.
(b) Find the velocity of the particle at $t=0$ and $t=5$.
(c) Give a point in the line L and a vector in the direction of the line L.

Problem 4. Consider a particle in space moving according to the trajectory

$$
r(t)=\left\langle t^{2}-3 t, 3-t, 45 t+e^{t}\right\rangle
$$

(a) What is the position of the particle at $t=0$? And at $t=10$?
(b) Compute the velocity vector of the particle at $t=0$ and at $t=10$.
(c) Find the speed of the particle at $t=0$ and at $t=10$.

Problem 5. A particle in space moves according to the trajectory

$$
r(t)=\left\langle\cos \left(t^{3}\right), \sin \left(t^{3}\right), 0\right\rangle .
$$

(a) Show that at $t=0$ and at $t=\sqrt[3]{2 \pi}$ the particle passes through the same point.
(b) Compute the speed at which is passes at $t=0$ and at $t=\sqrt[3]{2 \pi}$.

Problem 6. Given a particle moving according to the trajectory

$$
r(t)=\left\langle\cos (t), \sin (t), 5 e^{-t}\right\rangle
$$

(a) Find the position of the particle at $t=0$ and $t=\pi$.
(b) Find the velocity of the particle at $t=0$ and $t=5$.
(c) Find the acceleration of the particle at $t=0$ and $t=5$.
(d) Compute the angle of the velocity and the acceleration at $t=0$ and $t=5$.

Problem 7. Two particles move in space according to the trajectories

$$
r_{1}(t)=\langle\cos (t), \sin (t), t\rangle, \quad r_{1}(t)=\langle t, 2 t, t\rangle .
$$

Show that the two particles will never collide.

Problem 8. Two particles move in space according to the trajectories

$$
r_{1}(t)=\langle\cos (t), \sin (t), t\rangle, \quad r_{1}(t)=\langle 1,0, t\rangle .
$$

Show that the two particles will collide infinitely many times and find all such times of collision.

Problem 9. Suppose that a particle travels along a line L through the point $P=$ $\left(p_{1}, p_{2}, p_{3}\right)$ and vector direction $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ via the parametric trajectory

$$
r(t)=\left\langle p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}\right\rangle
$$

(a) Show that the velocity vector of $r(t)$ is exactly the direction vector v of L.
(b) Show that the acceleration vector of $r(t)$ is always zero.

Problem 10. Find a parametric description of the curve given by $r(t)=\langle 1,3 t+2, t\rangle$ where the particle moves exactly in the same trajectory but at twice the speed.

