MAT 215B: PROBLEM SET 1

DUE TO FRIDAY APR 122024

Abstract. This problem set corresponds to the first week of the course MAT-215B Spring 2024.
It is due Friday Apr 12 at 9:00pm submitted via Gradescope.
Task: Solve two of the problems below and submit it through Gradescope by Friday Apr 12 at 9 pm . Be rigorous and precise in writing your solutions.

Problem 1. First, check that the following chain complexes $\left(C_{\bullet}, \partial\right)$ of \mathbb{Z}-modules are indeed chain complexes (i.e. the differential square to zero). Second, compute the homology of each of them.
Notation: A map between \mathbb{Z}-modules will be given in its matrix expression, so that the image of an elements is given by left multiplication by that matrix. Elements in a \mathbb{Z}-modules are represented by vertical vectors. The 0th graded piece is indicated by [0].
(1)

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{(0)} \mathbb{Z}[0] \longrightarrow 0
$$

(2)

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{(2)} \mathbb{Z}[0] \longrightarrow 0
$$

That is, the map $\mathbb{Z} \longrightarrow \mathbb{Z}$ is $x \longmapsto(2) \cdot x=2 x$.
(3)

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{(5)(\bmod 8)} \mathbb{Z}_{8}[0] \longrightarrow 0
$$

That is, the map $\mathbb{Z} \longrightarrow \mathbb{Z}_{8}$ is reduction modulo 8 and multiplication by 5 .
(4)

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{(2) \quad(\bmod 8)} \mathbb{Z}_{8}[0] \longrightarrow 0
$$

(5)

(6)

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\binom{3}{1}} \mathbb{Z}^{2} \xrightarrow{\left(\begin{array}{cc}
-1 & 3 \\
-2 & 6
\end{array}\right)} \mathbb{Z}^{2} \xrightarrow{(2-1)} \mathbb{Z}[0] \longrightarrow
$$

Problem 2. Compute the homology of the following chain complexes of \mathbb{Z}-modules:
(1)

$$
0 \longrightarrow \mathbb{Z}^{3} \xrightarrow{\left(\begin{array}{ccc}
1 & 3 & -1 \\
-1 & 2 & 1 \\
0 & -1 & 1 \\
2 & -1 & 0
\end{array}\right)} \mathbb{Z}^{4}[0] \longrightarrow 0
$$

(2)

(3)

Problem 3. Find a Δ-complex structure on each of the following topological spaces X :
(1) $X=\Sigma_{g}$, the orientable genus g surface.
(2) $X=S^{n}$, the n-sphere, $n \in \mathbb{N}$.
(3) $X=\mathbb{R}^{p n}$, the real projective n-space, $n \in \mathbb{N}$.

Problem 4. Compute the simplicial homolog ${ }^{11}$ of each of the following topological spaces X :
(1) $X=S^{1}$.
(2) $X=\bigvee^{n} S^{1}$, the wedge of n circles.
(3) $X=\Sigma_{g}$, the orientable genus g surface.
(4) $X=\mathbb{R P}^{2}$, the real projective plane.
(5) $X=\mathbb{R P}^{2} \# \mathbb{R P}^{2}$, the connected sum of two real projective planes.

Problem 5. Find a Δ-complex structure on each of the following topological spaces X :
(1) The submanifold $X=\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w^{3}\right\} \cap\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \subseteq \mathbb{C}^{2}$.
(2) The submanifold $X=\left\{\left[z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{2}: z_{1}+z_{2}-4 z_{3}=0\right\} \subseteq \mathbb{C P}^{2}$.
(3) $X=S O(3)$, the special group of orthogonal (3×3)-matrices, i.e.

$$
X=\left\{A \in M_{3 \times 3}(\mathbb{R}): A \cdot A^{t}=I d_{3}, \quad \operatorname{det}(A)=1\right\} \subseteq M_{3 \times 3}(\mathbb{R}) \cong \mathbb{R}^{9}
$$

Problem 6. Compute the simplicial homology of each of the following topological spaces X :
(1) The submanifold
$X=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1}^{2}+z_{2}^{3}+z^{3}=0\right\} \cap\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\} \subseteq \mathbb{C}^{3}$.
(2) The submanifold $X=\left\{\left[z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{2}: z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\} \subseteq \mathbb{C P}^{2}$.
(3) (Optional) The smooth manifold
$G r_{2,4}(\mathbb{R})=\left\{V \subseteq \mathbb{R}^{4}: V \subseteq \mathbb{R}^{4}\right.$ oriented vector subspace of dimension $\left.\operatorname{dim}_{\mathbb{R}}(V)=2\right\}$,
i.e. the real Grassmannian of oriented 2-planes through the origin inside \mathbb{R}^{4}.

[^0]
[^0]: ${ }^{1}$ For a choice of Δ-structure, which you get to make.

