1．Linear algebra：
Goal：to solve linear systems of equations
Example：$x_{1}, x_{2}, x_{3} \in \mathbb{R} \longrightarrow$ real no．
I \bar{l}

$$
\left\{\begin{array}{l}
3 x_{1}-4 x_{2}+\ln (2) x_{3}=-2 \quad \ldots \\
3 \text { unknowns } \\
x_{1}+7 x_{2}-e^{37} x_{3}=\cos (375) \ldots \text { (2) }
\end{array}\right) \rightarrow 2 \text { equations: solutibas : infinite } \Rightarrow \text { none dimension of space of solution } \quad \text { some no. }
$$

It is a linear system：
Since x_{1}, x_{2}, x_{3} have order of 1 （form：$c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots=c_{4}$ ）

Counterexamples：

$$
\begin{cases}x_{1}^{2}+e^{x_{2}}+3 x_{3}=1 & \text { eng. the power } \\ x_{2} x_{3}=-7 & \text { anything with unlenowns }\left\{x_{i}\right\} \text { multiplying or } e^{x_{i}, x_{i}, ~ \cos \left(x_{i}\right)} \\ \text { is never LINEAR }\end{cases}
$$

$\downarrow_{\text {non－linear }}$
\because There are non－linear operations，
\therefore System is non－linear

Applications：（sample）
（1）Taylor series of a function starts with LINEAR APPRoximation
（2）Diagonalizution：PageRank algorithm，powers of matrices
（3）（MAT 145）graph theory

2．From equations to maps
（1）Why does this system：
BUT？

$$
\left\{\begin{array} { l l }
{ x _ { 1 } + 2 x _ { 2 } = 4 } \\
{ 3 x _ { 1 } + 4 x _ { 3 } = 7 } & { \text { has a unique } }
\end{array} \quad \left\{\begin{array}{l}
x_{1}+2 x_{2}=4 \\
2 x_{1}+4 x_{2}=8
\end{array}\right.\right. \text { has os solutions }
$$

米 You should understand the underlying stencture of systems，instead of plugging \＆checking

Maps \Rightarrow well－define j Matrices \Rightarrow depend on Dou（i．e．BASES）
\therefore For every map，there are many matrices．

Strategy：

（reversible）

Def: A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad n, m \in \mathbb{N}$, is an assignment

$$
(\underbrace{\left(x_{1}, \ldots, x_{n}\right)}_{n-\text { tuple of }}) \underbrace{f\left(x_{1}, \ldots, x_{n}\right)}_{m-\text { tuple of }}
$$

\mathbb{R}
R
INPUT
0итPUT

Examples:

$$
\begin{aligned}
& \text { Examples: } n=1, m=1, f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x_{1}\right)=\left(\cos \left(x_{1}\right) \cdot x_{1}^{2}\right)^{\frac{1}{2}}+e^{x_{1}} \\
& n: 2, m=1, f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f\left(x_{1}, x_{2}\right)=3 x_{1}+4 x_{2} \\
& n: 2, m: 2, f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=(\underbrace{x_{1}+2 x_{2}}, \underbrace{\left.3 x_{1}+4 x_{2}\right)} \\
& \Rightarrow \text { Solving (米) is asking about inputs of } \\
& \quad *\left\{\begin{array}{l}
x_{1}+2 x_{2}=4 \\
3 x_{1}+4 x_{3}=7
\end{array}\right.
\end{aligned}
$$

