LECTURE 3: PRACTICE EXERCISES

MAT-67 SPRING 2024

ABSTRACT. These practice problems correspond to the 3rd lecture of MAT-67 Spring 2024, delivered on April 5th 2024.

The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Problem 1. Draw in the real line \mathbb{R} and the real plane \mathbb{R}^2 the following maps f by drawing vectors v_i and their images $f(v_i)$.

(1) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = 5x$ and the vectors $v_1 = (1), \quad v_2 = (-3), \quad v_3 = (4)$ (2) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, f(x_1, x_2) = (3x_1 - x_2, x_2)$ and the vectors $v_1 = (1, 0), \quad v_2 = (0, 1), \quad v_3 = (2, 5)$ (3) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, f(x_1, x_2) = (3x_1, 5x_2)$ and the vectors $v_1 = (1, 0), \quad v_2 = (0, 1), \quad v_3 = (1, 1)$ (4) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, f(x_1, x_2) = (x_1, x_1)$ and the vectors $v_1 = (1, 0), \quad v_2 = (0, 1), \quad v_3 = (1, 1)$ (5) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, f(x_1, x_2) = (2x_1, 0)$ and the vectors $v_1 = (1, 0), \quad v_2 = (0, 1), \quad v_3 = (2, -3)$ (6) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, f(x_1, x_2) = (-x_1, -x_2)$ and the vectors $v_1 = (1, 0), \quad v_2 = (0, 1), \quad v_3 = (5, 6)$

Problem 2. Solve the following parts:

- (1) Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a linear map such that f(1) = 3. Compute f(4).
- (2) Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a linear map such that f(7) = -2. Compute f(5).
- (3) Suppose that $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear map such that f(1,0) = (3,4) and f(0,1) = (0,2). Compute f(-1,5).
- (4) Suppose that $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear map such that f(2,0) = (3,1) and f(0,4) = (0,-1). Compute f(7,1).
- (5) Suppose that $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear map such that f(1,1) = (1,2) and f(2,3) = (-4,9). Compute f(1,1).
- (6) Suppose that $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear map. Compute f(0,0).

(7) Suppose that $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a linear map such that f(1,0) = 3 and f(0,1) = 2. Compute f(-1,5).

Problem 3. **Prove**, with an argument, or **disprove**, with a counter-example, each of the statements sentences below.

- (1) If a linear map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is such that f(1,0) = (1,0) and f(0,1) = (2,5). Then f(1,1) = (3,5).
- (2) If a linear map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is such that f(1,0) = (1,0) and f(2,0) = (2,5). Then f(1,1) = (3,5).
- (3) If a linear map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is such that f(1,3) = (1,0) and f(-2,-6) = (0,1). Then f(1,2) = (3,5).
- (4) If a linear map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is such that f(1,0) = (1,0) and f(0,1) = (2,5). Then f(1,1) = (3,5).
- (5) Any map $f : \mathbb{R} \longrightarrow \mathbb{R}$ of the form $f(x) = \alpha \cdot x$, for some $\alpha \in \mathbb{R}$ is linear.
- (6) Any linear map $f : \mathbb{R} \longrightarrow \mathbb{R}$ is of the form $f(x) = \alpha \cdot x$, for some $\alpha \in \mathbb{R}$.
- (7) Any linear map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is of the form $f(x_1, x_2) = (\alpha_1 \cdot x_1, \alpha_2 \cdot x_2)$, for some $\alpha_1, \alpha_2 \in \mathbb{R}$.