Subspace of vector s,inces (4.3)
Recall: V is an \mathbb{R} vector space, elements in V are called vectors
(i) We have a sum of vectors

Examples

(i) $v: \mathbb{R}^{n}, n=2: \mathbb{R}^{2} \xrightarrow{\uparrow}, n=3: \mathbb{R}^{3}$
(2) $V=\mathbb{R}\{x\}:=\{$ polynomials in x with \mathbb{R} weft $\}$
here $v \in V$ a vector is $v: 3-x^{2}+5 x^{3}+x^{2} \quad$ (can be rewritten as $\vec{v}=(3,0,-1,5,0,0,0,7) \leftarrow$ not canonical)

Solving systems of linear eqn

$\left.\begin{array}{rr}\text { Ex(1) } & x_{1}-x_{2}=0 \\ 3 x_{1}+7 x_{2}=0\end{array}\right\}$ what are solution?
$\left(x_{1}, x_{2}\right)$ unknowns we think as a vect. $\longrightarrow \vec{v}=\binom{x_{1}}{x_{2}} \in v=\mathbb{R}^{2}$
Solving,

$$
\left.\begin{array}{l}
x_{1}=0 \\
x_{2}=0
\end{array}\right\} \cdot n / y \text { solntibn }
$$

$$
x_{1}:-x_{2} \text { is the only constraints (i.e. } \vec{v}:\binom{1}{-1} \text { or } \vec{\omega}:\binom{3}{-3} \text { are s. }(n)
$$

$$
\text { Then } \vec{v}+\vec{w}=\binom{4}{-4} \text {, also a solution }
$$

Similarly, $c \cdot(\vec{v})=\binom{c}{-c}$ is also a solution $\forall c \in \mathbb{R}$

Defn: A vector subspace of V is a subset $w \subseteq v$ such that sums \& scalar multiplication of V when restrictal to W male w into a vector space.

2 vectors $w_{1}, w_{2} \in W$ satisfy $w_{1}+w_{2} \in W$ (not ; inst v)

Examples (1) $v=\mathbb{R}^{n}$

$$
\mathbb{R}^{2}: V
$$

Observation: Vector subspaces must watain the origin

not a vector, subspace:
\mathcal{C} is not $\in W$,
$w_{1}+w_{2}$ is not $\in W$

$$
w=\left\{\left(x_{1}, x_{2}\right) \text { with } x_{1}=1\right\}
$$

Example $v: \mathbb{R}^{3}$

$$
w_{1}=\left\{x_{3}: 0, x_{1}-x_{2}=0\right\}
$$

$$
\begin{aligned}
& w_{2}=\left\{x_{1}+x_{2}+x_{3}=0\right\} \\
& \psi:\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
i \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
-5
\end{array}\right) \ldots \\
& \left(\begin{array}{cc}
\alpha \\
\binom{\alpha}{0} & \left(\begin{array}{c}
\alpha \\
2 \alpha \\
3 \alpha \\
-5 \alpha
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Example: $V: \mathbb{R}[x]$, inside consider $W \subseteq V$ given h_{y} :

$$
\begin{gathered}
\omega:=\{p(x) \in \mathbb{R}\{x\rangle: p(0): 0\} \sim p(0): a_{0}+\ldots+a_{n} 0^{n}: 0 \\
\uparrow_{\text {such that }} \text { ie. } a_{0}=0
\end{gathered}
$$

$\therefore W$ is a vector subspace as a polynomial with zeno wastant term.

$$
\operatorname{BUT}\left(w^{\prime}:\{p \in \mathbb{R}[x]: p / 0):-3\right\} \text { IS NOT A SUBSPACE } / 1
$$

Theorem:
Let $v=\mathbb{R}^{n}$ and consider the linear system

$$
\begin{aligned}
& \begin{array}{ll}
a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+\ldots+a_{1 n} x_{n}=0 & \left(a_{i j} \in \mathbb{R}\right) \\
a_{21} \cdot x_{1}+\ldots+a_{2 n} x_{n}=0 & \text { which con }^{n} \text { (wow) }
\end{array} \\
& a_{n 1}+\ldots+a_{n n} x_{n}=0
\end{aligned}
$$

Then $w:\left\{\begin{array}{c}x_{i} \\ \vdots \\ x_{n}\end{array}\right) \in V:\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ solves the system $\} \subseteq V$ is A SUBSPACE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

