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know. Fill in all the requested information on the top of this page, and put your initials on
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You are required to show your work on each problem on this exam. The following rules apply:

(A) If you use a lemma, proposition or the-
orem which we have seen in the class or
in the book, you must indicate this and
explain why the theorem may be applied.

(B) Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive little credit.

(C) Mysterious or unsupported answers will
not receive full credit. A correct answer,
unsupported by calculations, explanation, or
algebraic work will receive little credit; an in-
correct answer supported by substantially cor-
rect calculations and explanations will receive
partial credit.

(D) If you need more space, use the back of the
pages; clearly indicate when you have done
this.

Do not write in the table to the right.

Problem Points Score

1 25

2 25

3 25

4 25

Total: 100
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1. (25 points) Consider the points P = (1, 0, 0), Q = (−2, 0, 3) and R = (−5, 1,−1).

(a) (5 points) Compute the vector P⃗Q× P⃗R.

We compute the vectors P⃗Q = Q−P = ⟨−3, 0, 3⟩ and P⃗R = R−P = ⟨−6, 1,−1⟩.
To compute their cross product we calculate

P⃗Q× P⃗R =

∣∣∣∣∣∣
i j k
−3 0 3
−6 1 −1

∣∣∣∣∣∣
=

∣∣∣∣0 3
1 −1

∣∣∣∣ i+ ∣∣∣∣−3 3
−6 −1

∣∣∣∣ j + ∣∣∣∣−3 0
−6 1

∣∣∣∣ k
= ⟨−3,−21,−3⟩

(b) (5 points) Consider the unique plane π containing P , Q and R. Explain why

{−3x− 21y − 3z = −3}

is an equation for π.

The unique plane π contains the points P,Q, and R so if the three points satisfy
the equation, then it is an equation for π. We see that

−3(1)− 21(0)− 3(0) = −3

−3(−2)− 21(0)− 3(3) = −3

−3(−5)− 21(1)− 3(−1) = −3

so {−3x− 21y − 3z = −3} is an equation for π.
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(c) (5 points) Justify that v = (21, 0,−21) is a direction of the line L of intersection of
π with the plane Π = {x+ z = 1}.

For planes Π and π with normal vectors n⃗Π = ⟨1, 0, 1⟩ and n⃗π = ⟨−3,−21,−3⟩ will
be a line in the direction n⃗π × n⃗Π. Thus,

n⃗π × n⃗Π =

∣∣∣∣∣∣
i j k
1 0 1
−3 −21 −3

∣∣∣∣∣∣
=

∣∣∣∣ 0 1
−21 −3

∣∣∣∣ i+ ∣∣∣∣ 1 1
−3 −3

∣∣∣∣ j + ∣∣∣∣ 1 0
−3 −21

∣∣∣∣ k
= ⟨21, 0,−21⟩

so the line of intersection L, is in direction ⟨21, 0,−21⟩.

(d) (5 points) Find the distance from S = (0, 0, 2) to line L.

We find a point on both lines by setting z = 0 for both planar equations and finding
the point P = (1,0,0) on the line of intersection, L.

The distance from point S to L through point P parallel to vector v is given by

d = |P⃗ S×v|
|v| .

We calculate P⃗S = ⟨−1, 0, 2⟩ and normal vector for plane π n⃗ = ⟨−3,−21,−3⟩.
Computing each term in the formula,

P⃗S × v =

∣∣∣∣∣∣
i j k
−1 0 2
21 0 −21

∣∣∣∣∣∣
=

∣∣∣∣0 2
0 −21

∣∣∣∣ i+ ∣∣∣∣−1 2
21 −21

∣∣∣∣ j + ∣∣∣∣−1 0
21 0

∣∣∣∣ k
= ⟨0, 21, 0⟩

|P⃗S × v| =
√
02 + 212 + 02 = 21

|v| =
√
212 + 02 + (−21)2 =

√
882 = 21

√
2

Thus,

d =
|P⃗S × v|

|v|

=
21

21
√
2

=
1√
2
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(e) (5 points) Find the distance from S = (0, 0, 2) to the plane π.

The distance from a point S to the plane π with normal vector n is given by
the formula d = |P⃗S · n

|n| |. We will again use point P = (1, 0, 0) to find vector

P⃗S = ⟨−1, 0, 2⟩.
We use the equation for the plane π to get n = ⟨−3,−21,−3⟩ and

|n| =
√

(−3)2 + (−21)2 + (−3)2 =
√
459 = 3

√
51.

Thus,

n

|n|
=

1

3
√
51

⟨−3,−21,−3⟩

=
1√
51

⟨−1,−7,−3⟩.

Then,

d = |P⃗S · n

|n|
|

= |⟨−1, 0, 2⟩ · 1√
51

⟨−1,−7,−3⟩|

=
1√
51

|⟨−1, 0, 2⟩ · ⟨−1,−7,−3⟩|

=
1√
51

|((−1)(−3) + 0(−21) + 2(−3))|

=
1√
51
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2. (25 points) Consider the vectors u = ⟨2, 0,−1⟩ and v = ⟨3, 4,−5⟩.
(a) (5 points) Show that ⟨4, 7, 8⟩ is perpendicular to both u and v.

To show two vectors are perpendicular, we must show that their dot product is 0.

⟨4, 7, 8⟩ · ⟨2, 0,−1⟩ = (4 ∗ 2) + (7 ∗ 0) + (8(−1)) = 0

⟨4, 7, 8⟩ · ⟨3, 4,−5⟩ = (4 ∗ 3) + (7 ∗ 4) + (8(−5)) = 0

Because both dot products are 0, both u and v are perpendicular to ⟨4, 7, 8⟩.

(b) (5 points) Argue that u is not parallel to v.

If u and v are parallel, then their cross product will be 0.

u× v =

∣∣∣∣∣∣
i j k
2 0 −1
3 4 −5

∣∣∣∣∣∣ = ⟨4, 7, 8⟩ ≠ 0

.

Because u× v ̸= 0, u and v cannot be parallel.
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(c) (5 points) Compute sin θ, where θ is the angle between u and v.

To find sin(θ), we use both definitions of the cross product. Using out calculation
from (b) we know u × v = ⟨4, 7, 8⟩. We then use the alternative cross product
definition |u× v| = |u||v| ∗ sin(θ).

|u× v| =
√
42 + 72 + 82 =

√
129

|u| =
√

22 + 02 + (−1)2 =
√
5

|v| =
√
32 + 42 + (−5)2 =

√
50

Then,

|u× v| = |u||v| ∗ sin(θ)
√
129 =

√
5
√
50 sin(θ)

⇒ sin(θ) =

√
129√
5
√
50

(d) (5 points) Verify that the vector w = ⟨1, 0, 2⟩ is perpendicular to u but w is not
perpendicular to v.

To check if two vectors are perpendicular, we compute the dot product.

w · u = ⟨1, 0, 2⟩ · ⟨2, 0,−1⟩ = (1 ∗ 2) + (0 ∗ 0) + (2(−1)) = 0
⇒ w ⊥ u

w · v = ⟨1, 0, 2⟩ · ⟨3, 4,−5⟩ = (1 ∗ 3) + (0 ∗ 4) + (2(−5)) = −7
⇒ w ̸⊥ v

(e) (5 points) Find a vector that is perpendicular to v but not perpendicular to u.

We are looking for a vector y such that v · y = 0.

Let y = ⟨y1, y2, y3⟩. Then,

v · y = ⟨3, 4,−5⟩ · ⟨y1, y2, y3⟩ = 3y1 + 4y2 − 5y3 = 0.

We can choose any y1, y2, and y3 that satisfy the above equation. Choosing y1 = 5
and y2 = 0, then y3 must be 3. Thus a perpendicular vector to v is y = ⟨5, 0, 3⟩
To see that u and y are not perpendicular we compute u · y,

u · y = ⟨2, 0,−1⟩ · ⟨5, 0, 3⟩ = (2 ∗ 5) + (0 ∗ 0) + (−1 ∗ 3) = 7 ̸= 0

so u and y are not perpendicular.
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3. (25 points) Consider a particle moving with a trajectory r⃗(t) = ⟨cos(3t), sin(4t), t3⟩.
(a) (5 points) Where will the particle be at time t = π?

To find the particles position at t = π, we compute r⃗(π).

r⃗(π) = ⟨cos(3π), sin(4π), (π)3⟩
= ⟨−1, 0, π3⟩

(b) (5 points) Find the velocity vector v⃗(t) of the particle.

To find v⃗(t) from r⃗(t) we compute d
dt
r⃗(t).

v⃗(t) =
d

dt
r⃗(t)

=
d

dt
⟨cos(3t), sin(4t), t3⟩

= ⟨−3sin(3t), 4cos(4t), 3t2⟩

(c) (5 points) Compute the speed of the particle at time t = π.

Speed is the scalar component of the velocity vector. Thus, we must compute |v⃗(π)|.

v⃗(π) = ⟨−3sin(3π), 4cos(4π), 3π2⟩ = ⟨0, 4, 3π2⟩

|v⃗(π)| =
√

02 + 42 + (3π2)2 =
√
16 + 9π4

.

Thus the speed at t = π is equal to
√
16 + 9π4.
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(d) (5 points) Show that the acceleration at t = π is given by

a(π) = ⟨9, 0, 6π⟩.

To find a⃗(t) from v⃗(t) we compute d
dt
v⃗(t).

a⃗(t) =
d

dt
v⃗(t)

=
d

dt
= ⟨−3sin(3t), 4cos(4t), 3t2⟩
= ⟨−9cos(3t),−16sin(4t), 6t⟩

Substituting t = π gives

a⃗(t) = ⟨−3sin(3π),−16cos(4π), 6π⟩
= ⟨9, 0, 6π⟩

(e) (5 points) Will there ever be a positive time t where the particle will be at rest, i.e.
have zero speed?

If the particle comes to rest, then v⃗(t) = 0 for all t. The third component, 3t2, can
only be 0 if t = 0. But, at t = 0, the second component will be 4cos(0) = 4 ̸= 0
so there is no value of t that will make each component of v⃗(t) 0 simultaneously.
Thus, the particle will never have speed zero.
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4. (25 points) For each of the statements below, circle the unique correct answer.
(You do not need to justify your answer.)

(a) (5 points) The intersection of the sphere (x − 2)2 + y2 + (z + 1)2 ≤ 16 with the
plane π = {2x− 11y + 5z = −1} is:

(1) Empty. (2) A circle. (3) A disk. (4) A half-space. (5) A line.

(3) The center of the sphere, (2,0,-1), satisfies the equation of the plane so the plane
passes through the center of the solid sphere. Thus, the intersection will be a disk.

(b) (5 points) The intersection of the plane π1 = {x + y + z = 1} with the plane
π2 = {5x+ 5y + 5z = 17} is:

(1) Empty. (2) A circle. (3) A line. (4) A point. (5) Two points.

(1) The cross product of u and v gives ⟨0, 0, 0⟩ = 0⃗ so the planes are parallel and
thus there is no intersection.

(c) (5 points) The cross product of u = ⟨−3, 2, 4⟩ and v = ⟨6,−4,−8⟩:

(1) ⟨0, 0, 0⟩ (2) ⟨1, 0, 0⟩ (3) ⟨0, 1, 0⟩ (4) ⟨0, 0, 1⟩ (5) ⟨1, 1, 1⟩.

(1) ⟨0, 0, 0⟩

⟨−3, 2, 4⟩ × ⟨6,−4,−8⟩ =

∣∣∣∣∣∣
i j k
−3 2 4
6 −4 −8

∣∣∣∣∣∣ = ⟨0, 0, 0⟩

(d) (5 points) The midpoint between P = (0, 6, 4) and Q = (8, 2,−4) is:

(1) ⟨4, 4, 0⟩ (2) ⟨4,−2,−4⟩ (3) ⟨8,−4, 8⟩ (4) ⟨0,−8, 4⟩ (5) ⟨2, 0,−4⟩.

(1) ⟨4, 4, 0⟩

1

2
(P +Q) =

1

2
⟨(0 + 8), (6 + 2), (4 + (−4))⟩ = 1

2
⟨8, 8, 0⟩ = ⟨4, 4, 0⟩
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(e) (5 points) A particle with trajectory r(t) = (et, t+ 3, 5t) has speed at t = 0:

(1) 0. (2)
√
25. (3)

√
26. (4)

√
27.

(4)
√
27

v⃗(t) =
d

dt
⟨et, t+ 3, 5t⟩ = ⟨et, 1, 5⟩

v⃗(0) = ⟨1, 1, 5⟩

|v⃗(0)| =
√
12 + 12 + 52 =

√
27


