1. Linear algebra: Goal: to solve linear systems of equations Example: X1, X2, X3 C R -7 real no. J J Z unknown vagables focus of course. -> 3 waknowas (3x, -4x, + 1/2)x3= -2 ... O) -> 2 equations : solutions : infinite => dimension of space of solution) 🗙 + 7x2 - e³⁷x3 = Los (375) ... @ none Some no. It is a linear system : Since χ_1, χ_2, χ_3 have order of 1 (form: $C, \chi, + C_2 \chi_2 + C_3 \chi_3 + ... = C_4$) Counterexamples : quadratic to the power (x,2+ ex2+3x3=) e.g. anything with unknowns {x; } multiplying or ex; x; , was(xi) ×2×3= -7 is never LINEAR hon-linear . There are non-linen, opentions, T. System is non-linear Applications: (sample) 1) Taylor seiles of a function starts with LINEAR APPROXIMATION 3 Diagonalization : Page Kank algorithm, powers of matrices 3 (MAT 145) graph theory 2. From equations to maps () Why does this system : BUT ! X1+242 = 4 has a solutions (x,+2x2=4 has a m;que 3x1+4x2=7 Solation * You should understand the underlying structure of systems, instead of plugging & checking Maps => well-define ; Matrices => depend on Pov(i.e. BASES) . For every map, there are many matices. Strate gy : Linear matrix Linear system 1 map CHUICE Af of # egn nows & # vars colums of egn ⇒ R f:R -OF # vars # eqns BASES (revers: 6/e)

Def:	A map f: R ⁿ	$\mathcal{P}^{\#_{Vars}} \xrightarrow{\#_{egn}} \mathcal{R}^{\#_{egn}}$ $\to \mathcal{R}^{m}$, n,m $\in \mathbb{N}$, is an assignment
		$\longrightarrow f(x_1, \ldots, x_n)$
	n-tuple of	m-tuple of
	IR_	R
	INPUT	ουτρυτ

Examples: n=1, m=1, f: R→R, f(x,): (65(x,)·x,2) = +ex, $n=2, m=1, f: \mathbb{R}^2 \rightarrow \mathbb{R}, f(x_1, x_2) = 3x_1 + 4x_2$ $h=2, m=2, f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (x_1 + 2x_2, 3x_1 + 4x_2)$ =7 Solving (*) is asking about inputs of with output (4,7) $\begin{array}{c} \chi_1 + 2\chi_2 = 4 \end{array}$ $3x_1 + 4x_3 = 7$