University of California Davis Abstract Linear Algebra MAT 67
 Practice Midterm Examination 2 Time Limit: 50 Minutes

\qquad
Name (Print):
Student ID (Print):
April 262024

This examination document contains 9 pages, including this cover page, and 4 problems. You must verify whether there any pages missing, in which case you should let the instructor know. Fill in all the requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:
(A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
(B) Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
(C) Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

(D) If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

1. (25 points) Let $V=\mathbb{R}^{3}$ and consider the vectors

$$
v_{1}=(3,2,0), \quad v_{2}=(1,1,1), \quad v_{3}=(6,-5,1), \quad v_{4}=(1,0,0) .
$$

Define the subspaces $U_{1}:=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right), U_{2}=\operatorname{span}\left(v_{1}, v_{2}\right)$ and $U_{3}=\operatorname{span}\left(v_{3}, v_{4}\right)$.
(a) (10 points) Show that $V=U_{1}$.

Solution. Since $U_{1} \subseteq V$, it suffices to show $V \subseteq U_{1}$. Equivalently, that $\left\{v_{1}, v_{2}, v_{3}\right\}$ span V (and so they are a basis). It is clear that v_{1} and v_{2} are linearly independent, as they are not a multiple of each other. Let us show that $v_{3} \notin \operatorname{span}\left(v_{1}, v_{2}\right)$.
By contradiction, if $v_{3} \in \operatorname{span}\left(v_{1}, v_{2}\right)$ then $\exists a_{1}, a_{2} \in \mathbb{R}$ such that $v_{3}=a_{1} v_{1}+a_{2} v_{2}$. Since the third component of v_{1} is zero, this forces $a_{2}=1$. But then we must have $v_{3}=a_{1} v_{1}+a_{2} v_{2}$, which is

$$
\left(3 a_{1}, 2 a_{1}, 0\right)+(1,1,1)=(6,-5,1) .
$$

There is no a_{1} solving this equality, since we would have $3 a_{1}+1=6$ and $2 a_{1}+1=-5$, a contraction. Therefore $v_{3} \notin \operatorname{span}\left(v_{1}, v_{2}\right)$.
(b) (5 points) Show that $V=U_{2}+U_{3}$.

Solution. By Part (a), $V=U_{1}$. Since $U_{1} \subseteq U_{2}+U_{3}$, we must have $V \subseteq U_{2}+U_{3}$. Conversely, since $U_{2}, U_{3} \subseteq V$, their sum is also a subspace $U_{2}+U_{3} \subseteq V$. This concludes $V=U_{2}+U_{3}$.
(c) (5 points) Prove or disprove whether $V=U_{2} \oplus U_{3}$.

Solution. It is not true that $V=U_{2} \oplus U_{3}$. Since $U_{1}=U_{2} \oplus \operatorname{span}\left(v_{3}\right)$ equals V, v_{4} must be a linear combination of v_{1}, v_{2}, v_{3}. Given that v_{4} is not linearly dependent with v_{3}, it must be that $U_{2} \cap U_{3} \neq\{0\}$. (This intersection is in fact a line, 1dimensional.) So V it is not a direct sum of U_{2} and U_{3}.
(d) (5 points) Find two vectors $w_{1}, w_{2} \in V$ such that $V=\operatorname{span}\left(v_{4}, w_{1}, w_{2}\right)$.

Solution. There are (infinitely) many choices. For instance, we can take $w_{1}=$ $(0,1,0)$ and $w_{2}=(0,0,1)$, the coordinate basis.
2. (25 points) Consider the vector space $V=\mathbb{R}[x]$ and the vectors

$$
p_{1}(x)=1-x^{2}+3 x^{5}, \quad p_{2}(x)=x+x^{3}, \quad p_{3}(x)=1-4 x-x^{2}-4 x^{3}+3 x^{5} .
$$

(a) (10 points) Show that the subset $U=\{p(x) \in \mathbb{R}[x]: p(2)=0\}$ is a vector subspace.

Solution. For any polynomial $p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, the equation $p(2)=0$ is

$$
a_{0}+2 a_{1}+\ldots+2^{n} a_{n}=0
$$

which is a linear equation on the variables a_{0}, \ldots, a_{n}. Therefore U is the solution set of a linear homogeneous equation, so it is a vector subspace.

Alternatively, one can check closed under sums and scalar multiplication. For instance, for closed under sums, take $p, q \in U$ so that $p(2)=0$ and $q(2)=0$. We want to show that $p+q \in U$. This is true because $(p+q)(2)=p(2)+p(q)=0$.
(b) (5 points) Prove that $p_{3}(x) \in \operatorname{span}\left(p_{1}(x), p_{2}(x)\right)$.

Solution. We have the equality $p_{3}=p_{1}-4 p_{2}$, so $p_{3}(x) \in \operatorname{span}\left(p_{1}(x), p_{2}(x)\right)$.
(c) (5 points) Show that the intersection

$$
\operatorname{span}\left(p_{1}(x), p_{2}(x), p_{3}(x)\right) \cap U \neq\{0\}
$$

contains at least a non-zero polynomial.
Solution. We need a polynomial in U, i.e. that has a root equal to 2 , and that it is a linear combination of p_{1}, p_{2}, p_{3}. Since Part (b) implies that $p_{3}(x) \in$ $\operatorname{span}\left(p_{1}(x), p_{2}(x)\right)$, it suffices to look for linear combinations of p_{1} and p_{2}. We want $a_{1}, a_{2} \in \mathbb{R}$ such that $a_{1} p_{1}+a_{2} p_{2}$ has 2 as a root. This is the equation

$$
a_{1} p_{1}(2)+a_{2} p_{2}(2)=0 .
$$

We can expand this to

$$
\begin{gathered}
a_{1}\left(1-2^{2}+3 \cdot 2^{5}\right)+a_{2}\left(2+2^{3}\right)=0, \text { i.e. } \\
93 a_{1}+10 a_{2}=0 .
\end{gathered}
$$

Choose any a_{1}, a_{2} with $a_{2}=-9.3 a_{1}$, e.g. $a_{1}=10$ and $a_{2}=-93$. Then we have $10 p_{1}-93 p_{2} \in U$ and, by construction, also in $\operatorname{span}\left(p_{1}, p_{2}\right)$.
(d) (5 points) For each n, find a subspace $W_{n} \subseteq U$ such that $\operatorname{dim}\left(W_{n}\right)=n$.

Solution. Let $v_{j}=(x-2)^{j}$ for $j \in \mathbb{N}$ and choose $W_{n}=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$.
3. (25 points) Consider the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 3 x_{1}-x_{2}+2 x_{3}\right) .
$$

(a) (10 points) Show that the subset

$$
U_{f}:=\{v \in V: f(v)=0\}
$$

is a vector subspace.

Solution. Since f is a linear function,

$$
\begin{gathered}
f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)=0, \quad \forall v_{1}, v_{2} \in U_{f}, \\
f\left(a \cdot v_{1}\right)=a \cdot f\left(v_{1}\right)=0, \quad \forall v_{1} \in U_{f} .
\end{gathered}
$$

Therefore $U_{f} \subseteq V$ is a subspace, as it is closed under sum and scalar multiplication.
(b) (5 points) Is the subset

$$
\{v \in V: f(v)=1\}
$$

a vector subspace? (Justify your answer.)
Solution. No. For instance, it does not contain a zero vector. It is also not closed under sums, nor closed under scalar multiplication.
(c) (5 points) Consider the vector $w=(1,-1,-2) \in \mathbb{R}^{3}$. Show that $w \in U_{f}$.

Solution. We need to evaluate $f(w)$, where $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 3 x_{1}-x_{2}+2 x_{3}\right)$ and $w=(1,-1,-2)$. We have

$$
f(w)=(1+(-1), 3 \cdot 1-(-1)+2 \cdot(-2))=(0,0)
$$

and so $w \in U_{f}$.
(d) (5 points) Show that $U_{f}=\operatorname{span}(w)$.

Solution. By Part $(\mathrm{c}), \operatorname{span}(w) \subseteq U_{f}$ because $w \in U_{f}$. It suffices to show $U_{f} \subseteq$ $\operatorname{span}(w)$. Suppose that $v \in U_{f}$ is given by $v=\left(x_{1}, x_{2}, x_{3}\right)$. Then $f(v)=0$ are the equations

$$
x_{1}+x_{2}=0, \quad 3 x_{1}-x_{2}+2 x_{3}=0 .
$$

The first equation implies $x_{2}=-x_{1}$ and the second $4 x_{1}+2 x_{3}=0$, so that $x_{3}=$ $-2 x_{1}$. This implies that $v=a_{1} \cdot w$ where $a_{1}=x_{1}$, and thus $v \in \operatorname{span}(w)$. This proves $U_{f} \subseteq \operatorname{span}(w)$ and thus we conclude $U_{f}=\operatorname{span}(w)$.
4. (25 points) Consider the vector space $V=\mathbb{R}^{5}$ and the subspaces

$$
\begin{gathered}
U_{1}:=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in V: x_{1}-x_{2}+3 x_{4}-6 x_{5}=0\right\}, \\
U_{2}:=\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right),
\end{gathered}
$$

where $v_{1}=(1,0,-1,0,1), v_{2}=(4,1,0,1,1)$ and $v_{3}=(0,0,1,1,0)$.
(a) (10 points) Show that $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}\right\}$ is a basis for the subspace $U_{1} \cap U_{2} \subseteq V$.

Solution. We need to argue that $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}\right\}$ are linearly independent first. This is clear, as v_{2} is not a multiple of $v_{1}+\frac{5}{3} v_{3}$. Now we need to $\operatorname{show} \operatorname{span}\left(v_{2}, v_{1}+\frac{5}{3} v_{3}\right)=$ $U_{1} \cap U_{2}$.

For the inclusion $\operatorname{span}\left(v_{2}, v_{1}+\frac{5}{3} v_{3}\right) \subseteq U_{1} \cap U_{2}$, we just check directly that $v_{2} \in U_{1}$ and $v_{1}+\frac{5}{3} v_{3} \in U_{1}$. For instance, $v_{2} \in U_{1}$ because $4-1+3 \cdot 1-6 \cdot 1=0$.

For the inclusion $U_{1} \cap U_{2} \subseteq \operatorname{span}\left(v_{2}, v_{1}+\frac{5}{3} v_{3}\right)$. Note that $v_{1}, v_{3} \notin U_{1}$ and $v_{2} \in U_{1}$. Since U_{1} is 4 -dimensional and $\operatorname{span}\left(v_{1}, v_{3}\right)$ is 2-dimensional, $v_{1}, v_{3} \notin U_{1}$ implies that the intersection $U_{1} \cap \operatorname{span}\left(v_{1}, v_{3}\right)$ is 1-dimensional. Therefore $U_{1} \cap U_{2}$ is 2dimensional, with a possible basis given by v_{2} and any non-zero vector of $U_{1} \cap$ $\operatorname{span}\left(v_{1}, v_{3}\right)$. Since $v_{1}+\frac{5}{3} v_{3}$ is in the intersection, it must be that $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}\right\}$ is a basis.
(b) (5 points) Find a basis for the subspace $U_{1} \subseteq V$.

Solution. By Part (a), we already have 2 linearly independent vectors in U_{1}. Since U_{1} is 4-dimensional, it suffices to give 2 additional vectors $w_{1}, w_{2} \subseteq U_{1}$ so that $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}, w_{1}, w_{2}\right\}$ are a basis of U_{1}. Take for instance

$$
w_{1}=(1,1,0,0,0), \quad w_{2}=(0,3,0,1,0),
$$

both of which are in U_{1}. A computation shows that $w_{1} \notin \operatorname{span}\left(v_{2}, v_{1}+\frac{5}{3} v_{3}\right)$ and $w_{2} \notin \operatorname{span}\left(v_{2}, v_{1}+\frac{5}{3} v_{3}, w_{1}\right)$. Therefore $\left\{v_{2}, v_{1}+\frac{5}{3} v_{3}, w_{1}, w_{2}\right\}$ are a basis.
(c) (5 points) Show that $V=U_{1} \oplus \operatorname{span}\left(v_{1}\right)$.

Solution. Since U_{1} is 4-dimensional ${ }^{1}$, any vector $v \in V$ not in U_{1} satisfies $V=$ $U_{1}+\operatorname{span}(v)$. Since $v \notin U_{1}$, this is in fact always a direct sum $V=U_{1} \oplus \operatorname{span}(v)$. Therefore, it suffices to argue that $v_{1} \notin U_{1}$. This is indeed the case, as

$$
1-0+3 \cdot 0-6 \cdot 1 \neq 0
$$

so $v_{1} \notin U_{1}$.
(d) (5 points) Prove that $V \neq U_{1} \oplus \operatorname{span}\left(v_{2}\right)$. Is it true that $V=U_{1} \oplus \operatorname{span}\left(v_{3}\right)$?

Solution. Since $v_{2} \in U_{1}, U_{1} \cap \operatorname{span}\left(v_{2}\right)=U_{1} \neq\{0\}$ and the sum cannot be a direct sum. Since $v_{3} \notin U_{1}$, the same argument as in Part (c) shows that $V=U_{1} \oplus \operatorname{span}\left(v_{3}\right)$.

[^0]
[^0]: ${ }^{1}$ It is cut out by one non-zero equation in 5 -variables.

