MAT 1240B: PROBLEM SET 2

DUE TO FRIDAY MAY 122023

Abstract. This problem set corresponds to the third and fourth weeks of the course MAT-
240B Spring 2023. It is due Friday May 12 at $9: 00 \mathrm{pm}$ submitted via Gradescope.
Task: Solve one of the problems below and submit it through Gradescope by Friday May 12 at 9 pm . Be rigorous and precise in writing your solutions.
For the first problems, consider the 2 -sphere $M=S^{2}$, which can be described as the submanifold $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} \subseteq \mathbb{R}^{3}$. Consider the spherical parametrization

$$
\sigma(\theta, \phi)=(\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta), \quad \theta \in[0, \pi], \varphi \in[0,2 \pi) .
$$

The real space $\left(\mathbb{R}^{3}, g_{f l a t}\right)$ has the standard Euclidean metric $g_{f l a t}$ given by the identity at each point, i.e. the standard inner product at each tangent space. It therefore induced a metric $g_{S^{2}}$ on its unit 2-sphere.
Problem 1. (Round metric and compatible connection) Solve the following parts:
(i) Verify that the metric in S^{2} induced as a submanifold of $\left(\mathbb{R}^{3}, g_{f l a t}\right)$ is given in spherical coordinates by

$$
g_{S^{2}}:=\left(\begin{array}{cc}
1 & 0 \\
0 & \cos ^{2} \theta
\end{array}\right) .
$$

(ii) Show that the only non-zero Christoffel symbols for the Levi-Civita connection of $g_{S^{2}}$ are given by

$$
\Gamma_{22}^{1}=\sin \theta \cos \theta, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=-\tan \theta
$$

(iii) (Optional) Show that there exists no metric on S^{2} whose associated Levi-Civita connection has all Christoffel symbols equal to 0 .

Problem 2. (Geodesics on the round 2-sphere) Let $\left(S^{2}, g\right)$ be the round sphere $g=g_{S^{2}}$ and ∇ its Levi-Civita connection.
(i) Write the differential equations that a parametrized curve $\gamma:[0,1] \longrightarrow S^{2}$ must satisfy to be a geodesic.
(ii) Argue that great circles in S^{2} can be parametrized to be geodesics.

Hint: You can do that directly by verifying that they can be parametrized with a parametrization that solve the equations in Part (i). Alternatively, you can try to argue geometrically without any equations using the isometry group $S O(3)$.
(iii) Find all geodesics in $\left(S^{2}, g_{S^{2}}\right)$.

Problem 3. (Conjugate points in S^{2}) Let $\left(S^{2}, g\right)$ be the round sphere.
(i) Find all geodesics $\gamma:[0,1] \longrightarrow S^{2}$ starting at the North pole $p=(0,0,1)$ and ending at the point $q=(1,0,0)$.
(ii) For each of the geodesics in Part (i), compute their index as critical points of the energy functional $E: \Omega_{p, q} M \longrightarrow \mathbb{R}$.

Problem 4. (Jacobi fields in S^{2}) Let $\left(S^{2}, g\right)$ be the round sphere.
(i) Consider the shortest geodesic $\gamma:[0,1] \longrightarrow S^{2}$ starting at the North pole $p=(0,0,1)$ and ending at South pole $q=(0,0,-1)$. Explicitly write the unique non-zero Jacobi field along γ vanishing at p and q.
(ii) Consider a great circle parametrized as a geodesic $\gamma:[0,1] \longrightarrow S^{2}$ starting and ending at the North pole $p=(0,0,1)$. Discuss the space of non-zero Jacobi field along γ vanishing at p.

For the next three problems, we consider the flat Euclidean plane $\left(\mathbb{R}^{2}, g_{f l a t}\right)$ and the hyperbolic plane $\left(\mathbb{H}^{2}, g_{\mathbb{H}^{2}}\right)$, where $\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. The metrics are given by

$$
g_{f l a t}=d x \otimes d x+d y \otimes d y, \quad g_{h y p}=\frac{1}{y^{2}}(d x \otimes d x+d y \otimes d y)
$$

Problem 5. (Levi-Civita for $g_{f l a t}$ and $g_{h y p}$) Solve the following parts:
(i) Show that the Levi-Civita connection associated to $g_{f l a t}$ has all Christoffel symbols vanishing.
(ii) Show that the only non-zero Christoffel symbols of the Levi-Civita of $g_{h y p}$ are

$$
\Gamma_{11}^{2}=\frac{1}{y}, \quad \Gamma_{22}^{2}=\Gamma_{21}^{1}=\Gamma_{12}^{1}=\frac{-1}{y} .
$$

(iii) Show that the geodesic equations for $g_{h y p}$ are

$$
x^{\prime \prime} y=2 x^{\prime} y^{\prime}, \quad y^{\prime \prime} y=\left(y^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2} .
$$

Problem 6. (No conjugate points for $g_{\text {flat }}$ and $g_{h y p}$) Solve the following parts:
(i) Show that no two points in $\left(\mathbb{R}^{2}, g_{f l a t}\right)$ and $\left(\mathbb{H}^{2}, g_{\mathbb{H}^{2}}\right)$ can be conjugate, i.e. there are no Jacobi fields (along geodesics) vanishing at both ends.
(In particular, the index of a geodesic is always 0 in these metrics.)
(ii) Suppose that (M, g) is a smooth manifold with all sectional curvatures non-positive. Show that no two points $p, q \in M$ are conjugate.
(In particular, there is no metric in S^{2} with all negative sectional curvatures.)

Problem 7. (Parallel transport in S^{2} and \mathbb{H}^{2})
(i) Consider the shortest geodesic $\gamma:[0,1] \longrightarrow S^{2}$ starting at the North pole $p=(0,0,1)$ and ending at the point $q=(1,0,0)$ and the basis

$$
V_{1}(0)=\partial_{x}, \quad V_{2}(0)=\partial_{y}, V_{1}(0), V_{2}(0) \in T_{p} S^{2} .
$$

of $T_{p} S^{2}$. Find the parallel transport of $V_{1}(0)$ and $V_{2}(0)$ along γ.
(ii) Consider the shortest geodesic $\gamma:[0,1] \longrightarrow\left(\mathbb{H}^{2}, g_{h y p}\right)$ starting at $p=(0,1)$ and ending at the point $q=(0,3)$ and the basis

$$
V_{1}(0)=\partial_{x}, \quad V_{2}(0)=\partial_{y}, V_{1}(0), V_{2}(0) \in T_{p} \mathbb{H}^{2} .
$$

of $T_{p} \mathbb{H}^{2}$. Find the parallel transport of $V_{1}(0)$ and $V_{2}(0)$ along γ.

