LECTURE 3: PRACTICE EXERCISES

MAT-67 SPRING 2024

Abstract. These practice problems correspond to the 3rd lecture of MAT-67 Spring
2024, delivered on April 5th 2024 .
The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Problem 1. Draw in the real line \mathbb{R} and the real plane \mathbb{R}^{2} the following maps f by drawing vectors v_{i} and their images $f\left(v_{i}\right)$.
(1) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=5 x$ and the vectors

$$
v_{1}=(1), \quad v_{2}=(-3), \quad v_{3}=(4)
$$

(2) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, x_{2}\right)$ and the vectors

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(2,5)
$$

(3) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(3 x_{1}, 5 x_{2}\right)$ and the vectors

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(1,1)
$$

(4) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}\right)$ and the vectors

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(1,1)
$$

(5) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(2 x_{1}, 0\right)$ and the vectors

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(2,-3)
$$

(6) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right)$ and the vectors

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(5,6)
$$

Problem 2. Solve the following parts:
(1) Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a linear map such that $f(1)=3$. Compute $f(4)$.
(2) Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a linear map such that $f(7)=-2$. Compute $f(5)$.
(3) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear map such that $f(1,0)=(3,4)$ and $f(0,1)=(0,2)$. Compute $f(-1,5)$.
(4) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear map such that $f(2,0)=(3,1)$ and $f(0,4)=(0,-1)$. Compute $f(7,1)$.
(5) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear map such that $f(1,1)=(1,2)$ and $f(2,3)=(-4,9)$. Compute $f(1,1)$.
(6) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear map. Compute $f(0,0)$.
(7) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is a linear map such that $f(1,0)=3$ and $f(0,1)=2$. Compute $f(-1,5)$.

Problem 3. Prove, with an argument, or disprove, with a counter-example, each of the statements sentences below.
(1) If a linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is such that $f(1,0)=(1,0)$ and $f(0,1)=(2,5)$. Then $f(1,1)=(3,5)$.
(2) If a linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is such that $f(1,0)=(1,0)$ and $f(2,0)=(2,5)$. Then $f(1,1)=(3,5)$.
(3) If a linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is such that $f(1,3)=(1,0)$ and $f(-2,-6)=$ $(0,1)$. Then $f(1,2)=(3,5)$.
(4) If a linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is such that $f(1,0)=(1,0)$ and $f(0,1)=(2,5)$. Then $f(1,1)=(3,5)$.
(5) Any map $f: \mathbb{R} \longrightarrow \mathbb{R}$ of the form $f(x)=\alpha \cdot x$, for some $\alpha \in \mathbb{R}$ is linear.
(6) Any linear map $f: \mathbb{R} \longrightarrow \mathbb{R}$ is of the form $f(x)=\alpha \cdot x$, for some $\alpha \in \mathbb{R}$.
(7) Any linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is of the form $f\left(x_{1}, x_{2}\right)=\left(\alpha_{1} \cdot x_{1}, \alpha_{2} \cdot x_{2}\right)$, for some $\alpha_{1}, \alpha_{2} \in \mathbb{R}$.

