University of California Davis Abstract Linear Algebra MAT 67
 Practice Midterm Examination 2 Time Limit: 50 Minutes

\qquad
Name (Print):
Student ID (Print):
April 262024

This examination document contains 9 pages, including this cover page, and 4 problems. You must verify whether there any pages missing, in which case you should let the instructor know. Fill in all the requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:
(A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
(B) Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
(C) Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

(D) If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

1. (25 points) Let $V=\mathbb{R}^{3}$ and consider the vectors

$$
v_{1}=(3,2,0), \quad v_{2}=(1,1,1), \quad v_{3}=(6,-5,1), \quad v_{4}=(1,0,0)
$$

Define the subspaces $U_{1}:=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right), U_{2}=\operatorname{span}\left(v_{1}, v_{2}\right)$ and $U_{3}=\operatorname{span}\left(v_{3}, v_{4}\right)$. (a) (10 points) Show that $V=U_{1}$.
(b) (5 points) Show that $V=U_{2}+U_{3}$.
(c) (5 points) Prove or disprove whether $V=U_{2} \oplus U_{3}$.
(d) (5 points) Find two vectors $w_{1}, w_{2} \in V$ such that $V=\operatorname{span}\left(v_{4}, w_{1}, w_{2}\right)$.
2. (25 points) Consider the vector space $V=\mathbb{R}[x]$ and the vectors

$$
p_{1}(x)=1-x^{2}+3 x^{5}, \quad p_{2}(x)=x+x^{3}, \quad p_{3}(x)=1-4 x-x^{2}-4 x^{3}+3 x^{5} .
$$

(a) (10 points) Show that the subset $U=\{p(x) \in \mathbb{R}[x]: p(2)=0\}$ is a vector subspace.
(b) (5 points) Prove that $p_{3}(x) \in \operatorname{span}\left(p_{1}(x), p_{2}(x)\right)$.
(c) (5 points) Show that the intersection

$$
\operatorname{span}\left(p_{1}(x), p_{2}(x), p_{3}(x)\right) \cap U \neq=\{0\}
$$

contains at least a non-zero polynomial.
(d) (5 points) For each n, find a subspace $W_{n} \subseteq U$ such that $\operatorname{dim}\left(W_{n}\right)=n$.
3. (25 points) Consider the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 3 x_{1}-x_{2}+2 x_{3}\right)
$$

(a) (10 points) Show that the subset

$$
U_{f}:=\{v \in V: f(v)=0\}
$$

is a vector subspace.
(b) (5 points) Is the subset

$$
\{v \in V: f(v)=1\}
$$

a vector subspace? (Justify your answer.)
(c) (5 points) Consider the vector $w=(1,-1,-2) \in \mathbb{R}^{3}$. Show that $w \in U_{f}$.
(d) (5 points) Show that $U_{f}=\operatorname{span}(w)$.
4. (25 points) Consider the vector space $V=\mathbb{R}^{5}$ and the subspaces

$$
\begin{gathered}
U_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in V: x_{1}-x_{2}+3 x_{4}-6 x_{5}=0\right\}, \\
U_{2}:=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right),
\end{gathered}
$$

where $v_{1}=(1,0,-1,0,1), v_{2}=(4,1,0,1,1)$ and $v_{3}=(0,0,1,1,0)$.
(a) (10 points) Show that $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}\right\}$ is a basis for the subspace $U_{1} \cap U_{2} \subseteq V$.
(b) (5 points) Find a basis for the subspace $U_{1} \subseteq V$.
(c) (5 points) Show that $V=U_{1} \oplus \operatorname{span}\left(v_{1}\right)$.
(d) (5 points) Prove that $V \neq U_{1} \oplus \operatorname{span}\left(v_{2}\right)$. Is it true that $V=U_{1} \oplus \operatorname{span}\left(v_{3}\right)$?

