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(A) If you use a lemma, proposition or the-
orem which we have seen in the class or
in the book, you must indicate this and
explain why the theorem may be applied.

(B) Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
scattered all over the page without a clear or-
dering will receive little credit.

(C) Mysterious or unsupported answers will
not receive full credit. A correct answer,
unsupported by calculations, explanation, or
algebraic work will receive little credit; an in-
correct answer supported by substantially cor-
rect calculations and explanations will receive
partial credit.

(D) If you need more space, use the back of the
pages; clearly indicate when you have done
this.

Do not write in the table to the right.
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1. (25 points) Let V = R3 and consider the vectors

v1 = (3, 2, 0), v2 = (1, 1, 1), v3 = (6,−5, 1), v4 = (1, 0, 0).

Define the subspaces U1 := span(v1, v2, v3), U2 = span(v1, v2) and U3 = span(v3, v4).

(a) (10 points) Show that V = U1.

Solution. Since U1 ⊆ V , it suffices to show V ⊆ U1. Equivalently, that {v1, v2, v3}
span V (and so they are a basis). It is clear that v1 and v2 are linearly independent,
as they are not a multiple of each other. Let us show that v3 ̸∈ span(v1, v2).

By contradiction, if v3 ∈ span(v1, v2) then ∃a1, a2 ∈ R such that v3 = a1v1 + a2v2.
Since the third component of v1 is zero, this forces a2 = 1. But then we must have
v3 = a1v1 + a2v2, which is

(3a1, 2a1, 0) + (1, 1, 1) = (6,−5, 1).

There is no a1 solving this equality, since we would have 3a1+1 = 6 and 2a1+1 = −5,
a contraction. Therefore v3 ̸∈ span(v1, v2).

(b) (5 points) Show that V = U2 + U3.

Solution. By Part (a), V = U1. Since U1 ⊆ U2 + U3, we must have V ⊆ U2 + U3.
Conversely, since U2, U3 ⊆ V , their sum is also a subspace U2 + U3 ⊆ V . This
concludes V = U2 + U3.
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(c) (5 points) Prove or disprove whether V = U2 ⊕ U3.

Solution. It is not true that V = U2 ⊕ U3. Since U1 = U2 ⊕ span(v3) equals V , v4
must be a linear combination of v1, v2, v3. Given that v4 is not linearly dependent
with v3, it must be that U2 ∩ U3 ̸= {0}. (This intersection is in fact a line, 1-
dimensional.) So V it is not a direct sum of U2 and U3.

(d) (5 points) Find two vectors w1, w2 ∈ V such that V = span(v4, w1, w2).

Solution. There are (infinitely) many choices. For instance, we can take w1 =
(0, 1, 0) and w2 = (0, 0, 1), the coordinate basis.
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2. (25 points) Consider the vector space V = R[x] and the vectors

p1(x) = 1− x2 + 3x5, p2(x) = x+ x3, p3(x) = 1− 4x− x2 − 4x3 + 3x5.

(a) (10 points) Show that the subset U = {p(x) ∈ R[x] : p(2) = 0} is a vector subspace.

Solution. For any polynomial p(x) = a0 + a1x+ . . .+ anx
n, the equation p(2) = 0

is
a0 + 2a1 + . . .+ 2nan = 0,

which is a linear equation on the variables a0, . . . , an. Therefore U is the solution
set of a linear homogeneous equation, so it is a vector subspace.

Alternatively, one can check closed under sums and scalar multiplication. For in-
stance, for closed under sums, take p, q ∈ U so that p(2) = 0 and q(2) = 0. We
want to show that p+ q ∈ U . This is true because (p+ q)(2) = p(2) + p(q) = 0.

(b) (5 points) Prove that p3(x) ∈ span(p1(x), p2(x)).

Solution. We have the equality p3 = p1 − 4p2, so p3(x) ∈ span(p1(x), p2(x)).
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(c) (5 points) Show that the intersection

span(p1(x), p2(x), p3(x)) ∩ U ̸= {0}

contains at least a non-zero polynomial.

Solution. We need a polynomial in U , i.e. that has a root equal to 2, and
that it is a linear combination of p1, p2, p3. Since Part (b) implies that p3(x) ∈
span(p1(x), p2(x)), it suffices to look for linear combinations of p1 and p2. We want
a1, a2 ∈ R such that a1p1 + a2p2 has 2 as a root. This is the equation

a1p1(2) + a2p2(2) = 0.

We can expand this to

a1(1− 22 + 3 · 25) + a2(2 + 23) = 0, i.e.

93a1 + 10a2 = 0.

Choose any a1, a2 with a2 = −9.3a1, e.g. a1 = 10 and a2 = −93. Then we have
10p1 − 93p2 ∈ U and, by construction, also in span(p1, p2).

(d) (5 points) For each n, find a subspace Wn ⊆ U such that dim(Wn) = n.

Solution. Let vj = (x− 2)j for j ∈ N and choose Wn = span(v1, . . . , vn).
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3. (25 points) Consider the function f : R3 −→ R2 given by

f(x1, x2, x3) = (x1 + x2, 3x1 − x2 + 2x3).

(a) (10 points) Show that the subset

Uf := {v ∈ V : f(v) = 0}

is a vector subspace.

Solution. Since f is a linear function,

f(v1 + v2) = f(v1) + f(v2) = 0, ∀v1, v2 ∈ Uf ,

f(a · v1) = a · f(v1) = 0, ∀v1 ∈ Uf .

Therefore Uf ⊆ V is a subspace, as it is closed under sum and scalar multiplication.

(b) (5 points) Is the subset
{v ∈ V : f(v) = 1}

a vector subspace? (Justify your answer.)

Solution. No. For instance, it does not contain a zero vector. It is also not closed
under sums, nor closed under scalar multiplication.
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(c) (5 points) Consider the vector w = (1,−1,−2) ∈ R3. Show that w ∈ Uf .

Solution. We need to evaluate f(w), where f(x1, x2, x3) = (x1+x2, 3x1−x2+2x3)
and w = (1,−1,−2). We have

f(w) = (1 + (−1), 3 · 1− (−1) + 2 · (−2)) = (0, 0),

and so w ∈ Uf .

(d) (5 points) Show that Uf = span(w).

Solution. By Part (c), span(w) ⊆ Uf because w ∈ Uf . It suffices to show Uf ⊆
span(w). Suppose that v ∈ Uf is given by v = (x1, x2, x3). Then f(v) = 0 are the
equations

x1 + x2 = 0, 3x1 − x2 + 2x3 = 0.

The first equation implies x2 = −x1 and the second 4x1 + 2x3 = 0, so that x3 =
−2x1. This implies that v = a1 · w where a1 = x1, and thus v ∈ span(w). This
proves Uf ⊆ span(w) and thus we conclude Uf = span(w).
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4. (25 points) Consider the vector space V = R5 and the subspaces

U1 := {(x1, x2, x3, x4, x5) ∈ V : x1 − x2 + 3x4 − 6x5 = 0},

U2 := span(v1, v2, v3),

where v1 = (1, 0,−1, 0, 1), v2 = (4, 1, 0, 1, 1) and v3 = (0, 0, 1, 1, 0).

(a) (10 points) Show that {v2, v1 + 5
3
v3} is a basis for the subspace U1 ∩ U2 ⊆ V .

Solution. We need to argue that {v2, v1+ 5
3
v3} are linearly independent first. This

is clear, as v2 is not a multiple of v1+
5
3
v3. Now we need to show span(v2, v1+

5
3
v3) =

U1 ∩ U2.

For the inclusion span(v2, v1 +
5
3
v3) ⊆ U1 ∩ U2, we just check directly that v2 ∈ U1

and v1 +
5
3
v3 ∈ U1. For instance, v2 ∈ U1 because 4− 1 + 3 · 1− 6 · 1 = 0.

For the inclusion U1 ∩ U2 ⊆ span(v2, v1 +
5
3
v3). Note that v1, v3 ̸∈ U1 and v2 ∈ U1.

Since U1 is 4-dimensional and span(v1, v3) is 2-dimensional, v1, v3 ̸∈ U1 implies
that the intersection U1 ∩ span(v1, v3) is 1-dimensional. Therefore U1 ∩ U2 is 2-
dimensional, with a possible basis given by v2 and any non-zero vector of U1 ∩
span(v1, v3). Since v1 +

5
3
v3 is in the intersection, it must be that {v2, v1 + 5

3
v3} is

a basis.

(b) (5 points) Find a basis for the subspace U1 ⊆ V .

Solution. By Part (a), we already have 2 linearly independent vectors in U1. Since
U1 is 4-dimensional, it suffices to give 2 additional vectors w1, w2 ⊆ U1 so that
{v2, v1 + 5

3
v3, w1, w2} are a basis of U1. Take for instance

w1 = (1, 1, 0, 0, 0), w2 = (0, 3, 0, 1, 0),

both of which are in U1. A computation shows that w1 ̸∈ span(v2, v1 +
5
3
v3) and

w2 ̸∈ span(v2, v1 +
5
3
v3, w1). Therefore {v2, v1 + 5

3
v3, w1, w2} are a basis.
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(c) (5 points) Show that V = U1 ⊕ span(v1).

Solution. Since U1 is 4-dimensional1, any vector v ∈ V not in U1 satisfies V =
U1 + span(v). Since v ̸∈ U1, this is in fact always a direct sum V = U1 ⊕ span(v).
Therefore, it suffices to argue that v1 ̸∈ U1. This is indeed the case, as

1− 0 + 3 · 0− 6 · 1 ̸= 0,

so v1 ̸∈ U1.

(d) (5 points) Prove that V ̸= U1 ⊕ span(v2). Is it true that V = U1 ⊕ span(v3)?

Solution. Since v2 ∈ U1, U1∩ span(v2) = U1 ̸= {0} and the sum cannot be a direct
sum. Since v3 ̸∈ U1, the same argument as in Part (c) shows that V = U1⊕span(v3).

1It is cut out by one non-zero equation in 5-variables.


