LECTURE 2: PRACTICE EXERCISES

MAT-67 SPRING 2024

Abstract

These practice problems correspond to the 2nd lecture of MAT-67 Spring 2024, delivered on April 3rd 2024. Solutions were typed by TA Scroggin, please contact tmscroggin - at - ucdavis.edu for any comments.

Recall that a map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be linear if it satisfies the following 2 conditions:
(i) $f(x+y)=f(x)+f(y)$, for all $x, y \in \mathbb{R}^{n}$,
(ii) $f(c \cdot x)=c \cdot f(x)$, for all $c \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$.

See lecture notes from Lectures $1 \& 2$, and also Section 1.3 in book, for more details.

Problem 1. For each of the following maps, prove whether it is linear or non-linear.
(1) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=5 x$,
(2) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=5 x+1$,
(3) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=\cos (x)$,
(4) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x^{3}-x$,
(5) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=\ln \left(1+x^{2}\right)$,
(6) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, f\left(x_{1}, x_{2}\right)=x_{1}+4 x_{2}$,
(7) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, f\left(x_{1}, x_{2}\right)=3 x_{1}-x_{2}+7$,
(8) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, x_{2}\right)$,
(9) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 4 x_{1}+x_{3}\right)$,
(10) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 1\right)$
(11) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, x_{1} x_{3}, x_{1}-x_{2}\right)$
(12) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(e^{x_{3}+x_{1}}, 3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 0\right)$

Solution. Please note that I shall use the distributive law below without explicitly mentioning this fact, due to the number of exercises. However, in your proof you should state when this rule is applied.
(1) Claim: The function is linear.
proof: We verify that f satisfies conditions (i) and (ii):
(i) By the distributive law, $f(x+y)=5(x+y)=5 x+5 y=f(x)+f(y)$,
(ii) $f(c x)=5(c x)=5 c x=c(5 x)=c f(x)$.
(2) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii):
(i) Given that

$$
\begin{aligned}
f(x+y) & =5(x+y)+1=5 x+5 y+1 \\
f(x)+f(y) & =(5 x+1)+(5 y+1)=5 x+5 y+2
\end{aligned}
$$

then $f(x+y) \neq f(x)+f(y)$.
(ii) $f(c x)=5(c x)+1=c(5 x)+1 \neq c(5 x)+c=c(5 x+1)=c f(x)$.
(3) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii):
(i) $f(x+y)=\cos (x+y) \neq \cos (x)+\cos (y)=f(x)+f(y)$,
(ii) $f(c \cdot x)=\cos (c x) \neq c \cdot \cos (x)=c \cdot f(x)$.
(4) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii):
(i) $f(x+y)=(x+y)^{3}+(x+y)=x^{3}+3 x^{2} y+3 x y^{+} y^{3}+x+y \neq x^{3}+y^{3}+x+y=$ $f(x)+f(y)$,
(ii) $f(c \cdot x)=(c x)^{3}+c x=c^{3} x^{3}+c x=c\left(c^{2} x^{3}+x\right) \neq c\left(x^{3}+x\right)=c \cdot f(x)$.
(5) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii).
(i) $f(x+y)=\ln \left(1+(x+y)^{2}\right)=\ln \left(1+x^{2}+2 x y+y^{2}\right) \neq \ln \left(1+x^{2}\right)+\ln \left(1+y^{2}\right)=$ $f(x)+f(y)$,
(ii) $f(c \cdot x)=\ln \left(1+(c x)^{2}\right)=\ln \left(1+c^{2} x^{2}\right) \neq \ln \left(1+x^{2}\right)^{c}=c \ln \left(1+x^{2}\right)=c \cdot f(x)$.
(6) Claim: The function is linear.
proof: We verify that f satisfies conditions (i) and (ii):
(i)

$$
\begin{aligned}
f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) & =f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(x_{1}+y_{1}\right)+4\left(x_{2}+y_{2}\right) \\
& =x_{1}+y_{1}+4 x_{2}+4 y_{2}=\left(x_{1}+4 x_{2}\right)+\left(y_{1}+4 y_{2}\right) \\
& =f\left(x_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right)
\end{aligned}
$$

(ii) $f\left(c \cdot\left(x_{1}, x_{2}\right)\right)=f\left(c x_{1}, c x_{2}\right)=\left(c x_{1}\right)+4\left(c x_{2}\right)=c\left(x_{1}+4 x_{2}\right)=c \cdot f\left(x_{1}, x_{2}\right)$.
(7) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii).
(i) Given that

$$
\begin{aligned}
f\left(x_{1}+y_{1}, x_{2}+y_{2}\right) & =3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+7 \\
& =3 x_{1}+x_{2}+3 y_{1}+y_{2}+7 \\
f\left(x_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right) & =\left(3 x_{1}+x_{2}+7\right)+\left(3 y_{1}+y_{2}+7\right) \\
& =3 x_{1}+x_{2}+3 y_{1}+y_{2}+14
\end{aligned}
$$

then $f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) \neq f\left(x_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right)$.
(ii)

$$
\begin{aligned}
f\left(\left(x_{1}, x_{2}\right)\right) & =f\left(c x_{1}, c x_{2}\right)=3\left(c x_{1}\right)-\left(c x_{2}\right)+7 \\
& =3 c x_{1}+c x_{2}+7 \\
c \cdot f\left(x_{1}, x_{2}\right) & =c\left(3 x_{1}-x_{2}+7\right)=3 c x_{1}+c x_{2}+7 c .
\end{aligned}
$$

Here, $c \cdot f\left(x_{1}, x_{2}\right) \neq f\left(c \cdot\left(x_{1}, x_{2}\right)\right)$.
(8) Claim: The function is linear.
proof: We verify that f satisfies conditions (i) and (ii):
(i)

$$
\begin{aligned}
f\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) & =f\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right),\left(x_{2}+y_{2}\right)\right) \\
& =\left(3 x_{1}+3 y_{1}-x_{2}-y_{2}, x_{2}+y_{2}\right) \\
& =\left(3 x_{1}-x_{2}, x_{2}\right)+\left(3 y_{1}-y_{2}, y_{2}\right) \\
& =f\left(x_{1}, x_{2}\right)+f\left(y_{1}, y_{2}\right)
\end{aligned}
$$

(ii) $f\left(c \dot{c}\left(x_{1}, x_{2}\right)=f\left(c x_{1}, c x_{2}\right)=\left(3\left(c x_{1}\right)-\left(c x_{2}\right), c x_{2}\right)=\left(c\left(3 x_{1}-x_{2}\right), c x_{2}\right)=\right.$ $c \cdot\left(3 x_{1}-x_{2}, x_{2}\right)=c \cdot f\left(x_{1}, x_{2}\right)$.
(9) Claim: The function is linear.
proof: We verify that f satisfies conditions (i) and (ii): (i)

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)= & f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
= & \left(3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right),\left(x_{1}+y_{1}\right)\right. \\
& \left.-\left(x_{2}+y_{2}\right)+4\left(x_{3}+y_{3}\right), 4\left(x_{1}+y_{1}\right)+\left(x_{3}+y_{3}\right)\right) \\
= & \left(3 x_{1}+3 y_{1}-x_{2}-y_{2}+x_{3}+y_{3}, x_{1}+y_{1}-x_{2}-y_{2}\right. \\
= & \left.+4 x_{3}+4 y_{3}, 4 x_{1}+4 y_{2}+x_{3}+y_{3}\right) \\
= & \left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 4 x_{1}+x_{3}\right) \\
& +\left(3 y_{1}-y_{2}+y_{3}, y_{1}-y_{2}+4 y_{3}, 4 y_{1}+y_{3}\right) \\
= & f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right),
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f\left(c \cdot x_{1}, x_{2}, x_{3}\right) & =f\left(c x_{1}, c x_{2}, c x_{3}\right) \\
& =\left(3 c x_{1}-c x_{2}+c x_{3}, c x_{1}-c x_{2}+4 c x_{3}, 4 c x_{1}+c x_{3}\right) \\
& =\left(c\left(3 x_{1}-x_{2}+x_{3}\right), c\left(x_{1}-x_{2}+4 x_{3}\right), c\left(4 x_{1}+x_{3}\right)\right) \\
& =c \cdot\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 4 x_{1}+x_{3}\right) \\
& =c \cdot f\left(x_{1}, x_{2}, x_{3}\right) \\
f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, f & \left.f x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 4 x_{1}+x_{3}\right),
\end{aligned}
$$

(10) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii).
(i)

$$
\begin{aligned}
f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)= & \left(3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right),\right. \\
& \left.\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+4\left(x_{3}+y_{3}\right), 1\right) \\
= & \left(3 x_{1}+3 y_{1}-x_{2}-y_{2}+x_{3}+y_{3}, x_{1}+y_{1}\right. \\
& \left.-x_{2}-y_{2}+4 x_{3}+4 y_{3}, 1\right) \\
f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)= & \left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 1\right) \\
& +\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 1\right) \\
= & \left(3 x_{1}+3 y_{1}-x_{2}-y_{2}+x_{3}+y_{3}, x_{1}+y_{1}\right. \\
& \left.-x_{2}-y_{2}+4 x_{3}+4 y_{3}, 2\right) .
\end{aligned}
$$

Here, $f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \neq f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)$ because in the third coordinate we have $1 \neq 2$.

$$
\begin{align*}
f\left(c\left(x_{1}, x_{2}, x_{3}\right)\right) & =f\left(c x_{1}, c x_{2}, c x_{3}\right) \tag{i}\\
& =\left(3 c x_{1}-c x_{2}+c x_{3}, c x_{1}-c x_{2}+4 c x_{3}, 1\right) \\
c \cdot f\left(x_{1}, x_{2}, x_{3}\right) & =c \cdot\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 1\right) \\
& =\left(3 c x_{1}-c x_{2}+c x_{3}, c x_{1}-c x_{2}+4 c x_{3}, c\right)
\end{align*}
$$

We have that $f\left(c \cdot\left(x_{1}, x_{2}, x_{3}\right) \neq c \cdot f\left(x_{1}, x_{2}, x_{3}\right)\right.$ because in the third coordinate $1 \neq c$, unless $c=1$.
(11) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii).
(i)

$$
\begin{aligned}
f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)= & \left(3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right),\right. \\
& \left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+4\left(x_{3}+y_{3}\right), \\
& \left(x_{1}+y_{1}\right)\left(x_{3}+y_{3}\right) \\
& \left.\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right) \\
= & \left(3 x_{1}+3 y_{1}-x_{2}-y_{2}+x_{3}+y_{3},\right. \\
& x_{1}+y_{1}-x_{2}+y_{2}+4 x_{3}+4 y_{3}, \\
& x_{1} x_{3}+x_{1} y_{3}+y_{1} x_{3}+y_{1} y_{3}, \\
& \left.x_{1}+y_{1}-x_{2}-y_{2}\right) \\
f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)= & \left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, x_{1} x_{3}, x_{1}-x_{2}\right) \\
+ & \left(3 y_{1}-y_{2}+y_{3}, y_{1}-y_{2}+4 y_{3}, y_{1} y_{3}, y_{1}-y_{2}\right) \\
= & \left(3 x_{1}+3 y_{1}-x_{2}-y_{2}+x_{3}+y_{3},\right. \\
& x_{1}+y_{1}-x_{2}+y_{2}+4 x_{3}+4 y_{3}, \\
& \left.x_{1} x_{3}+y_{1} y_{3}, x_{1}+y_{1}-x_{2}-y_{2}\right)
\end{aligned}
$$

Therefore, $f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \neq f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)$ due to the difference of the additional term of $x_{1} y_{3}+x_{3} y_{1}$ in the third coordinate for $f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)$.
(ii)

$$
\begin{aligned}
f\left(c \cdot\left(x_{1}, x_{2}, x_{3}\right)\right) & =f\left(c x_{1}, c x_{2}, c_{3}\right) \\
& =\left(3 c x_{1}-c x_{2}+c x_{3}, c x_{1}-c x_{2}+4 c x_{3}, c^{2} x_{1} x_{3}, c x_{1}-c x_{2}\right) \\
& =\left(c\left(3 x_{1}-x_{2}+x_{3}\right), c\left(x_{1}-x_{2}+4 x_{3}\right), c\left(c x_{1} x_{3}\right), c\left(x_{1}-x_{2}\right)\right) \\
c \cdot f\left(x_{1}, x_{2}, x_{3}\right) & =c \cdot\left(3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, x_{1} x_{3}, x_{1}-x_{2}\right) \\
& =\left(c\left(3 x_{1}-x_{2}+x_{3}\right), c\left(x_{1}-x_{2}+4 x_{3}\right), c\left(x_{1} x_{3}\right), c\left(x_{1}-x_{2}\right)\right)
\end{aligned}
$$

Here, we see that $f\left(c \cdot\left(x_{1}, x_{2}, x_{3}\right) \neq c \cdot f\left(x_{1}, x_{2}, x_{3}\right)\right.$ by the discrepancy in the third coordinate of $c^{2} \neq c$ unless $c= \pm 1$.
(12) Claim: The function is non-linear.
proof: This function fails both conditions (i) and (ii).
(i)

$$
\begin{aligned}
& f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right)=\left(e^{\left(x_{3}+y_{3}\right)+\left(x_{1}+y_{1}\right)}, 3\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right),\right. \\
&\left.\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)+4\left(x_{3}+y+3\right), 0\right) \\
&=\left(e^{x_{3}+x_{1}} e^{y_{3}+y_{1}}, 3 x_{1}-x_{2}+x_{3}+3 y_{1}-y_{2}+y_{3},\right. \\
&\left.x_{1}-x_{2}+4 x_{3}+y_{1}-y_{2}+4 y_{3}, 0\right) \\
& f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)=\left(e^{x_{3}+x_{1}}, 3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 0\right) \\
&+\left(e^{y_{3}+y_{1}}, 3 y_{1}-y_{2}+y_{3}, y_{1}-y_{2}+4 y_{3}, 0\right) \\
&=\left(e^{x_{3}+x_{1}}+e^{y_{3}+y_{1}}, 3 x_{1}-x_{2}+x_{3}+3 y_{1}-y_{2}+y_{3},\right. \\
&\left.x_{1}-x_{2}+4 x_{3}+y_{1}-y_{2}+4 y_{3}, 0\right) \\
& f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(e^{x_{3}+x_{1}}, 3 x_{1}-x_{2}+x_{3}, x_{1}-x_{2}+4 x_{3}, 0\right)
\end{aligned}
$$

Hence, $f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \neq f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right)$ for the discrepancy in the first coordinate.
(ii)

$$
\begin{aligned}
& f\left(c x_{1}, c x_{2}, c x_{3}\right)=\left(e^{c x_{3}+c x_{1}}, 3 c x_{1}-c x_{2}+c x_{3}, c x_{1}-c x_{2}+4 c x_{3}, 0\right) \\
& c \cdot f\left(x_{1}, x_{2}, x_{3}\right)=\left(c e^{x_{3}+x_{1}}, c\left(3 x_{1}-x_{2}+x_{3}\right) c, c\left(x_{1}-x_{2}+4 x_{3}\right), 0\right)
\end{aligned}
$$

Since $e^{c\left(x_{3}+x_{1}\right)} \neq c e^{x_{3}+x_{1}}$ unless $c=1$, then $f\left(c \cdot\left(x_{1}, x_{2}, x_{3}\right) \neq c \cdot f\left(x_{1}, x_{2}, x_{3}\right)\right.$.

Problem 2. For each of the following pairs of maps $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$, write their composition $g \circ f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$, defined by

$$
(g \circ f)\left(x_{1}, \ldots, x_{n}\right)=g\left(f\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right) .
$$

(1) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=3 x$ and $g: \mathbb{R} \longrightarrow \mathbb{R}, g(s)=4 s+1$.
(2) $f: \mathbb{R} \longrightarrow \mathbb{R}^{2}, f(x)=(2 x, 7 x)$ and $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}, g(s, t)=s+6 t$.
(3) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=(2 x+3 y, 7 x-y)$ and $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}, g(s, t)=3 s-t$.
(4) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}, f(x, y)=(x-2 y, 4 x+7 y, x)$, and the map $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}, g(s, t, u)=(s+3 t-u, s+u)$.

Solution.

(1) $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$, where

$$
(g \circ f)(x)=g(f(x))=g(3 x)=4(3 x)+1=12 x+1
$$

(2) $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$, where

$$
(g \circ f)(x)=g(f(x))=g((2 x, 7 x))=2 x+6(7 x)=2 x+42 x=44 x .
$$

(3) $g \circ f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$, where

$$
\begin{aligned}
(g \circ f)(x, y) & =g(f((x, y)))=g((2 x+3 y, 7 x-y))=3(2 x+3 y)-(7 x-y) \\
& =6 x+9 y-7 x+y=13 x+10 y .
\end{aligned}
$$

(4) $g \circ f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, where

$$
\begin{aligned}
(g \circ f)(x, y) & =g(f((x, y)))=g((x-2 y, 4 x+7 y, x)) \\
& =((x-2 y)+3(4 x+7 y)-x,(x-2 y)+x) \\
& =(x-2 y+12 x+21 y-x, 2 x-2 y)=(12 x+19 y, 2 x-2 y)
\end{aligned}
$$

Problem 3. Prove, with an argument, or disprove, with a counter-example, each of the statements sentences below.
(1) Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ are two maps. If f and g are linear, then the composition $g \circ f$ is linear.
(2) Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ are two maps. If f is linear, then the composition $g \circ f$ is linear.
(3) Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ are two maps. If f is not linear, then the composition $g \circ f$ is never linear.
(4) For any map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ there exists a linear map $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ such that the composition $g \circ f$ is linear.
(5) For any non-linear map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ there exists a linear map $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ such that the composition $g \circ f$ is not linear.

Solution.

(1) This statement is true.

Proof. Suppose that the maps f, g are linear. First, we want to show that composition of linear maps preserves vector addition, i.e., $(g \circ f)(x+y)=$ $(g \circ f)(x)+(g \circ f)(y)$.

$$
\begin{aligned}
(g \circ f)(x+y) & =g(f(x+y)) & & \\
& =g(f(x)+f(y)) & & \text { (by linearity of } f) \\
& =g(f(x))+g(f(y)) & & \text { (by linearity of } g) \\
& =(g \circ f)(x)+(g \circ f)(y) . & &
\end{aligned}
$$

Now, we want to show that the composition of linear maps preserves scalar multiplication, i.e., $(g \circ f)(c \cdot x)=c \cdot(g \circ f)(x)$.

$$
\begin{aligned}
(g \circ f)(c \cdot x) & =g(f(c \cdot x)) & & \\
& =g(c \cdot f(x)) & & \text { (by linearity of } f) \\
& =c \cdot g(f(x)) & & \text { (by linearity of } g) \\
& =c \cdot(g \circ f)(x) . & &
\end{aligned}
$$

Therefore, since $(g \circ f)(x)$ satisfies the conditions of scalar multiplication and vector addition then the map is linear.
(2) This statement is false.

Counterexample: Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ where $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ where $g(x)=e^{x}$. Then the composition map $g \circ f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is defined $(g \circ f)\left(x_{1}, x_{2}\right)=e^{x_{1}+x_{2}}$ violates both scalar multiplication and vector addition since

$$
\begin{gathered}
(g \circ f)\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=e^{x_{1}+x_{2}+y_{1}+y_{2}} \neq e^{x_{1}+x_{2}}+e^{y_{1}+y_{2}}=(g \circ f)(x)+(g \circ f)(y), \\
(g \circ f)(c \cdot x)=e^{c\left(x_{1}+x_{2}\right)} \neq c e^{x_{1}+x_{2}}=c \cdot(g \circ f)(x) .
\end{gathered}
$$

(3) This statement is false.

Counterexample: Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ where $f(x)=e^{x}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ where $g(x)=\ln x$. Then the composition map $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined as $(g \circ f)(x)=$ x, which is clearly linear. To check this

$$
\begin{aligned}
(g \circ f)(x+y)= & x+y=(g \circ f)(x)+(g \circ f)(y), \\
& (g \circ f)(c x)=c x=c \cdot(g \circ f)(x) .
\end{aligned}
$$

(4) This statement is true.

Proof. Let $g: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ be the zero map. Then the composition map ($g \circ$ $f)(x)=0 \in \mathbb{R}^{k}$. We have that the zero map is trivially linear because

$$
\begin{aligned}
(g \circ f)(x+y)=g(f(x+y)) & =0=0+0=(g \circ f)(x)+(g \circ f)(y) \\
(g \circ f)(c \cdot x) & =0=c \cdot 0=c \cdot(g \circ f)(x)
\end{aligned}
$$

Note that if the problem statement had asked for a nontrivial map g, then this statement would be false. In this case, the function f could be some combination of the linear and non-linear terms, making it impossible for the function g to resolve the non-linear terms without creating new non-linear terms out of the linear terms from f.
(5) The statement is true.

Proof. If we suppose $k=m$, then let g be the identity map. Therefore, $g \circ f=f$ which is non-linear by definition.

Otherwise, let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ and let $y_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for $1 \leq i \leq m$ be the function which is non-linear. There may be more than one non-linear function, here we choose one.

Now, suppose $k \neq m$, i.e. $k<m$ or $k>m$, then let $g\left(y_{1}, \ldots, y_{m}\right)=$ $\left(y_{i}, 0, \ldots, 0\right)$, in other words, let g be the identity map on the coordinate associated to the non-linear equation and 0 for the remaining $|k-m|$ coordinates, we call this function the projection map. Here, the map g is linear since it satisfies vector addition and scalar multiplication:

$$
\begin{aligned}
g\left(x_{1}+x_{1}^{\prime}, \ldots, x_{m}+x_{m}^{\prime}\right) & =\left(x_{i}+x_{i}^{\prime}, 0 \ldots, 0\right) \\
& =\left(x_{i}, 0, \ldots, 0\right)+\left(x_{i}^{\prime}, 0, \ldots, 0\right) \\
& =g\left(x_{1}, \ldots, x_{m}\right)+g\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right) \\
g\left(c \cdot\left(x_{1}, \ldots, x_{m}\right)\right) & =g\left(c x_{1}, c x_{2}, \ldots, c x_{n}\right) \\
& \left.=\left(c x_{i}, 0, \ldots, 0\right)\right) \\
& =c\left(\left(x_{i}, 0, \ldots, 0\right)\right. \\
& =c \cdot g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot z s e 3
\end{aligned}
$$

However, the composition map which is defined

$$
(g \circ f)\left(x_{1}, \ldots, x_{n}\right)=\left(f_{i}\left(x_{1}, \ldots, x_{n}\right), 0, \ldots, 0\right)
$$

is non-linear.

Problem 4. Suppose that a map $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$.
(1) Show that $f(n \cdot x)=n \cdot f(x)$ for all natural numbers $n \in \mathbb{N}$.
(2) Show that $f(q \cdot x)=q \cdot f(x)$ for all rational numbers $q \in \mathbb{Q}$.

In particular, a continuous function satisfying condition (i) of linearity also satisfies condition (ii).

Solution.

(1) We show that $f(n \cdot x)=n \cdot f(x)$ for all natural numbers n using a recursive argument.
First, we see that $f(1 \cdot x)=f(x)=1 \cdot f(x)$ and for $n=2, f(2 \cdot x)=f(x+x)=$ $f(x)+f(x)=2 f(x)$. Similarly for $n=3, f(3 \cdot x)=f(2 x+x)=f(2 x)+f(x)=$ $2 f(x)+f(x)=3 f(x)$.

Since the natural numbers are defined recursively, i.e., if $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$, let's now suppose that the statement holds for some arbitrary n, i.e., $f(n \cdot x)=$ $n \cdot f(x)$, and we'll show that $f((n+1) \cdot x)=(n+1) \cdot f(x)$.

$$
f((n+1) \cdot x)=f(n \cdot x+x)=n \cdot f(x)+f(x)=(n+1) \cdot f(x) .
$$

Now, we have shown that for any natural number $n \in \mathbb{N}$ that $f(n \cdot x)=n \cdot f(x)$.
This type of argument is called an inductive proof which works for showing that a statement holds for a natural number and can be generalized to the integers. The general procedure to show an inductive proof is you show that the statement holds for a "base case" typically 1 but can be for any integer k. Then you perform the "inductive hypothesis" step which is when you assume that the statement holds for some particular natural number n and then you show that the statement holds for $n+1$.
(2) Let $q=\frac{p}{r} \in \mathbb{Q}$ where $p \in \mathbb{Z}$ and $r \in \mathbb{N}$. First we want to show that $f\left(\frac{1}{r} \cdot x\right)=$ $\frac{1}{r} f(x)$, using the results from part (1) we see that

$$
f(x)=f\left(r \cdot \frac{1}{r} x\right)=r \cdot f\left(\frac{1}{r} x\right)
$$

Therefore, $f(x)=r \cdot f\left(\frac{1}{r} x\right)$ and since $r \neq 0$, then we may divide by r to obtain $\frac{1}{r} f(x)=f\left(\frac{1}{r} x\right)$.

Now, to show the desired statement, we initially use the results from part (1) then the result from above,

$$
f(q \cdot x)=f\left(\frac{p}{r} \cdot x\right)=f\left(p \frac{1}{r} x\right)=p f\left(\frac{1}{r} x\right)=p \frac{1}{r} f(x)=q f(x) .
$$

